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Abstract: Cooperative perception, or collective perception (CP), is an emerging and promising
technology for intelligent transportation systems (ITS). It enables an ITS station (ITS-S) to share its
local perception information with others by means of vehicle-to-X (V2X) communication, thereby
achieving improved efficiency and safety in road transportation. In this paper, we present our recent
progress on the development of a connected and automated vehicle (CAV) and intelligent roadside
unit (IRSU). The main contribution of the work lies in investigating and demonstrating the use of CP
service within intelligent infrastructure to improve awareness of vulnerable road users (VRU) and
thus safety for CAVs in various traffic scenarios. We demonstrate in experiments that a connected
vehicle (CV) can “see” a pedestrian around the corners. More importantly, we demonstrate how CAVs
can autonomously and safely interact with walking and running pedestrians, relying only on the CP
information from the IRSU through vehicle-to-infrastructure (V2I) communication. This is one of the
first demonstrations of urban vehicle automation using only CP information. We also address in the
paper the handling of collective perception messages (CPMs) received from the IRSU, and passing
them through a pipeline of CP information coordinate transformation with uncertainty, multiple road
user tracking, and eventually path planning/decision-making within the CAV. The experimental
results were obtained with manually driven CV, fully autonomous CAV, and an IRSU retrofitted with
vision and laser sensors and a road user tracking system.

Keywords: collective perception; cooperative perception; collective perception service; V2X commu-
nication; intelligent roadside unit; connected and automated vehicle

1. Introduction

Autonomous vehicles (AVs) have received extensive attention in recent years as a
rapidly emerging and disruptive technology to improve safety and efficiency of current
road transportation systems. Most of the existing and under development AVs rely on
local sensors, such as cameras and lidars, to perceive the environment and interact with
other road users. Despite significant advances in sensor technology in recent years, the per-
ception capability of these local sensors is ultimately bounded in range and field of view
(FOV) due to their physical constraints. In addition, occluding objects in urban traffic envi-
ronments such as buildings, trees, and other road users impose challenges in perception.
There are also robustness related concerns, for instance, sensor degradation in adverse
weather conditions, sensor interference, hardware malfunction and failure. Unfortunately,
failing to maintain sufficient awareness of other road users, vulnerable road users (VRU),
in particular, can cause catastrophic safety consequences for AVs.

In recent years, V2X communication has garnered increasing popularity among re-
searchers in the field of intelligent transportation system (ITS) and with automobile man-
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ufacturers, as it enables a vehicle to share essential information with other road users in
a V2X network. This can be a game changer for both human operated and autonomous
vehicles, which would be referred to as connected vehicles (CVs) and connected and au-
tomated vehicles (CAVs), respectively. It will also open many doors to new possibilities
with peer-to-peer connectivity. The connected agents within the cooperative ITS (C-ITS)
network will be able to exploit the significant benefits that come from sharing information
amongst the network. For instance, the standardised Cooperative Awareness Messages
(CAMs) enable mutual awareness between connected agents. Nevertheless, there are other
types of road users such as non-connected vehicles, pedestrians, and cyclists that have not
been included in the C-ITS services yet. The detection of these non-connected road users in
this case becomes an important task for road safety.

The major standardisation organisations such as European Telecommunications Stan-
dard Institute (ETSI), SAE and IEEE have made a significant effort to standardise spec-
ifications regarding C-ITS services, V2X communication protocols, and security. This is
essential to facilitate the deployment of C-ITS in road transportation network globally.
The collective perception (CP) service is among those C-ITS services that are currently being
standardised by ETSI. The CP service enables an ITS station (ITS-S), for instance, a CAV
or an intelligent roadside unit (IRSU) to share its perception information with adjacent
ITS-Ss by exchanging Collective Perception Messages (CPMs) via V2X communication.
The ETSI CPMs convey abstract representations of perceived objects instead of raw sensory
data, facilitating the interoperability between ITS-Ss of different types and from different
manufacturers. A CAV can benefit from the CP service in terms of improved awareness of
surrounding road users, which is essential for ensuring road safety. Specifically, it facilitates
a CAV to extend its sensing range and improve sensing quality, redundancy, and robustness
through cross-platform sensor fusion, i.e., fusing its local sensory data with other CAV and
IRSU information. In addition, the improved perception quality as a result of the sensor
fusion potentially relaxes the accuracy and reliability requirements of onboard sensors.
This could lower per vehicle cost to facilitate the massive deployment of CAV technology.
As for traditional vehicles, CP also brings an attractive advantage of enabling percep-
tion capability without retrofitting the vehicle with perception sensors and the associated
processing unit.

Over the last two years, we have been working with Cohda Wireless on CP and CAV.
We are particularly interested in the safety implications the CP service is bringing into the
current and future transportation network, and how the CP service will potentially shape
the development of intelligent vehicles. To this end, we have developed an IRSU and tested
it with the Australian Centre for Field Robotics (ACFR) CAV platforms in different traffic
scenarios. The IRSU is equipped with a multi-beam laser scanner and multiple cameras
for road user detection and tracking, and the vehicles are retrofitted with a suite of local
sensors to implement full autonomy. The IRSU and CAV have the V2X communication
capability through Cohda Wireless MK5 Road-Side Unit (RSU) and On-Board Unit (OBU),
respectively.

The first and also the main contribution of the paper is to investigate and demonstrate
through three representative experiments how a CV and a CAV achieve improved safety
and robustness when perceiving and interacting with VRU, using the CP information from
an intelligent infrastructure in different traffic environments and with different setups.
These experiments do not use the CAV’s internal perception capabilities so as to highlight
the benefits of using intelligent infrastructure and CP service in the traffic environments.
The received perception data from the IRSU are used as the only source of information
for multiple road users tracking and path planning within the smart vehicle we tested
with. The first experiment was conducted on a public road in an urban traffic environ-
ment, and the CV was able to “see” a visually obstructed pedestrian before making a turn
into an alleyway. It is demonstrated in the next two experiments that a CAV navigated
autonomously and safely when interacting with walking and running pedestrians in prox-
imity in simulated and real lab traffic environments, respectively. The second contribution
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of the paper is to address the coordinate transformation of perception information consid-
ering the respective uncertainties, and to analyse the influence of ITS-S self-localisation
accuracy through numerical simulations. The uncertainties associated with the perceived
object information are essential for performing consistent state estimation for road users,
and probabilistic fusion of perception information from multiple ITS-Ss in CP.

The remainder of the paper is organised as follows. Section 2 will focus on the
related work on CP and its use cases for CAV. Section 3 presents the IRSU and CAV
platforms developed and used in the experiments, and the coordinate transformation of
perception information with uncertainty is addressed in Section 4. The results from the
three experiments are presented in Section 5, followed by conclusions drawn in Section 6.

2. Related Work

The concept of CP has been extensively studied in the ITS research community over
the last two decades. Initial CP related work proposes to share raw sensory data between
two mobile agents, such as images [1], lidar point clouds [2], both combined [3-5], loca-
tion and relative range measurements [6,7]. Those approaches however tend to require
prohibitively high bandwidth for existing V2X communication technologies in a dense
environment. In addition, raw sensor data are often vendor dependent and proprietary,
causing interoperability issues among communicating ITS-Ss.

More theoretical and experimental work on CP was conducted as part of the
Ko-FAS [8] research initiative. These include [9-11] based on the Ko-PER specified Coop-
erative Perception Message (CPM). It is a supplementary message to the standard ETSI
ITS G5 CAMs, to support the abstract description of perceived dynamic and static objects.
Experimental studies are conducted in [9] on the Ko-PER CPM transmission latency and
range. In [10], a high level object fusion framework in CP is proposed, which combines
the local sensor information with the perception data received from other V2X enabled
vehicles or roadside units (RSUs). The authors of [11] investigate the inter-vehicle data
association and fusion for CP. More recent work in [12] proposes a variant of Ko-PER CPM
and analyses the trade-off between message size as a result of enabling optional data fields
in the CPM and global fusion accuracy.

Based on the work in [9], the authors of [13] propose Environmental Perception Mes-
sage (EPM) for CP with different information containers specifying sensor characteristics,
originating station state, and parameters of perceived objects. High level object fusion
using the perceived information in received EPMs is also addressed in [13]. Both EPM and
the earlier Ko-PER CPM are a separate message that contains all CP related data elements
(DEs) and data frames (DFs), and has to be transmitted in parallel with an ETSI CAM.
There is also work towards extended CAM. For instance, Cooperative Sensing Message
(CSM) from AutoNet2030 [14-16] extends CAM specifications to include a description of
objects perceived by local or remote sensors. Following a similar concept of CP, Proxy CAM
is presented in [17-19], where intelligent infrastructure generates standard CAMs for those
perceived road users, while the work in [20] proposes a CPM comprised of a collection of
CAMs, each describing a perceived object. The work in [21,22] evaluates different EPM
dissemination variants under low and high traffic densities and proposes to attach the CP
relevant DFs in EPM to CAM to minimise communication overhead. The CPM currently
being specified at ETSI, as in [23], is derived from optimising the EPM and combining
it with CAM. It is therefore more self-contained, no longer dependent on the reception
of CAMs.

Similarly, there are early stage standardisation activities in SAE advanced application
technical committee to standardise messages and protocols for sensor data sharing in SAE
J3224 [24]. These messages and protocols are not yet defined and are thus not considered
in this work.

Considering the limited communication bandwidth and avoiding congestion in the
wireless channel, more recent studies in the CP area tend to focus on the communication
aspect of the technology, weighing up provided CP service quality and the V2X network
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resources. The work in [25] investigates ETSI CPM generation rules that balance provided
service quality and the V2X channel load. It is provided in [26] an in-depth study on the
impact of different CPM generation rules from the perspectives of V2X communication
performance and perception capabilities in low and high density traffic scenarios. The au-
thors of [27] raise the concern of redundant data sharing in V2V based CP with the increase
of CAV penetration rate. To tackle the redundant transmission issue, a probabilistic data
selection approach is presented in [28]. The authors of [29] propose an adaptive CPM gen-
eration rule considering change in perceived object’s state, and the authors of [30] propose
to employ object filtering schemes in CPM, to improve communication performance while
minimising the detriment to perception quality. Similarly, the work in [31] presents a deep
reinforcement learning based approach that a vehicle can employ when selecting data to
transmit in CP to alleviate communication congestion.

There is also work conducted to explore the use cases, benefits, and challenges of
CP. The authors of [32] provide early study of CP illustrating its potential in terms of
improved vehicle awareness and extended perception range and field of view. The work
presented in [13] evaluates EPM for obstacle avoidance of two manually driven CAVs,
showing that the CP helps gain extra reaction time for the vehicles to avoid obstacles. It is
analysed in [27] the performance gain in extending horizon of CAVs by leveraging V2V
based CP. The work in [33,34] analytically evaluates the enhancement of environmental
perception for CVs at different CP service penetration rates and with different traffic
densities. The authors of [35] discuss the security threats in CP and propose possible
countermeasures in V2X network protocols, while the work in [36] focuses on using CP
for detecting vehicle misbehaviour due to adversarial attacks in V2X communication.
Most of the CP related use cases studied in the literature are safety related, including
cooperative driving [5,16], cooperative advisory warnings [37,38], cooperative collision
avoidance [4,13,39], intersection assistance [17,40], and vehicle misbehaviour detection [41],
to name a few. It is presented in [42] quantitative comparison of V2V and V2I connectivity
on improving sensing redundancy and collaborative sensing coverage for CAV applications.
The work concludes that infrastructure support is crucial for safety related services such
as CP, especially when the penetration rate of sensing vehicles is low. The authors of [17]
demonstrate improved awareness of approaching vehicles at an intersection using the
CP information from an IRSU. The CP in the work is achieved through Proxy CAM.
The authors of [43] compare CAM and CPM and demonstrate IRSU assisted augmented
perception through simulations. Recent work in [44] demonstrates the IRSU assisted CP
for extending perception of CAVs on open roads. Infrastructure-assisted CP is also part
of the scope of Managing Automated Vehicles Enhances Network (MAVEN) [45], an EU
funded project targeting traffic management solutions where CAVs are guided at signalised
cooperative intersections in urban traffic environments [40]. Other CP related joint research
projects include TransAID [46] and IMAGInE [47].

A significant proportion of the existing work conducts the analyses of V2X commu-
nication and CP in simulated environments. For instance, the work in [27,28] is carried
out in an open source microscopic road traffic simulation package SUMO (Simulation of
Urban Mobility) [48]. Another commonly used network and mobility simulator is Veins
(Vehicles in Network Simulation) [49,50], which integrates SUMO and a discrete-event
simulator OMNeT++ (Open Modular Network Testbed in C++) [51] for modelling realistic
communication patterns. The authors of [21,22,25,30,32,52] conduct work in Artery [53,54]
framework, which wraps SUMO and OMNet++, and enables V2X simulations based on
ETSI ITS G5 protocol stack. There are also simulators for advanced driving assistance
systems (ADASs) and autonomous driving systems, which provide more realistic sensory
level perception information. In recent years, they start to show their potential in testing
and validating CP with CAVs. For instance, Pro-SiVIC is employed in [43] for CP related
simulations, and CARLA [55,56] is combined with SUMO in a simulation platform devel-
oped for CP in [31]. Despite the notable progress on the study of CP achieved in recent
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years, the CP for CAV operations has not been extensively tested using real platforms and
in real traffic environments.

3. Platforms
3.1. Intelligent Roadside Unit

The IRSU developed is comprised of a sensor head, a processing workstation, and a
Cohda Wireless MK5 RSU (Cohda Wireless, Wayville, Australia). The sensor head is
mounted on a tripod for easy deployment in different testing environments, as shown in
Figure 1. Specifically, two Pointgrey Blackfly BFLY-PGE-2356C-C cameras (FLIR Systems,
Wilsonville, OR, USA) are mounted with an angle separation of 45°. The camera with
its lens Fujinon CF12.5HA-1 has a horizontal field-of-view (FOV) of about 54°, and a
vertical FOV of 42°. The setup of dual cameras achieves a combined FOV of approximately
100°, and the FOV can be further augmented by adding more cameras to the sensor
head. A RoboSense 16-beam lidar (Suteng Innovation Technology, Shenzhen, China) is
also installed into the sensor head, performing 360-degree scanning of the environment
at 10 Hz. The workstation has AMD Ryzen Threadripper 2950X CPU, 32 GB memory,
RTX2080Ti GPU, running Robot Operation System (ROS) Melodic on Ubuntu 18.04.2 long-
term support (LTS). The Cohda Wireless MK5 RSU is a rugged unit with dual antennas,
housed in a weatherproof enclosure, making it ready for outdoor deployment.

Figure 1. The developed IRSU is equipped with multiple sensors including dual cameras and a
16-beam lidar. The sensors sit on a tripod for easy deployment in the field.

In terms of information processing, the workstation first performs sensory data fusion
of images and lidar point clouds for pedestrian and vehicle detection. Specifically, the raw
images from cameras are first rectified using camera intrinsic calibration parameters.
As illustrated in Figure 2, the road users within the images are classified /detected using
YOLOV3 that runs on GPU. At the same time, the lidar point clouds are projected to the
image coordinate system with proper extrinsic sensor calibration parameters. The lidar
points are then segmented, clustered and labelled by fusing the visual classifier results
(in the form of bounding boxes in the images) and the projected lidar points. Given two
images from the cameras and a lidar point cloud at a time, the camera-lidar sensor fusion
for road user detection takes approximately 70 ms within the workstation.

The detection results are then encoded into ETSI CPMs and broadcast by the Cohda
Wireless MK5 RSU at 10 Hz. Details are available in Section 3.3. We tested the working
range of the developed IRSU for detecting common road users, such as pedestrians and
vehicles. The maximum detection range is approximately 20 m for pedestrians and 40 m
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for cars. In addition, in the IRSU, a variant of Gaussian mixture probability hypothesis
density (GMPHD) filter [57] is employed to track multiple road users and has its tracking
results visualised in real time within the workstation. The same tracking algorithm is also
employed on the CAV side. Details will be given in Section 3.2.

nt Clust
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\ 4

Labelled Point Clusters
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Figure 2. The sensory data processing pipeline within the IRSU.

To assess the position tracking accuracy of the IRSU, an outdoor test was conducted at
the Shepherd Street car park at the University of Sydney. Figure 3 illustrates the setup of the
test at the car park, where a pedestrian was walking in front of the IRSU for approximately
one minute. The ground truth positions of the target pedestrian were obtained at 1 Hz by an
u-blox C94-M8P RTK receiver, which reports a standard deviation of 1.4 cm of positioning
when in the RTK fixed mode.

() (b)

(o)

Figure 3. Pedestrian tracking setup for the IRSU. (a) shows the detection of the target pedestrian
within a camera image using YOLOv3. The lidar points are projected to the image frame with
extrinsic calibration parameters. The projected points in (b) are colour coded based on their range to
the sensor in 3D space. Those bold points indicate those hitting the ground plane. (c¢) demonstrates
the tracking of the pedestrian in 3D space. The RTK antenna was hidden within the cap of the
pedestrian to log GNSS positions as the ground truth.
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As mentioned previously, the road user detection in the IRSU is achieved through
camera-lidar sensor fusion. Despite a centimeter level of ranging accuracy obtained from
the multi-beam lidar, the bounding box accuracy in visual object detection decreases
dramatically as the target moves further from the cameras. In addition to the noises from
the sensors themselves, there are errors introduced in the data processing and sensor fusion,
such as lidar-to-camera projection, point cloud segmentation, and clustering. Therefore,
based on the comparison with ground truth data and considering the detection range of
the IRSU, the overall position noise contained in the pedestrian detection is modelled as a
zero-mean Gaussian variable with a standard deviation of 0.2 m in both x- and y-directions.

As presented in Figure 4, the trajectory of the target reported by the local tracker is
found close to the ground truth points. The root mean squared error (RMSE) in position is
calculated by comparing the ground truth positions and the corresponding estimates from
the tracker. As the two sources of positions were obtained at different rates (10 Hz from the
tracker versus 1 Hz from RTK), each RTK reading is compared with the position estimate
that has the nearest timestamp. It can be seen from Figure 4b that the distance of the target
pedestrian to the IRSU varies from 5 to 22 metres, and the position RMSE values are less
than 0.3 m for most of the time in the test, as presented in Figure 4c.
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Figure 4. Pedestrian tracking results for the IRSU. It can be seen in (a) that, when the target pedestrian
was walking in a figure eight pattern in front of the IRSU, the tracked positions are found to be well
aligned with the ground truth path obtained from an RTK receiver. The distance of the pedestrian
relative to the IRSU changes between 5 and 22 m, as depicted in (b). In (c), the position RMSE is
found to be lower than 0.3 m for the majority of the time in the test.

3.2. Connected and Automated Vehicle

Figure 5 presents an overview of hardware configuration of the CAV platform built
by the ACFR ITS group. Images are captured onboard at 30 FPS by a NVIDIA Drive PX2
automotive computer with six gigabit multimedia serial link (GMSL) cameras with 1080p
resolution and a 100° horizontal FOV each. They are arranged to cover a 360° horizontal
FOV around the vehicle. The vehicle also has a 32-beam scanning lidar with 30° vertical
FOV and 360° horizontal FOV for scanning the surrounding at 10 Hz. Both the cameras
and the lidar have been calibrated to the local coordinate system of the platform, using
the automatic extrinsic calibration toolkit presented in [58]. In addition, the vehicle has a
GNSS receiver, a six- degrees of freedom IMU, and four wheel encoders for odometry and
localisation. The onboard Intel next unit of computing (NUC) has 32 GB of memory and a
quad-core Intel i7-6670HQ processor, serving as the main processing computer within the
CAV. The NUC is running ROS Melodic on Ubuntu 18.04.2 LTS. Last but not least, the CAV
platform is equipped with a Cohda Wireless MK5 OBU to enable the V2X communication
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capability. Built with the same chipset as the MK5 RSU, the MK5 OBU is a small module
that can be retrofitted to vehicles for aftermarket deployment. Please refer to [59] for more
details on the CAV platform and the USyd Campus data set collected using the platform.

32-Beam Laser Cohda Wireless V2X DSRC GPS
Rangefinder MK5 OBU Antenna Antenna

Intel RealSense
RGB-D Camera

GMSL Cameras

Ultrasonic
Sensors
IMU +
Wheel
Encoders
Intel NUC PLC Nvidia Drive PX 2

Figure 5. The CAV platform and onboard sensors.

Although the CAV can achieve full autonomy using its various built-in sensors,
its perception sensors were not used for road user detection in the experiments presented
in the paper, in which case, the CAV had to rely on the CP information from the IRSU when
interacting with pedestrians in the traffic environments. This is to highlight the benefits
of using the CP service in CAV operations. The multiple cameras were used for video
recording purposes, and the multi-beam lidar was enabled only for aiding self-localisation
within the map. Lidar feature maps of the experiment sites were built using a simultaneous
localisation and mapping (SLAM) algorithm. The maps are based on pole and building
corner features extracted from lidar point clouds, which are essential for localisation since
GNSS alone cannot provide the desired level of accuracy in the experiment environments.
Interested readers can refer to [60] for more information. In the meantime, a Lanelet2 map is
built for every experiment site, which includes road network, lane layout and traffic rules
such as speed limits, traffic lights and right-of-way rules.

When the CAV receives an ETSI CPM through the onboard Cohda Wireless MK5 OBU,
the received perceived objects information is first decoded from binary ASN.1 encoding,
and transformed with its uncertainty to the local frame of reference of the CAV, as presented
in Section 4, which also takes into account the estimated egocentric pose of the CAV in
self-localisation.

Following the coordinate transformation with uncertainty, the perceived objects infor-
mation from the IRSU are fused into a multiple road user tracking algorithm that is a variant
of the GMPHD filter running within the local frame of the receiving CAV. The tracked
states of road users include their position, heading, and speed. The general formulation of
the GMPHD tracker is to use a Gaussian mixture to represent the joint distribution of the
group of tracked targets. The GMPHD approach is considered attractive due to its inherent
convenience in handling track initiation, track termination, probabilistic data association,
and clutter. Compared with the naive GMPHD algorithm, the road user tracker running in
both the IRSU and CAYV is improved with measurement-driven initiation of new tracks,
and track identity management. In addition, note that an instance of the tracker is required
for each type of road user, which effectively reduces the overall computational cost.

The navigation subsystem in the CAV is responsible for path planning, monitoring
and controlling the motion of the vehicle from the current position to the goal. A hybrid A*
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path planner presented in our recent work [61] is running within the CAV to plan a path
navigating around obstacles and the tracked pedestrians. It maintains a moving grid-based
local cost map that considers (1) structural constraints, such as road and lane boundaries,
present in the Lanelet2 map, (2) obstacles picked up by local perception sensors, and (3)
current and future estimates of road users detected and broadcast by IRSU through V2I
communication, such that it can plan a smooth, safe, and kinematically feasible path to
avoid collision with any other road users the CAV becomes aware of. It should be noted
that, in the experiments presented in the paper, the use of local perception information
in the navigation was minimised or disabled. Currently, the path planner is designed
for low-speed scenarios, as our CAV platforms are intended for low-speed operations in
shared traffic environments. However, this does not affect the demonstration of CP.

3.3. Handling of ETSI CPMs on IRSU and CAV Platforms

The overall system diagram of the IRSU and the CAV in a C-ITS configuration is
illustrated in Figure 6. The detected road user descriptions are encoded to ETSI CPMs and
transmitted from the IRSU to the CAV through the Cohda Wireless MKS5 devices at 10 Hz.
Each ETSI CPM consists of an ITS PDU header and five types of information containers
accommodating mandatory and optional DEs and DFs. These containers are:

1. A CPM Management Container, which indicates station type, such as a vehicle or an
IRSU, and reference position of the transmitting I'TS-S.

2. An optional Station Data Container, which provides additional information about
the originating station. This includes the heading, speed, and dimensions when the
originating station is a vehicle.

3. Optional Sensor Information Containers, which describe the type and specifications of
the equipped sensors of the transmitting ITS-S, including sensor IDs, types, and de-
tection areas.

4.  Optional Perceived Object Containers, each of which describes the dynamics and prop-
erties of a perceived object, such as type, position, speed, heading, and dimensions.
These perceived object descriptions are registered in the coordinate system of the
originating station.

5. Optional Free Space Addendum Containers, which describe different confidence levels
for certain areas within the sensor detection areas.

Intelligent Roadside Unit Connected Autonomous Vehicle
GNSS + Lidar +
Lidar + Cameras S;;;/ite% P;ld IMU + Wheel > Self-Localisation
Encoders

. . CPM o |Transformation| Hybrid A* Path Lanelet2
Road Users Detection |—| CPM Publisher p e ¢ o p»| ETSICPMs peo oo P Subscriber to Local Frame Planner |

. Road Users Kinematic
IRl s T Lo Tracking Controller

Figure 6. System diagram of the IRSU and the CAV platforms in the experiments.

The CPM generation rules support different abstraction levels for perceived object
descriptions for the implementation flexibility, which can derive from low-level detections
made by individual sensors, or the results of the high-level data fusion. In the developed
IRSU, the road user detections as a result of camera-lidar sensor fusion are considered
in the encoding of CPMs, as depicted in Figure 6. The road user tracking results within
the IRSU can be used for different purposes, such as visualisation, traffic monitoring and
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management. Sharing the tracking results in V2X communication for CP will require
track-to-track fusion on the receiving ITS-S side, in which case special care needs to be
taken to avoid double counting of common prior information, which causes inconsistency
in state estimation.

The overall perception information flow from the IRSU to CAV is illustrated in
Figure 7. Specifically, the handling of the perception information within the system is
mostly carried out in ROS realm. The ROS Kinetic is installed in both Cohda Wireless MK5
devices, with the workstation/NUC set as the ROS master to the transmitting/receiving
MKS5, respectively. The perceived road users on the workstation side are first described in
the form of a ROS CPM, which is used internally within the ROS system and brings conve-
nience of message handling and diagnostics in ROS. Each ROS CPM is a self-contained
message that contains all information required for an ETSI CPM. It is the ETSI CPM that is
eventually transmitted in the V2X communication.

Intelligent Roadside Unit Connected Autonomous Vehicle

Autonomous
Vehicle

Workstation Cohda MKS5 RSU Cohda MK5 OBU

Figure 7. Perception information flow from the IRSU to the CAV. The IRSU broadcasts perceived objects information in
the form of ETSI CPMs through the Cohda Wireless MK5 RSU. As the receiving agent, the CAV has V2X communication
capability through the Cohda Wireless MK5 OBU.

A ROS msg_bridge node running within each MK5 serves as a bridge between ROS
CPMs and ETSI CPMs. It populates an ETSI CPM given information from an ROS CPM and
based on the ASN.1 definition of the ETSI CPM. In the meantime, it decodes an ETSI CPM
received from other ITS-Ss back into the ROS CPM format. The transmission and reception
of ETSI CPM payload are handled by Cohda’s V2X stack in MK5. We keep upgrading
the ROS msg_bridge node to support the features required in the CP demonstrations in
accordance with the status quo of ETSI CPM standardisation.

4. Coordinate Transformation of Perceived Objects with Uncertainty

The perceived objects information broadcast through CP service is produced from the
perspective of the sensing ITS-S. When a piece of perceived object information is received,
it is not usable for the receiving agent until it is transformed into its local coordinate system.
In [13], the coordinate transformation of perceived objects does not explicitly incorporate
the accuracy fields accompanied with DEs in the EPMs. We stress that uncertainty bounds
associated with the perception information are indispensable in successive data fusion and
thus have to be considered. In addition, it is essential for the coordinate transformation to
also incorporate the uncertainty contained in the pose estimation of both ITS-Ss. These are
discussed in detail as follows.

1.  Perception uncertainty in the sensing ITS-S. Every commonly used perception sensor
in ITS area has its own strengths and limitations. For instance, RGB images are
useful in detecting object instances and classification of road users with an estimated
confidence level using a visual classifier algorithm. Doppler RADARSs produce both
position and velocity measurements but are prone to noise and interference from
the environment. Lidars have a high range resolution to observe physical extent
and shape of objects. Nevertheless, the point density decreases dramatically along
with range. These sensors all produce measurements corrupted by noise, and thus
should be modelled with uncertainty. Combining multi-modal sensory information
not only improves robustness of the perception system, but also increases accuracy,
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which means a lower level of uncertainty. The produced estimates of perceived
objects with uncertainty have been represented in Perceived Object Containers of the
CPM specification.

2. Self-localisation uncertainty of sensing and receiving ITS-Ss. A vehicle ITS-S has to
constantly localise itself within a global frame of reference such as a map or UTM
frame for navigation and safety reasons. However, accurate self-localisation for a
moving platform is known to be one of the existing challenges in ITS applications
such as urban navigation. Using GNSS as the only source for localisation often cannot
achieve satisfactory accuracy, in particular in GNSS-degraded or even GNSS-denied
environments. There are various existing solutions that can provide higher localisa-
tion accuracy such as RTK, GNSS and inertial /encoder data fusion, feature based
localisation based on existing map, etc. Nevertheless, even with the same localisation
approach, the uncertainty magnitude in the localisation can vary significantly depend-
ing on certain external conditions, such as GNSS satellite visibility in the sky, and the
quantity of observable features and their qualities in the surroundings. The location
of an IRSU, although deployed static in a traffic environment, is not immune from
localisation error either when set either by GNSS or through a surveying process.
The localisation uncertainties of both sensing and receiving ITS-Ss therefore have to
be considered in the perceived objects coordinate transformation since it cannot be
completely eliminated regardless of the self-localisation means employed. The orig-
inating ITS-S information including its pose with associated uncertainty has been
contained within the CPM Management Container and Station Data Container in the
CPM definition.

Consequently, the transformed object state estimates contain uncertainty that is mainly
a combined result of uncertainty in the localisation of both ITS-Ss and that in the sensory
perception. As illustrated in Figure 8, both sensing and receiving ITS-Ss contain uncertain-
ties in their estimated egocentric states within the global frame G. The sensing ITS-S S
observes multiple road users within its local frame with some level of sensory measurement
uncertainty labelled with purple dashed lines. The road users measurement uncertainties
grow when transformed to a global frame G due to self-localisation uncertainty of ITS-S S,
as labelled with gray dotted lines. The road users measurement uncertainties grow further,
as labelled by orange solid lines, when transformed to the local frame of the receiving ITS-S
R as its self-localisation uncertainty is also incorporated.

Figure 8. Coordinate transformation of perception information with uncertainty considered from the
sensing ITS-S S to the receiving ITS-S R.

Both works [10,62] perform the coordinate transformation of perceived object states
with their uncertainty through temporal and spatial alignment. The temporal alignment
is introduced in the work mainly due to the time difference between the reception of a
CAM and a Ko-PER CPM. It is, however, less of a concern for an ETSI CPM, which now
can contain the originating station information required from a CAM.
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4.1. Problem Formulation

This section presents mathematical formulation of the coordinate transformation of
perceived objects information a recipient ITS-S receives from a sensing ITS-S. We pro-
pose to use unscented transform (UT) in the coordinate transformation with uncertainty,
which here is recognised as a nonlinear and non-deterministic process. The formulation
presented is intended for 2D transformation, as it is reasonable to assume a planar road
surface for the road user detection and tracking problem discussed in the paper. Nev-
ertheless, the formulation can be easily extended to transformation in 3D space. It is
important to note that although the paper is mainly focused on CP service provided by
intelligent infrastructure, the formulation presented here is intended to provide a generic
form for two arbitrary ITS-Ss in a V2X network, which includes both V2V and V2I scenarios.
Before proceeding further, some definitions about coordinate systems are first given to
facilitate discussions.

The global frame, which is the fixed coordinate system attached on the ground,
is represented as {G} = {76, 7G} The local frame of the sensing ITS-S S is attached on
the platform body and is represented as {S} = {? S, 7 s}, with 7 pointing to the east
direction if it is an IRSU and pointing towards its moving direction for a vehicle. Local frame
of the recipient ITS-S R is attached on the platform body and moving with the platform.
It is denoted as {R} = {7 R, ? R} with TR pointing towards its moving direction.

The pre-superscript is employed to describe the coordinate frame in which the corre-
sponding variable is expressed. For instance, Vx] denotes the position of an object p in the
x-direction with respect to {V'} at time . A variable without pre-superscript is defined in a
generic way to not specify a particular coordinate frame.

The state of the receiving ITS-S R at time ¢ and its estimate are denoted as

G, R T
= [ Y o) M
where xR, &R, and “OR denote 2D coordinates and the heading, respectively, in {G} at
time t. The state estimate is represented by a multivariate Gaussian as

GXF ~ N(G)_(Fl F)/ (2)

where %R and ER denote the mean vector and covariance matrix, respectively.
Likewise, the estimated pose of the perceiving ITS-S S at time ¢ is also represented as
a Gaussian variable:

o =[O % %) ~ N (%), ©)
where Cx? and Gy} are the location of S, %67 is its heading with respect to {G} at time ¢,
%%? and “Z7 denote the mean vector and covariance matrix, respectively. In the special case
of an IRSU serving as the perceiving ITS-S, the subscription # in (3) can be dropped as %7
and Gyf are time invariant and GGtS is towards due east for an IRSU. Nevertheless, GZtS is
still applicable to an IRSU due to the presence of uncertainty in the surveying process.

The state vector of a perceived object p at time f is represented from the sensing ITS-S’s
perspective as

T —
=l 9w~ N (X)), @

where %x/ and %/ are object coordinates and %9/ is heading within the sensing ITS-S’s local
frame at time ¢.

We obtain the transformed state of perceived object p with respect to {R} by

Rxf = trans (fo,fo, Sxf). (5)
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Specifically, in trans(-), we have

Rxg — (%) (¢ ixg
R}{f N ( t) (xt) zt ) 6)
RoP = %I 1“0 — pR
cosf —sinf «x
where T( [x v 6] T) = sig 0 Coos 0 ? is the homogeneous transformation matrix.

Given a Gaussian representation of the perceived object state probabilistic density
function in the form of mean vector X and covariance matrix X with respect to {S}, the non-
linear transformation to receiving ITS-S’s frame { R} with uncertainty is achieved through
the UT process.

An augmented state vector is constructed by concatenating the state vector of the
receiving and sensing ITS-Ss and that of the perceived object p before transformation.
Its Gaussian estimate is written as

x{ ~ N (X, Zf), @)

T
where %! = | (&K)" (G5)” (S,—(fﬂ ,and Ef = blkdiag{ °zf, %=, 2] |

A collection of sigma points { X;, w!", w§ },-Zio are obtained based on the augmented
state estimate prior to the transformation:

Xi:f(‘f+< (d—l—/\)):?) fori=1,---,d

1

Xi—i?—< (d+/\)>:?) fori=d+1,---,2d

1

O d+A

A
c 2
w0—7d+/\+<1 (x+ﬁ)
wlmzwlczz(d:_/\)forl:l,,Zd

where A = a2(d + k) — d, d = dim(x) is the dimension of state x, scaling parameters x > 0,
« € (0,1], and B = 2 is optimal for Gaussian distributions, (,/Zf), is to obtain the i"
column of the matrix square root R = /Z¥, which can be computed by Cholesky decom-
position such that we have £f = RR”. Note that each sigma point can be decomposed in

. . . . T T T
accordance with the concatenation sequence in (7), i.e., X; = {(AQR) ( XZ.S) (Xi” ) ] .

This is followed by passing each sigma point through the frame transformation
function trans(-) in (5), which yields a set of transformed sigma points. Fori = 0,1, -- - ,2d,

Y, = trans (zqR, x5, x7 ) . )

Lastly, the transformed state of perceived object p in {R} is recovered by
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2d
K=Y wpry;

i=0

N . (10)
kel = ;)wf (yi - Rf(f) (371' - Rf(f)

4.2. Numerical Simulation

The coordinate transformation of perceived objects in ETSI CPMs is validated through
numerical simulation. As illustrated in Figure 9, the simulation is setup with two ITS-Ss
acting as a publishing/sensing ITS-S and a receiving ITS-S of CPMs, respectively. The sens-
ing ITS-S is static at a position of (100 m, 100 m) on the map, facing the east direction.
It is perceiving road users within its local frame with some level of uncertainty in its
sensory measurements. For the convenience of analysis, a group of 20 static road users
are positioned in front of the sensing ITS-S in a line with identical perception uncertainty
parameters, as demonstrated in Figure 10. The receiving ITS-S in the simulation is a CAV
moving at 2 m/s from its initial position at (0 m, 75 m) with the same heading of the sensing
ITS-S, which can be either an IRSU (V2I case) or another CAV (V2V case). Both V2V and
V2I scenarios are considered in the simulation for a comparison. Both ITS-Ss are assumed
to contain uncertainty in their self-localisation.

Sensing " < Nt
ITS-S o s

Perceived -
objects

@ - Moving direction

map

Figure 9. Setup of the sensing and receiving ITS-Ss in the simulation.

Within the sensing ITS-S, the perceived objects information and egocentric pose
estimate are encoded into CPMs in the form of binary payloads and published at 10 Hz.
The receiving CAV, as it moves on the map, decodes the CPMs received and transforms
the perceived objects into its local coordinate system. Through coordinate transformation,
the uncertainty in the transformed perceived information is a combined result of the
sensing uncertainty and the self-positioning uncertainties of both ITS-Ss.

0006000000 0000006060000

Figure 10. Perceived objects within the local frame of the sensing ITS-S. The objects are a mixture of
static pedestrians and vehicles that are placed in a line along with the x direction of the sensing ITS-S.
They are perceived with the same location and heading uncertainties in the simulation. The 95%
confidence ellipse for the 2D position estimate of each perceived object is shown in yellow. Each grid
in every figure represents an area of 10 x 10 m.
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Other parameters adopted in the simulation can be found in Table 1. The covari-
ance matrix in the self-localisation estimate of the receiving CAV is denoted as LR =

blkdiag{ ((Tpgs)z, (UPOS)Z, (09)2}, where 005 and ¢y denote the standard deviation of posi-

tion and heading estimate, respectively. The simulation consists of two tests for evaluating
the effect of different oy and 0y, values in coordinate transformation. Specifically, og is
varied in Test 1 with o5 kept constant, while a range of Opos are tested for the CAV in Test 2.
Each of the tests further includes both V2V and V2I cases. In the V2V case, the sensing CAV
is setup with the same covariance matrix as for the receiving CAV, i.e., G}:ts = GZ‘.F. In the
V2I case, where the sensing ITS-S is an IRSU, the localisation noise is assumed small yet
non-zero. Please note that standard deviations as low as 0.05° and 0.005 m are tested in the
simulation as they are roughly the minimum values supported in CPMs for representing
the uncertainty of heading and position estimates, respectively, for the originating ITS-S.
This is mainly due to discretisation of confidence levels of the corresponding DEs defined
in CPMs. Likewise, 0.005 m is adopted as the standard deviation for the position estimate
of the IRSU, and the heading estimate standard deviation is set to a close-to-zero value €
for preventing numerical errors in the transformation.

Table 1. Simulation Parameters.

Standard Deviation in State Estimate

Position Heading
Perceived Objects 0.5m 6°
Sensing ITS-S IRSU 0.005 m €
CAV Same as Receiving CAV
Receiving CAV Test 1 0.25m 0.05°,0.5°,1.0°,1.5°,2.0
Test 2 0.005m, 0.25m, 0.5m, 0.75m, 1.0 m 0.5°

Figure 11 reveals the result of Test 1, i.e., the effect of different uncertainty levels
in heading estimates of the CAV(s), along with the movement of the receiving CAV.
Figure 12 depicts the result of Test 2, which is with different uncertainty in position esti-
mates of the CAV(s). It can be seen from both figures that the confidence ellipses of those
perceived objects, after being transformed into the local coordinate system of the receiving
CAV, are bloated and distorted to different extents, depending on their relative poses with
respect to both ITS-Ss. Please note that, in both figures, the first set of ellipses on the left
in each subfigure represents the uncertainties in the transformed position estimate of the
sensing ITS, while the receiving CAV is located at the origin, facing the x-direction.

In Figure 11, the bloating effect is found to be sensitive to the uncertainty contained in
the heading estimate of both ITS-Ss. In addition, the bloated ellipses are slanted along the
tangential directions of both ITS-Ss, and the bloating is found to be more serious for ellipses
that are further from both ITS-Ss. In theory, these thin and long confidence ellipses caused
by the heading uncertainty are expected to be banana shaped due to the nonlinear nature of
the coordinate transformation. The result therefore indicates that, with a larger uncertainty
level in heading estimate and for further perceived objects, the Gaussian assumption starts
to show its limitation for representing the perceived object estimates. One can choose to
use Gaussian mixture or non-Gaussian representations in the transformation to alleviate
the issue. As a comparison, the bloating effect as a result of the uncertainty in position
estimates of the ITS-Ss is found to be less correlated to the relative distance, and the bloating
happens in both x- and y-directions, as shown in Figure 12. This shows that reducing
the estimate uncertainty of heading in ITS-S self-localisation is more effective than that of
position, in suppressing the bloating of uncertainty during the coordinate transformation
of perceived objects information.

In addition, the two scenarios of an IRSU and a CAV acting as the sensing ITS-S are
compared in each of Figures 11 and 12. When the sensing ITS-S is an IRSU, it can be seen
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that the transformed confidence ellipses are still slanted but in general less bloated due to
very low uncertainty in the IRSU’s position.

It should be noted that the perceived objects and the sensing I'TS-S are set to be static
in the simulation just for the convenience of analysis. In fact, the bloating of the position
uncertainty in the coordinate transformation is independent of moving speeds of the
participants in the simulation, mainly because only pose estimates of the perceived objects
and ITS-Ss are involved in the transformation formulated in Section 4.1. Their kinematic
states would be considered when the transformed perceived object states need to be
predicted to a different time within the receiving ITS-S.
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Figure 11. Confidence ellipses of perceived objects transformed to the local frame of the receiving CAV in Test 1, where dif-
ferent heading estimate standard deviations are tested for CAV(s). As the receiving CAV moves, (a,c,e) show the results
at different relative positions between IRSU and the receiving CAV, while (b,d,f) present the results for the V2V case.

In each subfigure, the first object on the left represents the position of the sensing ITS (visualised as a black dot) after being

transformed to the receiving CAV’s local frame, while its perceived objects are denoted by black star markers. The receiving

CAV sits at the origin in each subfigure. Each ellipse represents 95% of position estimate confidence.
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Figure 12. Confidence ellipses of perceived objects transformed to the local frame of the receiving CAV in Test 2, with different
standard deviations in position estimate of CAV(s). (a,c,e) demonstrate the results for the V2I case, while (b,d,f) illustrate
the results for the V2V case at different relative positions. In each subfigure, the first object on the left represents the position
of the sensing ITS (visualised as a black dot) after being transformed to the receiving CAV’s local frame, while its perceived
objects are denoted by black star markers. The receiving CAV sits at the origin in each subfigure. Each ellipse represents
95% of position estimate confidence.

5. Demonstrations

The demonstrations consist of three experiments conducted in different traffic envi-
ronments, namely, an urban traffic environment, the CARLA simulator, and a lab traffic
environment. The configurations of these experiments are compared in Table 2. The de-
veloped IRSU and CAV platforms, as previously described in Section 3, were used in the
real-world experiments. The CAV was however configured differently according to its
operation mode and safety requirements in the two real traffic environments. In addition,
the CAV onboard perception capability was disabled in the experiments, and the lidar was
used in the last experiment only for automatic emergency braking, which acts like a virtual
bumper, in autonomous driving mode. In the experiment setup in the CARLA simulator,
realistic sensory data were obtained from simulated sensors, and the same perception data
processing pipeline presented in Figure 2 was employed in the simulated IRSU.
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Table 2. An overview of experiment configurations.

Experiment No.

Configuration
1 2 3
Environment Real Urban Traffic Env. CARLA Simulator Real Lab Traffic Env.
IRSU Perception Sensors Real Lidar + Cameras Simulated Lidar + Cameras Real Lidar + Cameras
Pedestrian(s) Activity Walking + Standing Walking Running
V2I Communication Cohda Wireless MK5 Simulated Cohda Wireless MK5
CAV Driving Mode Manual Autonomous Autonomous
CAV Perception Sensors Disabled Disabled Real Lidar !
CAV Self-Localisation 2 Lidar Features + GNSS Simulated GNSS Lidar Features + GNSS
Multi-Target Tracking 3 GMPHD Tracker GMPHD Tracker GMPHD Tracker
CAV Navigation N.A. Hybrid A* Path Planning on Lanelet2 Map

1 Used only for the virtual bumper subsystem as part of safety measures. 2 Onboard IMU and wheel encoders are used for odometry.
3 Running in both IRSU and CAV.

5.1. Experiment in an Urban Traffic Environment

The experiment was conducted in a real urban traffic environment next to the ACFR
building located at Chippendale, Sydney. In the experiment, the IRSU was deployed near
the intersection of Abercrombie St and Little Queen St, monitoring the traffic activity at
the intersection and broadcasting the perception information in the form of ETSI CPMs in
real time, as depicted in Figure 13. The intersection was chosen for the experiment mainly
because, turning from Abercrombie St to Little Queen St, which is a side road, requires extra
attention from vehicle drivers due to the lack of traffic control and poor visibility of road
users behind the corner building. The main purpose of the experiment is to demonstrate
the improved VRU awareness and thus road safety for a vehicle ITS-S when it is able to
learn pedestrian activity in blind spots through the CP information provided by IRSU.

Instead of autonomous driving, the CAV in the experiment was driven manually for
ensuring public road safety in the real traffic scenario. The CAV platform therefore practi-
cally functioned as a CV in the experiment and is referred to as the CV in the remainder
of the section. While the CV was performing self-localisation within the experiment area,
it was able to transform the perceived objects contained in CPMs into its local coordinate
system with uncertainty and have the road users tracked in real time. The CV identifies
itself and its driver based on the position of the transformed perceived objects in its local
frame to avoid self-tracking.

In the experiment, as labelled in Figure 13, the CV first made a right turn from Meagher
St to Abercrombie St, drove for about 60 m before turning to Little Queen St. As illustrated
in Figure 14, the CV learnt the ongoing traffic activity at the intersection with the IRSU
deployed far beyond the reach of its onboard perception sensors. This illustrates the
extended sensing range for smart vehicles through the CP service. At a later time shown in
Figure 15a,b, when the CV was about to make a right turn to Little Queen St, the vehicle
could “see” a visually occluded pedestrian behind a building with the information coming
through the IRSU. Please note that it is achieved seconds before the pedestrian could
actually be visually picked up from the CV perspective in Figure 15¢,d, which is crucial
for safety in both manual driving and autonomous driving scenarios. This is considered
another benefit of the CP service demonstrated in the experiment.
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(a) (b)

Figure 13. Experiment setup at the intersection of Abercrombie St and Little Queen St. In (a), the IRSU was setup facing
south of Abercrombie St. The car traffic flow was going north on this one-way street. The trajectory of the CV is denoted by
a dashed red line, which indicates that the CV turned from Meagher St to Abercrombie St, followed by Little Queen St.
In (b), CPMs were transmitted from the IRSU to the moving CV through Cohda Wireless MK5 devices.

Figure 14. The road user detection and tracking in the IRSU and CV in the Abercrombie St experiment.
(a,b) show the image frames from Cam #1 and #2, respectively, overlaid with pedestrians and vehicles
bounding boxes and projected lidar point cloud in the IRSU. The detection results from the dual
cameras and the lidar were then fused within the IRSU for tracking in 3D space, as visualised in
(c). The detection results were encoded into CPMs and transmitted to the CV, where they were
decoded, transformed, and used in the CV’s local frame. In the particular traffic scene shown in (c),
the generated CPM contains one Sensor Information Container and seven Perceived Object Containers,
two for pedestrians and five for vehicles. (d) illustrates the tracking results of the same group of road
users within the CV at the same time. Due to the change of visualisation colours in IRSU and CV,
the vehicles in orange pillars in (d) correspond to red ones in (c), while the pedestrians in magenta
pillars correspond to green ones in (c).
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Figure 15. The CV became aware of a hidden pedestrian before turning from the main street to
Little Queen St. The left column shows the images captured by the front-right camera on the CV at
different times, the right column illustrates the corresponding road user tracking results within the
CV. In addition, in the right column, the tracked pedestrians are represented as magenta pillars with
their 2-sigma estimation confidence areas denoted as yellow ellipses, the IRSU is visualised in the CV
as a tall white pillar. In (a,b), the CV could “see” through the building a visually occluded pedestrian
(labelled with purple circles) around the corner with the help of CPMs received from the IRSU. This is
seconds before the CV drove closer and could observe by itself the previously occluded pedestrian
on Little Queen St, as depicted in (c,d). The localisation covariance is presented as purple disks along
the vehicle trajectory in every right column figure. It can be seen in (e,f) that the uncertainty in road
user tracking reduced after the CV received a correction in self-localisation.

In addition, the CV localisation quality varied depending on the lidar feature qual-
ity at different locations of the experiment environment. It is illustrated by comparing
Figure 15d,f that the refinement in egocentric pose estimate as a result of a correction in the
self-localisation shown in the latter contributes to the improvement of tracking accuracy,
which is consistent with the finding from the Section 4.2 that the level of ITS-S localisa-
tion estimate uncertainty correlates to the perceived objects detection uncertainty after
coordinate transformation and thus tracking uncertainty.
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5.2. Experiment in the CARLA Simulator

The experiment demonstrates the autonomous operation of a CAV using the percep-
tion information received from an IRSU in CARLA simulator as the only source for pedes-
trian estimation. CARLA [56] is an open source game engine based simulator, which sup-
ports flexible configurations of sensors, road users, and urban traffic environments. One of
the highlights of the CARLA simulator is the various and realistic sensory data it provides,
including RGB images, lidar point clouds, IMU, and GNSS measurements. Another high-
light is its ROS integration with the ros-bridge package. It is considered a safe, realistic,
and repeatable environment for experimenting with autonomous driving systems, in par-
ticular, for conducting CAV operations that have safety concerns to test in the real world.

The experiment is setup with the IRSU detecting multiple walking pedestrians within
its sensor range. The information of perceived pedestrians is then broadcast in the form of
ETSI CPMs and is received by the CAV. The information is then transformed into its local
frame of reference, and taken into account as the only perception data in the autonomous
navigation of the CAV. The experiment is to demonstrate how a CAV interacts with VRU
at non-designated crossing areas with the perception information from an IRSU. It is
strongly recommended to conduct these experiments with higher risk CAV maneuvers in a
simulator before performing them in the real world.

The experiment was setup in the Town01 map of CARLA 0.9.8 simulator with par-
ticipants labelled in Figure 16. These include an IRSU deployed static next to a straight
road, a CAV navigating autonomously on the same road towards east, and two walking
pedestrians. One of the pedestrians was crossing the road, while the other is walking along
the road in the west direction. A Lanelet2 map was built for the experiment environment in
the simulator, which is essential for the CAV to stay on the road and plan drivable paths for
autonomous navigation. The map includes the lane markings and the network of drivable
regions as per right hand traffic rules. Accordingly, the CAV respects right hand traffic
rules in the demonstration. On the road where the CAV is navigating, the CAV has right of
way over pedestrians and is allowed to cross the broken dividing line to overtake other
road users when it is safe to do so.
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Figure 16. Experiment setup in the CARLA simulator. The CAYV, a red car, moved to the east direction
towards two walking pedestrians and an IRSU deployed on the roadside. The IRSU was spawn in
CARLA as a mini car parked on the roadside.

The IRSU in the simulator is configured as close as possible to the real IRSU developed,
which is equipped with two cameras and a 16-beam lidar, as revealed in Figure 16. It is
visualised as a mini car parked on the roadside in the simulator. The same suite of sensory
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data processing algorithms for the real IRSU is adopted in the simulated IRSU. The road
user perception information is encoded to ETSI CPMs in the form of binary payloads and
broadcast by the IRSU. The CAV employed in the experiment is as also shown in Figure 16,
which is able to position itself within the map using a combination of measurements from
GNSS, IMU, and wheel encoder. The self-localization, however, is not assumed to be
perfect but with noise added to the GNSS, IMU, and encoder measurements. An unscented
Kalman filter (UKF) is used to achieve sub-meter accuracy. In the experiment, the CAV is
also set up to receive ETSI CPMs from the IRSU. It should be noted that the CAV does not
have any onboard sensors for detecting road users; instead, it becomes aware of the road
users and infer their states purely relying on information received from the IRSU. The CAV
navigates at a speed up to 18 km/h in the simulator.

In the experiment, one of the pedestrians was crossing the road at a non-designated
crossing area while the other is walking along the road in the opposite direction to the CAV.
Figure 17 demonstrates the road user detection and tracking in the IRSU at the beginning
of the experiment. Specifically, Figure 17a shows the detection of the two pedestrians
and the CAV by fusing the lidar point cloud and image frame from Cam #1 of the IRSU.
The tracking of the same three road users in 3D space is shown in Figure 17b. The tracking
of the walking pedestrians in the CAV is illustrated in Figure 18. Figure 18c depicts the
planned path in the CAV to navigate around the pedestrians when approaching them.
The tracked pedestrians are visualised with 95% confidence ellipses and arrows indicating
their moving direction. When the grid-based cost map is updated in the hybrid A* path
planner in the CAYV, the current and future estimates of the pedestrian states account for
a higher cost (darker colour) in the grid such that the path planner would consider them
when searching for an optimal and kinematically feasible path to its goal. Please note that
the physical dimension of the CAV has been considered by bloating the confidence ellipses
in the cost map.

In Figure 18, it is shown that the CAV responded to the pedestrian walking along the
road by not altering its planned path as expected. Although the pedestrian was walking
on the road, it was blocking only the opposite lane of the road. In Figure 18a, the CAV
became aware of the crossing pedestrian even when it was approximately 35 m away,
with the information coming through the IRSU. This was not taken into account by the
path planning since the CAV was still far from the pedestrian. As the CAV drove closer,
it reacted to the event by planning a path that can safely navigate around the pedestrian
while the pedestrian was crossing the road at a non-designated crossing area. As revealed
in Figure 19, when the CAV was close to the pedestrian, it crossed the broken dividing lane
to avoid the crossing pedestrian from behind. Following the avoidance maneuver, the CAV
switched back to the right lane.

= <
(b)

Figure 17. Pedestrian detection and tracking in the IRSU in the CARLA simulator. Despite dual
cameras enabled for detecting road users in the IRSU, the Cam #1 captured all the road users at the

particular moment in the experiment. Therefore, only the image frame from that camera is shown
in (a). In (b), where the road users are tracked in 3D space, the CAV itself is labelled as an orange
pillar with a confidence ellipse and an arrow indicating its moving direction. The two pedestrians
are denoted by magenta pillars.
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Figure 18. The pedestrian tracking in the CAV relying only on CPMs from the IRSU in the CARLA
simulator. (a) and (b) show the two walking pedestrians and the planned path in the CAV at different
time instances. In (c), the grid-based cost map maintained by the path planner in the CAV is presented
with white as free space and black as occupied areas, the tracked pedestrians are visualised with
95% confidence ellipses and arrows indicating their moving direction, and the odometry trajectory is
shown as a red line, and the planned path is presented as a dotted green line.

Figure 19. The CAV safely navigated around the crossing pedestrian autonomously based on the
CPMs from the IRSU in the CARLA simulator. (a-d) sequentially show the complete pedestrian
avoidance maneuver of the CAV.
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5.3. Experiment in a Lab Environment

The last experiment presented in the paper investigates the CAV interacting with
a pedestrian running towards a pedestrian crossing area. It was set up in a lab traffic
environment with a 55 m stretch of straight road, a virtual pedestrian crossing area, and the
IRSU deployed next to the crossing, as illustrated in Figure 20. A Lanelet2 map was built for
the environment and the CAV was able to localise itself within the pre-built map of lidar
features, such as poles and building corners. The pedestrian crossing area was encoded in
the Lanelet2 map, which is stored locally in the CAV. The expected behaviour of the CAV is
to drive through the crossing or stop before the crossing to give way depending on whether
there is any pedestrian crossing activity detected by the IRSU.

Figure 21 shows the moment the pedestrian started running at the beginning of the
experiment. The IRSU captured the road users in the scene, which include the pedestrian
and the CAV in 3D space. The CAV then received from the IRSU the information about the
presence of a pedestrian running towards the crossing, as depicted in Figure 21d. When ap-
proaching him, the CAV kept tracking and predicting the pedestrian state based on the
perception information from the IRSU. A constant velocity kinematic model was adopted
for predicting the future state of the pedestrian. As shown in Figure 22b, the pedestrian
was predicted by the CAV to occupy the crossing area, although he had not physically
stepped onto the crossing yet. In the meantime, the CAV started to brake preemptively
for the predicted crossing activity. The crossing area became a high cost region in the cost
map within the path planner when the pedestrian was crossing. As a result, there was no
feasible path found to drive through the crossing area for the CAV. It eventually stopped
before the crossing line for the pedestrian, waiting until he finished crossing, as demon-
strated in Figure 22d. When the pedestrian crossing area was clear a moment later, the CAV
re-planned a path to the original goal and started to drive through the crossing at a slightly
slower speed due to the road speed rule encoded in the map, as depicted in Figure 22f.
As depicted in Figure 23, where the CAV speed measured by the wheel encoders is pre-
sented, the CAV managed to gain extra 1.5 s of response time to the pedestrian crossing
activity. The braking behaviour was well planned and executed within the CAV for a safe
and smooth deceleration.

Figure 20. Experiment setup in a lab environment. It is shown in the Lanelet2 map and lidar
feature map built for the experiment site, which contains the road boundaries and lanes information.
The light blue dots distributed in the bottom right corner represent the locations of observed features
in the environment (trees, poles, corners of structures). The designated pedestrian crossing area is
labelled as an orange rectangle.
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Figure 21. The CAV started tracking a pedestrian running toward a crossing line of a marked

pedestrian crossing in a lab environment based on ETSI CPMs from an IRSU. (a) shows the image
frame from Cam #1 of the IRSU with projected lidar point cloud. (b,d) illustrate the tracking of the
road users in 3D space in the IRSU and the CAYV, respectively, and (c) shows the image captured by
the front-left camera on the CAV. The pedestrian and the safety driver of the CAV are tracked and
denoted by magenta pillars with confidence ellipse and arrows indicating their moving direction,
while the vehicle is labelled as an orange pillar in the IRSU’s tracker. Only the running pedestrian was
tracked in the GMPHD tracker running within the CAV, as depicted in (d), as the CAV itself and its
safety driver are identified and removed from tracking based on the location of the received perceived
objects after transformed into its local frame. The Lanelet2 map is also visualised in (d), where the
pedestrian crossing is denoted by an orange rectangle. Furthermore, the odometry trajectory of the
CAV is shown as a red line, and its planned path is denoted as a dotted green line in (d).

The CAV onboard perception sensors were not used for pedestrian detection through-
out the experiment. However, there are a few measures in place to ensure safety when
conducting autonomous navigation related activities in real-world experiments. First of all,
the experiment was conducted in a closed, controlled environment and the CAV speed is
limited to 11 km/h when in autonomous mode. In addition, there is always a safety driver
sitting in the CAV closely monitoring any hazards and has the ability to trigger an e-stop
of the CAV in case of an emergency. Furthermore, the virtual bumper subsystem based on
lidar points obstacle detection is enabled on the CAV, which brings the vehicle to an e-stop
if any obstacle breaches any of the pre-set distance thresholds to the vehicle. However,
the virtual bumper treats every surrounding object as static obstacles and therefore did not
take part in the decision-making process of the CAV in Figure 22b, where it decided to give
way based on the predicted future state of the pedestrian.
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Figure 22. The CAV gave way to a running pedestrian at the designated crossing area in a lab
environment. Based on the ETSI CPMs broadcast by the IRSU, the CAV predicted the state of the
running pedestrian up to 1.5 s into the future. The IRSU is visualised as a tall white pillar in the CAV
in (b,d,f). It is seen in (b) that the predicted states of the pedestrian, visualised as yellow ellipses,
intersected with the orange crossing area on the Lanelet2 map. The CAV stopped for the pedestrian in
front of the crossing in (d). The CAV then planned a new path forward after the pedestrian finished
crossing in (f). In (a,c,e), image frames from front-left, front-centre, front-right cameras on the CAV
are presented, respectively.

4
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Figure 23. The CAV speed between time 14 to 24 s in the experiment. It is shown that the CAV started
to decelerate about 1.5 s prior to the moment the pedestrian physically stepped onto the crossing,
as indicated by the black dashed line.
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6. Conclusions

The paper is mainly focused on safety and robustness implications the CP can bring
to the operations of CAVs. It presents the IRSU and CAV platforms developed by the joint
research team from the ACFR and Cohda Wireless over the last two years. The contributions
of the paper include (1) investigating and demonstrating through three representative
experiments the safety benefits associated with the use of CP service for CV and CAV
operations alongside VRU in different traffic contexts, and (2) the formulation and analysis
of coordinate transformation of perceived objects information with uncertainty.

In the first experiment conducted on a public road, the CV was able to track a pedes-
trian visually obstructed by a building with CP information from an IRSU deployed on
the road side. This was achieved seconds before its local perception sensors or the driver
could possibly see the same pedestrian around the corner, providing extra time for the
driver or the navigation stack to react to a safety hazard. The second experiment con-
ducted in the CARLA simulator shows the autonomy of a CAV using the CP service.
The experiment highlights the autonomous navigation of the CAV and its safe interaction
with walking pedestrians, purely responding to the perception information provided by
the IRSU. The last experiment demonstrated the expected behaviour of the CAV when
interacting with a pedestrian rushing towards the designated crossing area in a lab environ-
ment. The CAV managed to take preemptive action, that is, braking and stopping before
the crossing area for the pedestrian based on the kinematic prediction of the pedestrian.
The pedestrian tracking, prediction, path planning, and decision-making in the CAV in
the last experiment were operating based on the perception information received from
the IRSU.

We believe that these demonstrations can assist engineers and researchers in the
relevant fields in achieving a better understanding of the safety implications the CP is
bringing to the current and future transportation systems. The CP enables the smart
vehicles to break the physical and practical limitations of onboard perception sensors, and,
in the meantime, to embrace improved perception quality and robustness along with other
expected benefits from the CP service and V2X communication. As importantly, the CP
can also reduce the reliance on the vehicle’s local perception information, thereby lowering
the requirement and cost for onboard sensing systems. Furthermore, it is demonstrated
that, when properly used, IRSU perception data can be used as another reliable source
of information to add additional robustness and integrity to autonomous operations.
These potentially trigger more in-depth discussions in the research community and industry
related to the future development directions of intelligent vehicles and other C-ITS services
and applications, such as maneuver intention sharing and cooperative driving.

Author Contributions: Conceptualization, M.S., YEW., P.A. and E.N.; methodology, M.S., K.N. and
Y.EW.,; software, M.S. and K.N.; validation, M.S., K.N. and S.W.; formal analysis, M.S. and K.N.;
investigation, M.S., K.N., YEW. and M.K,; resources, YEW.,, M.K,, PA. and E.N.; data curation, M.S.,
K.N. and S.W.; writing—original draft preparation, M.S.; writing—review and editing, K.N., YEW.,
S.W. and M.K; visualization, M.S. and K.N.; supervision, P.A. and E.N.; project administration, P.A.
and E.N.; funding acquisition, P.A. and E.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is funded by iMOVE CRC and supported by the Cooperative Research
Centres program, an Australian Government initiative.

Acknowledgments: The authors would like to thank HxGN SmartNet for providing Corrections and
Data Service in the research work.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 200 28 of 31

Abbreviations

The following abbreviations are used in this manuscript:

ACFR Australian Centre for Field Robotics
ADAS Advanced Driving Assistance System
AV Autonomous Vehicle
CAM Cooperative Awareness Message
CAV Connected and Automated Vehicle
C-ITS Cooperative Intelligent Transportation System
CP Cooperative/Collective Perception
CPM Collective Perception Message or Cooperative Perception Message
CSM Cooperative Sensing Message
cv Connected Vehicle
DE Data Element
DF Data Frames
EPM Environmental Perception Message
ETSI European Telecommunications Standard Institute
FOV Field of View
GMPHD Gaussian Mixture Probability Hypothesis Density
GMSL Gigabit Multimedia Serial Link
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
IRSU Intelligent Roadside Unit
ITS Intelligent Transportation System
ITS-S Intelligent Transportation System Station
LTS Long-Term Support
MAVEN Managing Automated Vehicles Enhances Network
NUC Next Unit of Computing
OMNeT++ Open Modular Network Testbed in C++
RMSE Root Mean Squared Error
ROS Robot Operation System
RSU Roadside Unit
RTK Real-Time Kinematic
SUMO Simulation of Urban Mobility
uT Unscented Transform
UTM Universal Transverse Mercator
V2I Vehicle-to-Infrastructure
va2v Vehicle-to-Vehicle
V2Xx Vehicle-to-X
Veins Vehicles in Network Simulation
VRU Vulnerable Road Users
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