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Simplifying multidimensional 
fermentation dataset analysis 
and visualization: One step closer 
to capturing high-quality mutant 
strains
Xiang Zhou1,*, Dan Xu1,* & Ting-Ting Jiang1,2,*

In this study, we analyzed mutants of Clostridium acetobutylicum, an organism used in a broad range 
of industrial processes related to biofuel production, to facilitate future studies of bioreactor and 
bioprocess design and scale-up, which are very important research projects for industrial microbiology 
applications. To accomplish this, we generated 329 mutant strains and applied principal component 
analysis (PCA) to fermentation data gathered from these strains to identify a core set of independent 
features for comparison. By doing so, we were able to explain the differences in the mutant strains’ 
fermentation expression states and simplify the analysis and visualization of the multidimensional 
datasets related to the strains. Our study has produced a high-efficiency PCA application based on a 
data analytics tool that is designed to visualize screening results and to support several hundred sets of 
data on fermentation interactions to assist researchers in more precisely screening and capturing high-
quality mutant strains. More importantly, although this study focused on the use of PCA in microbial 
fermentation engineering, its results are broadly applicable.

Principal component analysis (PCA) is a statistical tool based on mathematical operations. It is widely used for 
high-dimensional data analysis, and it may be the most popular multivariate statistical technique used in almost 
all scientific disciplines. Its origin can be traced back to several mathematicians: Pearson1, Cauchy2, Jordan3, 
Cayley4, Hamilton5, and Boyer and Merzbach6. However, modern PCA was formalized by Hotelling7, who also 
suggested the ‘principal component’ element of its name, which was unprecedented in scientific terms. Within 
the fields of visualization and computer graphics alone, PCA has been used in applications including facial rec-
ognition8–10, motion analysis and synthesis11–13, clustering14–16, and dimension reduction17–20. PCA is a quanti-
tatively rigorous method of data simplification21. Based on this method, a new set of variables called principal 
components22 is extracted, where each principal component is often a linear combination or a few or multiple of 
the original variables23. All of the principal components have the characteristic of being orthogonal to each other; 
thus, they contain no redundant information24. As a whole, the principal components of a set of data form an 
orthogonal basis for the data space25,26.

Clostridium acetobutylicum (C. acetobutylicum) is an industrially valuable bacterium that is sometimes iden-
tified by the term “Weizmann Organism”, named for the biochemist Chaim Weizmann. Weizmann’s nationality 
was Israeli-British and he was born in Russia. As a senior lecturer at the University of Manchester, England, he 
used this bacterium in 1916 as a biochemical tool to produce acetone, ethanol, and butanol from starch. This 
method has since been described as the acetone-butanol-ethanol fermentation process (ABE process); it yields 
acetone, butanol, and ethanol at a ratio of 3:6:1. Acetone was used in the important wartime task of casting 
cordite during the first world war and the second world war, and the alcohols were used to produce vehicle fuels 
and synthetic rubber27,28. Although ABE fermentation is one of the longest known large-scale biofermentation 

1Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu, 730000, P.R.China. 
2University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, P.R.China. *These 
authors contributed equally to this work. Correspondence and requests for materials should be addressed to X.Z. 
(email: syannovich@gmail.com)

received: 01 August 2016

accepted: 28 November 2016

Published: 03 January 2017

OPEN

mailto:syannovich@gmail.com


www.nature.com/scientificreports/

2Scientific Reports | 7:39875 | DOI: 10.1038/srep39875

processes, the depletion of fossil fuels has renewed interest in ABE fermentation29,30. Between the 1890s and 
the 1990s, the number of research studies in this field increased considerably, with a focus on improving the 
overall process, including the development of alternative fermentation substrates, improved strains, improved 
cultivation techniques, and improved product-removal techniques31–33. During the 1990s and 2000s, intensive 
basic research studies investigated the genetics of solvent-producing Clostridium. sp. and strove to improve these 
strains through genetic manipulations34,35. Rapid scale-up trials were also performed at the beginning of the 
21st century to improve traditional ABE fermentation methods. However, the economic feasibility of biobutanol 
production via ABE fermentation suffers from product toxicity, relatively low product yields with respect to the 
production bacteria, multiple end products, production inhibitions, and inefficient product recovery from the 
produced alcohol mixtures36–38.

Note that the productivity of metabolites can be improved by up to a factor of ten through suitable bacte-
rium improvement techniques39. Mutagenesis is one of the most reliable and widely used approaches for strain 
improvement40. During organism breeding, mutations are induced using heavy-ion irradiation, ultraviolet (UV) 
rays, X-rays, γ​-rays, lasers, neutrons, and thermophoresis41. Chemical physics methods based on methyl meth-
ane sulfonate (MMS), hydroxyl amine (HA), and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) have been 
adopted as important research methods for inducing mutations42. These mutagenesis approaches tend to produce 
abundant mutant strains. However, because of the problems posed by the need to handle the complex multidi-
mensional data that describe the fermentation expression states of these mutant strains, researchers have made 
substantial effects to find ways to better screen and capture high-quality mutant strains. Fortunately, in these 
mutant strain expression datasets, which contain many variables, groups of variables often vary together. One 
reason for this behavior is that more than one variable might reflect the same driving principle governing the 
behavior of the system. In many systems, only a few such driving forces exist. However, abundant instrumen-
tation enables the measurement of dozens of system variables. Therefore, researchers can take advantage of this 
redundancy of information and simplify the problem by replacing a group of variables with a single new variable.

In the previous scientific research literature dedicated to application of the approach in the analysis of data-
sets on fermentation processes. For example, the applicability of РСА for fermentation data analysis using eight 
fed-batch fermentations with a recombinant L-phenylalanine-producing Escherichia coli strain as a test system 
was investigated by Takors et al.43; experimental determination by principal component analysis of a reaction 
pathway of biohydrogen production by anaerobic fermentation was determined by Aceves-Lara et al.44; principal 
component analysis and partial least squares regression can be used to extract information from particle size 
distribution data and predict rheological properties was determined by Peterson et al.45; principal component 
analysis the measurement profiles acquired during the monitoring of several fed-batch fermentations for the 
production of erythromycin was applied by Bicciato et al.46. However, the number of РСА applications for fer-
mentation dataset analysis and visualization are still rather limited, although this tool holds great promise, merit 
and interest.

A series of experiments involving the fermentation of mutant C. acetobutylicum have produced observations 
of the differential expressions of hundreds of mutant strains across multiple conditions. In this study, the appli-
cation of PCA to these expression data enabled the direct comparison of a core set of independent features of the 
expression states of the 329 mutant strains that were investigated. Thus, we can explain the differences among 
the mutant strains’ multidimensional fermentation datasets and move one step closer to capturing high-quality 
mutant strains.

Results and Discussion
Source of the mutants’ fermentation multidimensional datasets.  As shown in the Supplementary  
Information 1, the mutants all that were obtained, and they were from multiple rounds by the experiment of 
heavy-ion irradiation. 329 mutants were screened by MTT. It would be interesting to summarize how the mutants 
were generated, but this may be beyond the scope of this study since the focus of the manuscript is the PCA 
analysis. In addition, we are currently investigating and will dissect the top-performing mutants. All 329 mutants 
according to supplementary Information 1 (Materials & Methods for data procurement from mutant strains) 
conducted data acquisition. Table S1 (Supplementary Information 2) showed all multidimensional datasets that 
unlike otherwise noted, fermentation was carried out in serum bottles, this is the source of the datasets.

Visualization of multidimensional datasets.  Table S1 (Supplementary Information 2) shows all of the 
effects of an increasing butyric acid concentration on the ABE fermentation yields from the substrate, the butanol 
productivity of fermentation for each of the 329 mutant strains supplemented with 5.0-g/L butyric acid, and 
the maximal specific growth rates of the 329 mutant strains. Hence, a dataset is obtained that consists of 329 
mutant strains and 8 variables. The actual measurements can be arranged in a table or a matrix with dimensions 
of 329 × 8. The variables are butanol productivity (g/L/h), butanol yield (g/g), solvent (ABE) yield (g/g), acetone 
yield (g/g), ethanol yield (g/g), maximal specific growth rate (added butyrate: 5.0 g/L; μMax-A), maximal specific 
growth rate (added butyrate: 6.5 g/L; μMax-B), and maximal specific growth rate (added butyrate: 8.5 g/L; μMax-C). 
With 329 mutant strains and 8 columns (variables), obtaining an overview of the various types of information 
available in this multidimensional dataset is difficult. A good starting point is to plot the individual variables 
for the 329 mutant strains. As shown in Fig. 1, there is more variability in the values of the butanol and solvent 
(ABE) yields than in the values of butanol productivity and μMax-C. Normally, one would consider plotting each 
of the original variables, but doing so would result in 32 variograms. Thus, the advantage of PCA is that it may 
reduce the number of variables that must be considered. Sometimes, the original data can be used to calculate 
the principal components, if the same unit is appropriate for each variable. However, when different variables in 
different columns have different units or when the variance in value among the columns is large, the data must be 
standardized to improve performance.
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Analysis of multidimensional datasets.  The first three principal component coefficient vectors are 
shown in Table 1. As mentioned above, when all variables have the same unit, it is appropriate to compute the 
principal components from the raw data. The correlation matrix, which has dimensions of 8 × 8, reveals that the 
variables are highly correlated (Table 1).

When the variables are expressed in different units, or if the variance in value among the columns is substan-
tial, as in this study, scaling or weighting the data is preferred. The correlations between select variables can be as 
large as 0.33. PCA serves to construct new independent variables from linear combinations of the originals. For 
this purpose, in PCA, the inverse variances of the measured values are used as weights. The coefficient vectors for 
the first three principal components, namely, butanol productivity (g/L/h), butanol yield (g/g) and solvent (ABE) 
yield (g/g), are shown in Table 2. It is seen that the first principal component makes the largest contributions to 
the first and fifth variables: butanol productivity and ethanol yield. The coefficients of this principal component 
are positive. The principal component variables are defined as linear combinations of the original variables. The 
extracted eigenvector table provides the coefficients for the following equations:
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Figure 1.  The distribution of the measured data matrix of 329 rows and 8 columns, corresponding to a 
dataset consisting of 329 mutant strains and 8 variables. These variables are butanol productivity (g/L/h), 
butanol yield (g/g), solvent (ABE) yield (g/g), acetone yield (g/g), ethanol yield (g/g), maximal specific growth 
rate (added butyrate: 5.0 g/L; μMax-A), maximal specific growth rate (added butyrate: 6.5 g/L; μMax-B), and 
maximal specific growth rate (added butyrate: 8.5 g/L; μMax-C).

Butanol productivity 
(g/L/h)

Butanol 
yield (g/g)

Solvents (ABE) 
yield (g/g)

Acetone 
yield (g/g)

Ethanol 
yield (g/g)

μMax-A 
(1/h)

μMax-B 
(1/h) μMax-C (1/h)

Butanol productivity (g/L/h) 1.000000 0.062521 0.016778 −​0.002446 0.047993 0.027159 0.009812 6.699713e−​04

Butanol yield (g/g) 0.062521 1.000000 0.781528 −​0.386327 0.444585 0.643167 −​0.027757 0.409016

Solvents (ABE) yield (g/g) 0.016778 0.781528 1.000000 −​0.422182 0.513211 0.654756 −​0.053534 0.463406

Acetone yield (g/g) −​0.002446 −​0.386327 −​0.422182 1.000000 −​0.308724 −​0.349048 −​0.040566 −​0.202345

Ethanol yield (g/g) 0.047993 0.444585 0.513211 −​0.308724 1.000000 0.588894 0.012975 0.245488

μMax-A (1/h) 0.027159 0.643167 0.654756 −​0.349048 0.588894 1.000000 −​0.084181 0.318853

μMax-B (1/h) 0.009812 −​0.027757 −​0.053534 −​0.040566 0.012975 −​0.084181 1.000000 −​0.029020

μMax-C (1/h) 6.699713e−​04 0.409016 0.463406 −​0.202345 0.245488 0.318853 −​0.029020 1.000000

Table 1.   In the correlation matrix, which has a size of 8 × 8, the variables are highly correlated, with many 
having correlation values exceeding 0.45. *All experiments were repeated 3 times, and the average values are 
reported.
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The coefficients for our data are weighted, and as a result, the coefficient matrix is not orthonormal. Thus, the 
coefficients were transformed to become orthonormal (Table 2). Based on the data presented in Table 2, this was 
accomplished using MATLAB code, with the following
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
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. − . .


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

coefforth inv diag std ratings wcoeff
I
I

results

( ( ( ) ;
c3 c3

1 0e 03
:

0 5294 0 0034 0 0136
0 0034 0 0366 0 0061
0 0136 0 0061 0 0202 (4)

As shown above, the transformed coefficients are orthonormal.

Interpreting the latent vector and visualizing the results.  The latent vector describes the variability 
in the data that is explained by each principal component. Specifically, each independent column of the obtained 
score matrix has a variance equal to the value in the corresponding row of the latent vector. Based on the data 
presented in Tables S1, 1 and 2, using MATLAB, it is easy to calculate the elements of the latent vector: 3.3327, 
1.0272, 0.9993, 0.8170, 0.7320, 0.5534, 0.3310, and 0.2074, respectively. The scree plot presented in Fig. 2 shows 
seven out of the eight components, which together account for 98% of the total variance. There is a large gap 
between the variances of the first and second components. Nevertheless, the first component alone accounts for 
less than 41.6582% of the variance, whereas the second component explains less than 12.8395% of the variance, 
and the third component explains less than 12.4917% of the variance. Consequently, multiple components might 
be needed to adequately describe the data. Figure 2 shows that the first three principal components together 
account for approximately 66% of the total variability in the standardized data values and thus may serve as a 
reasonable foundation for reducing the dimensionality of the data.

In Figs 3 and 4, all eight variables are plotted as vectors, where the direction and length of each vector indi-
cate the contribution of the corresponding variable to each principal component. The first principal component, 
which is shown on the horizontal axis, has positive coefficients for six variables: butanol productivity (g/L/h), 
butanol yield (g/g), solvent (ABE) yield (g/g), ethanol yield (g/g), maximal specific growth rate (added butyrate: 
5.0 g/L; μMax-A), and maximal specific growth rate (added butyrate: 8.5 g/L; μMax-C). Thus, the six corresponding 
vectors lie on the right side of the graph. The second and third elements of the coefficient vector for the first prin-
cipal component, corresponding to the butanol yield and the solvent (ABE) yield, respectively, have the largest 
values (Fig. 3). The second principal component, which is shown on the vertical axis, has positive coefficients for 
the variables representing maximal specific growth rate (added butyrate: 6.5 g/L; μMax-B), butanol yield (g/g), and 
ethanol yield (g/g) and negative coefficients for the remaining five variables (Fig. 3). Thus, the second component 
distinguishes between clusters of the 329 mutant strains that have high values for the first set of variables and low 
values for the second and clusters for which the opposite is true. Note that Fig. 4 is helpful for cases in which the 
first two principal components do not account for a sufficient amount of the variance in the multidimensional 
fermentation datasets. Here, the data points have been scaled with respect to the maximum score and the number 
of coefficients; therefore, only their relative locations can be found by using the graph.

Capturing high-quality mutant strains.  The multivariate distance of each observation from the center 
of a dataset can be measured using many methods; one common strategy is to use Hotelling’s T2 test, which was 
first introduced in 193147. This is an analytical way to identify the most extreme points in a dataset48–50. Hotelling’s 

Coefficients of 
PC1

Coefficients of 
PC2

Coefficients of 
PC3

Butanol productivity (g/L/h) 0.0001 0.0016 0.0034

Butanol yield (g/g) 0.0164 0.0000 0.0011

Solvents (ABE) yield (g/g) 0.0128 −​0.0012 −​0.0005

Acetone yield (g/g) −​0.0023 −​0.0014 0.0013

Ethanol yield (g/g) 0.0086 0.0023 0.0005

μ​Max-A (1/h) 0.0036 −​0.0005 0.0003

μ​Max-B (1/h) −​0.0002 0.0050 −​0.0023

μ​Max-C (1/h) 0.0021 −​0.0007 −​0.0004

Table 2.   The principal component variables are defined as linear combinations of the original variables. 
The table of the extracted eigenvectors provides the coefficients for the equations.
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T2 test can be thought of as a supplement to the t-test; it can be applied to the scores obtained for a PCA model 
as follows:

=
−

−

T t T T t
I

( )
1 (5)i

i
T T

i2
1

where the matrix of scores (I ×​ R) obtained from the calibration samples is represented by T and ti is the R ×​ 1 
vector representing the R scores for the ith sample. Under the assumption that the scores are normally distributed, 
the confidence limits for Ti

2 can be assigned as follows:

=
−
− α−T R I

R
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1 (6)i I R R I R( , )
2

, ,

Thus, one of the highest-quality mutant strains can be quickly and accurately captured from the multidimen-
sional fermentation datasets representing the 329 mutant strains. As mentioned earlier, this was accomplished 
using MATLAB code. Based on all previous data analyses, the most extreme point in the datasets was identified 
as follows:
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Figure 2.  A scree plot of the percent variability explained by each principal component. This scree plot 
shows only the first seven (instead of all eight) components, which together explain 98% of the total variance. 
The only marked gap in the amount of variance accounted for by each component is between the first and 
second components. The first component alone explains less than 42% of the variance; thus, more components 
might be needed to adequately describe the data.

Figure 3.  The 2D visualization, which includes one point for each of the 329 observations, with the 
coordinates indicating the scores of each observation for the two principal components represented in the 
plot. All eight variables are represented by vectors in this bi-plot, where the direction and length of each vector 
indicate how each variable contributes to the two principal components represented in the plot.



www.nature.com/scientificreports/

6Scientific Reports | 7:39875 | DOI: 10.1038/srep39875

= ′ ′
=

=
− − − −

st index sort tsquared descend sort in descending order
extreme index
names extreme
ans
FS JWS SN

[ 2, ] ( , ); %
(1);

( , :)

79 6 (7)

This extreme point is not surprising because the measured values for mutant FS-JWS-79-6 are the farthest 
from the average of the multidimensional fermentation datasets for the 329 mutant strains. In addition, mutants 
FS-SXT-AP-R631, FS-SXT-LE-BH-A7, FS-SXT-GC-V9-77, FS-ZKS-TF-MT18 and FS-ZKS -TF-ZT637 also appear 
to be more extreme than the other data.

Influence of addition of butyric acid on extreme mutants.  Most industrial processes are described 
to not use addition of external butyric acid as costs are prohibiting, e.g. the South African process27, the former 
Soviet Union process51 or the historic and current processes in China52. Yet, the presence of butyric acid in the fer-
mentation broth has been shown to activate solvent production by C. acetobutylicum53–55. Additionally, increased 
yields and increased production of solvents have been reported following the addition of butyric and acetic acid 
to cultures of Clostridium beijerinckii and C. acetobutylicum56–58. The production of solvents, especially butanol, 
is clearly influenced by butyric acid. Adding butyric acid shifts the metabolic stage of the culture by decreasing 
the pH of the medium, and it can also be utilized by the cells as a co-substrate for the formation of butanol59–63. 
Therefore, controlling the amount of butyrate in the culture medium is of great industrial importance. However, 
butyric acid has previously been reported to inhibit cell growth64,65. The fermentation results presented in Table 3 
show that cells of the mutant FS-JWS-SN-79-6 showed a better “apparent” tolerance at butyric acid concentra-
tions between 5.0 and 11.5 g/L, although this mutant did exhibit a gradual inhibition of cell growth; no growth 
was observed for butyric acid concentrations above 11.5 g/L, and the effect of increasing the butyric acid con-
centration on the batch efficiency parameters (yield from the substrate and productivity) was investigated for 
this mutant. Often times strains that have a high tolerance (to butyric acid) do not have the highest production 
rates (of butanol). It is very interesting that the wild-type C. acetobutylicum ATCC 824 showed (low) butanol 
production levels in contrast to extreme mutants FS-JWS-SN-79-6 which produced under absence of butyrate 
supplementation. The results presented in Table 4 shows the mutant FS-JWS-SN-79-6 that produces more butanol 
without supplemented butyrate (0.262 g/g) than the wild-type strain. The cells unaffected by butyric acid addition 
consume Clostridium growth medium (CGM) mainly for growth producing simultaneously butyrate as primary 
metabolite. As butyrate builds up in the system the medium pH drops with the cells shifting their metabolic state 
from acidogenesis to solventogenesis. It is obvious that extreme mutants FS-JWS-SN-79-6 have strong ability of 
metabolic. This resulted in a 2.2-fold increase in butanol yield from substrate coupled with 3.1-times more butanol 
productivity. In addition, the maximal specific growth rates results presented in Table 3 show that butyric acid 
(5.0 g/L) was slightly added in the media before the optimal point was reached, solvents production was stimu-
lated at the cost of lower specific cell growth rates but with moderate biomass levels. The outcome was a significant 
increase in the solvents yields from biomass for all strains. The fact that these bacteria were metabolically inactive 
for solvent production due to low butyric acid levels and suboptimal pHs necessary for solvents production, 
reflected into high cell growth rates with resultant high biomass levels in the system. As showing in Table 3, the 
results demonstrate that butyric acid has effectively a prominent inhibitory effect on cell growth with all specific 
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Figure 4.  The 3D visualization, which includes one point for each of the 329 observations, with the 
coordinates indicating the scores of each observation for the three principal components represented in the 
plot. All eight variables are represented by vectors in this bi-plot, where the direction and length of each vector 
indicate how each variable contributes to the three principal components represented in the plot.
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growth rates declining with increasing butyrate concentrations. This finding confirms previous results obtained 
with Clostridium butyricum grown in a glucose-limited chemostat culture66. While cells from C. beijerinckii  
BA 101 could be considered the most resistant ones to critical concentrations of butyrate (10 g/L), cells of  
C. beijerinckii ATCC 55025 evidenced a better “apparent” tolerance in the butyric acid region between 2~8 g/L. 
In all cases one can see that butyrate feeding favors ABE-solvents production over the control cultures. Above 
the optimal butyrate feeding concentration (5.0 g/L) cell growth is strongly inhibited lessening butanol yields 
and productivities for all strains. As showing in Tables 3 and 4, in contrast, as the butanol production pathway 
of extreme mutants FS-JWS-SN-79-6 is induced by the addition of external butyric acid (5.0 g/L), the levels of 
butyryl-CoA are increased from acetoacetyl-CoA instead of forming acetoacetate. This results in a lower acetone 
production. This corresponded to a 1.1-fold discrease in the acetone yield from 0.126 g/g to 0.113 g/g. Likewise, 
the wild-type C. acetobutylicum ATCC 824 showed (low) acetone yield levels which produced under butyrate 
supplementation (5.0 g/L). Further details on the metabolic pathways for butanol and acid production can be 
found elsewhere34,67.

Evaluation of the mutants from the ABE fermentation perspective.  In all cases, 5.0 g/L was found 
to be the optimal concentration of butyric acid for maximizing the yield for all ABE solvents and the butanol 
productivity. Adding butyric acid to the medium significantly increased the production of butanol, resulting in 
a global maximum productivity of 0.068 g/L/h in the fermentation broth for this mutant. This corresponded to 
a 2.28-fold increase in the butanol yield from the substrate (0.183 g/g), coupled with a 3.09-fold increase in pro-
ductivity (0.022 g/L/h) (Table 3). Moreover, high intracellular concentrations of this acid activated the enzymes to 
produce neutral products. Thus, the mutant FS-JWS-SN-79-6 will synthesize the enzymes for butanol production 
at pH 7 as the butyrate concentration in the medium increases. In similar experiments, cells have been routinely 
observed to continue to grow when supplemented with butyric acid at concentrations of 5.0~8.5 g/L and, in some 
cases, above 11.5 g/L. Above the optimal level of butyric acid concentration, the yield values decrease as a direct 
consequence of gradual cell growth inhibition by the co-substrate with concomitant low biomass concentration 
coupled by low levels of butanol produced. ABE formation of ethanol and acetone limits the amount of metabolic 
precursors available for butanol production68. As showing in Tables 3 and 4, the results demonstrate that acetone 
and ethanol production levels were not significantly affected. Based on supplementation with 5.0-g/L butyric 
acid compared to the wild-type strain, the conversion of CGM to butanol yield by the mutant FS-JWS-SN-79-6 
had increased with 43.8%, and total ABE solvent yields from CGM were up with 47.6%. In absence of butyrate 
supplementation compared to the wild-type strain, the conversion of CGM to butanol yield by the mutant 
FS-JWS-SN-79-6 had increased with a 1.6-fold, and total ABE solvent yields from CGM were up with a 1.3-fold. 
Above the results correspond to the previous investigations, to restore solvent productivity, Nair and Papoutsakis 

Bacterium

Butanol 
productivity 

(g/L/h)

Butanol 
yield 
(g/g)

Solvents 
(ABE) 
yield 
(g/g)

Acetone 
yield 
(g/g)

Ethanol 
yield 
(g/g)

Maximal 
specific 
growth 

rate 
(added 

butyrate 
5.0 g/L) 
μMax 
(1/h)

Maximal 
specific 
growth 

rate 
(added 

butyrate 
6.5 g/L) 
μMax 
(1/h)

Maximal 
specific 
growth 

rate 
(added 

butyrate 
8.5 g/L) 
μMax 
(1/h)

Maximal 
specific 
growth 

rate 
(added 

butyrate 
11.5 g/L) 
μMax 
(1/h)

C. acetobutylicum ATCC 824 0.022 0.183 0.235 0.076 0.024 0.183 0.087 0.069 —

Mutant FS-JWS-SN-79-6 0.068 0.418 0.494 0.113 0.060 0.224 0.146 0.093 0.057

Mutant FS-SXT-AP-R631 0.070 0.401 0.528 0.117 0.126 0.247 0.159 0.108 0.032

Mutant FS-SXT-LE-BH-A7 0.073 0.405 0.53 0.118 0.128 0.240 0.157 0.111 0.041

Mutant FS-SXT-GC-V9-77 0.068 0.435 0.533 0.113 0.117 0.243 0.157 0.110 0.029

Mutant FS-ZKS-TF-MT18 0.072 0.435 0.524 0.113 0.091 0.241 0.152 0.113 0.036

Mutant FS-ZKS -TF-ZT637 0.067 0.426 0.532 0.109 0.101 0.245 0.147 0.112 0.038

Table 3.   Based on supplementation with 5.0-g/L butyric acid, the effects of increasing the butyric acid 
concentration (6.5, 8.5 and 11.5 g/L) on the ABE fermentation parameters from the substrate, the butanol 
productivity, and the maximal specific growth rates for C. acetobutylicum ATCC 824 and mutant strains 
were determined as shown below. *All the experiments were repeated 3 times and the average value was taken.

Bacterium

Butanol 
Production 

(g/L)

Butanol 
productivity 

(g/L/h)
Butanol 

yield (g/g)

Solvents 
(ABE) yield 

(g/g)
Acetone 

yield (g/g)
Ethanol 

yield (g/g)

Maximal 
specific growth 
rate μMax (1/h)

C. acetobutylicum ATCC 824 7.73 0.017 0.164 0.318 0.083 0.031 0.236

Mutant FS-JWS-SN-79-6 18.43 0.048 0.262 0.413 0.126 0.068 0.242

Table 4.   The performance of the best mutants against the wild-type in absence of butyrate 
supplementation on the ABE fermentation parameters from the substrate, the butanol productivity, and 
the maximal specific growth rates for C. acetobutylicum ATCC 824 and mutant FS-JWS-SN-79-6 were 
determined as shown below.
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(1994) expressed the alcohol dehydrogenase gene (adhE), normally located on pSOL1, in strain M5 from a rep-
licative plasmid69. Butanol yield was restored without acetone formation, but at reduced levels compared to the 
wild-type strain, while large amounts of acetate and butyrate accumulated in the growth medium.

High-production of biobutanol by Clostridium have been reported detailedly in the following research lit-
erature. Such as hyper-butanol producing strains from various mutagenesis strategy and mutants, includ-
ing acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM1970, 
acetone-butanol-ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by com-
bined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction71, comparative 
genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose uti-
lization in Clostridium acetobutylicum EA 201872 and recent advances in ABE fermentation: hyper-butanol pro-
ducing Clostridium beijerinckii BA10173. Yields from biomass up to 17.6 g/L of butanol and the maximum butanol 
and ABE productivities of 9.6 and 20.0 g/L/h from 85.2 g/L glucose in the non-mutant C. acetobutylicum batch 
fermentation were obtained70. Supplementing the fermentation medium (MP2) with sodium acetate enhances 
solvent production to 33 g/L by in the non-mutant Clostridium beijerinckii BA10173. The production of butanol 
was 15.8 ±​ 0.7 g/L by Clostridium beijerinckii L175 after mutagenesis technique with N+ ion implantation71. 
In contrast, our results presented in Table 4 show that mutant FS-JWS-SN-79-6 was also enhanced to improve 
butanol production from 7.73 to 18.43 g/L after 12C6+ heavy ion irradiation. Clearly, Mutant FS-JWS-SN-79-6 
produces more butanol without supplemented butyrate (18.43 g/L) than the C. acetobutylicum ATCC 824. Our 
findings suggested using 12C6+ heavy ion irradiation favors ABE-solvents production over the non-radiated strain 
and other mutagenesis strategy. The strategy reported here may contribute to develop a cost-effective butanol 
fermentation process, making it competitive compared with similar fermentation processes.

Conclusion
PCA is a multivariate method that is used to examine datasets in which the observations can be expressed in 
terms of many inter-correlated quantitative dependent variables. Furthermore, PCA can be simplified to a cor-
respondence analysis that handles qualitative variables. It can also be regarded as a multiple factor analysis that 
handles heterogeneous sets of variables. The purpose of PCA is to determine relevant information from a dataset, 
characterize it in terms of a set of new orthogonal variables (principal components), and visualize the patterns of 
similarity in the variables and observations as specific locations on a map. In this work, data on a large number 
of mutant strains of C. acetobutylicum secreted after mutagenesis were collected. For industrial ABE fermenta-
tion, distinguishing between high-quality and mediocre producing mutants is highly important. Because these 
organisms’ multidimensional fermentation datasets contain many correlated variables, PCA can serve as an inex-
pensive, efficient and reliable approach for identifying high-quality mutants. Through data acquisition, normal-
ization, analysis simplification, and visualization, the proposed interactive approach helps users to understand 
and rapidly apply PCA by creating a visual model in their minds. Finally, the most extreme points are clearly evi-
dent, allowing high-quality mutant strains to be easily captured. In conclusion, the information obtained in this 
research will support further studies of bioreactor and bioprocess design and scale-up, which are very important 
topics for ABE industrial applications.

Methods
Cultures and medium.  To test the production of butanol by various strains, a rich P2 medium containing 
60 g/L glucose, 3.6 g/L yeast extract, 2.7 g/L peptone, 3.2 g L K2HPO4, 3.2 g/L KH2PO4, 0.2 g/L MgSO4, 0.2 g/L 
MnSO4, 0.02 g/L FeSO4, 0.02 g/L NaCl, 1.5 g/L yeast extract (Difco, USA), 2.5 g/L ammonium acetate, 0.0005 g/L 
p-aminobenzoate, 0.0005 g/L thiamin, 0.00005 g/L biotin, and 35 μ​g/mL thiamphenicol was used. To test the pro-
duction of butanol from different substrates, the same rich P2 medium with 30 g/L instead of 60 g/L glucose was 
used73,74. Unless otherwise noted, the fermentation was conducted in serum bottles, each of which contained 
40 mL of the medium and was inoculated with 1% (v/v) of an overnight culture in Reinforced Clostridial Medium 
(RCM; Difco, Detroit, MI, USA) at 37 °C and 250 rpm. The pH was maintained between 5.0 and 6.5 by adding 
NaOH solution twice a day75.

Microorganisms and breeding.  Clostridium acetobutylicum ATCC 824 was obtained from the Drug R & 
D Center of Institute of Modern Physics, Chinese Academy of Sciences, China. All bacteria were maintained in 
P2-medium at 4 °C as stock cultures. To prepare inocula of all 4-strains in totally anoxic conditions the following 
procedure was employed: serum tubes containing 5.0 ml of P2-medium were first purged with sterile nitrogen 
gas for 5-min. To prevent caramelization of sugar, a browning reaction, a separate 50 g⋅​l-1 dextrose solution in 
distilled water was prepared in a 100-mL serum bottle and purged with nitrogen gas for 15-min again to attain 
perfect anaerobic conditions76,77. Both vessels were tightly sealed with rubber stoppers and aluminum crimps 
to prevent ingress of air and contamination with oxygen. Both liquids were sterilized by autoclaving at 121 °C, 
15 psig for 20-min after which they were left at room temperature for cooling. 1.0 ml of dextrose solution was then 
added to the first tube followed by cell inoculation with 1/30 volume of each original stock culture. Anaerobic 
stock cultures for all strains were taken from an original serum tubes stored at 4 °C. Prior to inoculation the stock 
culture tubes were left resting at room temperature for 30-min inorder to pre-activate the cells. The pre-culture 
was incubated at 37 °C during 16-hours for cell growth followed by another inoculation around in order to obtain 
final fresh cell culture inocula.

Experimental setup and heavy-ion beam irradiation.  The experiment was performed at the Cancer 
Therapy Terminal of the Heavy Ion Research Facility at Lanzhou (HIRFL). The upgraded accelerator system of 
HIRFL consists of a Sector Focus Cyclotron (SFC), a Separated Sector Cyclotron (SSC), the main Cooling Storage 
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Ring (CSRm), and the experimental Cooling Storage Ring (CSRe). High-energy 12C6+-ions with an energy of 
196 AMeV were extracted by CSRm. Energies of 117 AMeV was obtained by adding the absorbers (water) and 
calibrating using the LISE program, and the corresponding uncertainty of the energies is not higher than 0.27%78. 
The extraction time of the carbon ions (approximately 106–108 ions/pulse) was approximately 3 s, and the priming 
dose was 80 Gy. The dose rates were up to 10 Gy/min. The temperature of the 12C6+ heavy-ion beams was <​35 °C 
under these conditions79. For irradiation experiments, strains cells were grown in microcentrifuge tube (5 mL) to 
reach 90% confluence and they were completely filled with Dulbecco’s modified Eagle’s medium to avoid artifacts 
by irradiation through air layers.

Totally anoxic conditions.  Serum tubes containing 7.0 mL of P2 medium were first purged with sterile 
80% N2, 10% CO2, and 10% H2 for 9 min. To prevent caramelization of the sugar, which is a browning reaction, 
a separate 60 g/L dextrose solution in distilled water was prepared in a 120-mL serum bottle and purged with 
nitrogen gas for 18 min to attain completely anaerobic conditions. Both vessels were tightly sealed with rubber 
stoppers and aluminum crimps to prevent the ingress of air and contamination with oxygen. Both liquids were 
sterilized by autoclaving at 121 °C and 15 psig for 25-min and were then cooled at room temperature. After 1.5 mL 
of dextrose solution was added to the first tube, the tube was inoculated with a 0.04 volume of each original stock 
culture. The anaerobic stock cultures of all of the strains were collected from the original serum tubes stored at 
4 °C. Prior to inoculation, the stock culture tubes were incubated at room temperature for 25 min to pre-activate 
the cells. The pre-culture was incubated at 37 °C for 36 h to allow cell growth and then inoculated to obtain the 
final fresh cell culture inocula80.

The source of the multidimensional fermentation dataset.  The generation of mutant strains, the  
fermentation screening, the measurements and analytical methods accompanies this paper at Supplementary  
Information 1.

Simplifying multidimensional fermentation dataset analysis and visualization.  PCA is performed by  
determining the eigenvalues and eigenvectors of a covariance matrix. This covariance matrix is then utilized to 
determine the variation in the values of each dimension with respect to the mean. The dimensions of the data 
considered in our study can be described as random variables and often vary together. Such a relationship can be 
described as follows:

= − ⋅ −Cov X Y E E X X E E Y Y( , ) [ [ ] ] [ [ ] ] (8)

where E[X] and E[Y] are the expected values of X and Y, respectively. This can be further written as follows for a 
sampled dataset:

∑=
− ⋅ −
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C X Y
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N
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where x and y are the mean values of X and Y, respectively, and N is the number of dimensions of the dataset. The 
covariance matrix is then defined as Ai,j =​ Cov (i, j), where the data have been mean centered.

For an element of the covariance matrix, the sign is more important than the magnitude. For example, if 
the sign is positive, it indicates that both of the corresponding dimensions (X and Y) increase simultaneously. 
Conversely, if the sign of a matrix element is negative, it indicates that when one of the corresponding dimensions 
increases, the other decreases. When the covariance is zero, the two dimensions are independent of each other. 
According to the commutative property, Cov (X, Y) = Cov (Y, X).

The eigenvalues and eigenvectors of interest are computed using the covariance matrix. Then, the eigenvalues 
are arranged in descending order, creating an order of significance. The eigenvector with the largest eigenvalue 
is considered to be the most dominant principle component (PC1), which describes the most significant rela-
tionship. The principal components are calculated through multiplication of the eigenvectors by the stratified 
eigenvalues.

PCA can be used as a dimension-reduction method through determination of the principal components 
of the input data. However, for the transformation of a high-dimensional dataset into a lower-dimensional 
space, the ideal low-dimensional space must be found from the eigenvectors of the covariance matrix. The ideal 
low-dimensional space minimizes the error between the input dataset and the PCA results based on
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λ
θ∑

∑
=
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where K is the number of dimensions chosen from among the original N dimensions of the matrix, θ is the 
threshold criterion (typically 0.9 or 0.95), and λ​ is an eigenvalue. Using this information, the N ×​ N matrix is 
linearly transformed into an N ×​ K matrix. Although the number of dimensions decreases with the application 
of PCA, the difference between the input and output matrices is small. Common values of K are 2 and 3, which 
correspond to the mapping of a dataset into 2D and 3D coordinate systems, respectively.
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