
Dynamic Control Balancing Cell
Proliferation and Inflammation is
Crucial for an Effective Immune
Response to Malaria
Anuj Gupta1, Mary R. Galinski 2† and Eberhard O. Voit 1*†

1The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta,
GA, United States, 2Emory Vaccine Center, Yerkes National Primate Research Center, Department of Medicine, Division of
Infectious Diseases, Emory University, Atlanta, GA, United States

Malaria has a complex pathology with varying manifestations and symptoms, effects on
host tissues, and different degrees of severity and ultimate outcome, depending on the
causative Plasmodium pathogen and host species. Previously, we compared the
peripheral blood transcriptomes of two macaque species (Macaca mulatta and
Macaca fascicularis) in response to acute primary infection by Plasmodium knowlesi.
Although these two species are very closely related, the infection in M. mulatta is fatal,
unless aggressively treated, whereas M. fascicularis develops a chronic, but tolerable
infection in the blood. As a reason for this stark difference, our analysis suggests delayed
pathogen detection in M. mulatta followed by extended inflammation that eventually
overwhelms this monkey’s immune response. By contrast, the natural host M.
fascicularis detects the pathogen earlier and controls the inflammation. Additionally, M.
fascicularis limits cell proliferation pathways during the log phase of infection, presumably
in an attempt to control inflammation. Subsequent cell proliferation suggests a cell-
mediated adaptive immune response. Here, we focus on molecular mechanisms
underlying the key differences in the host and parasite responses and their
coordination. SICAvar Type 1 surface antigens are highly correlated with pattern
recognition receptor signaling and important inflammatory genes for both hosts.
Analysis of pathogen detection pathways reveals a similar signaling mechanism, but
with important differences in the glutamate G-protein coupled receptor (GPCR) signaling
pathway. Furthermore, differences in inflammasome assembly processes suggests an
important role of S100 proteins in balancing inflammation and cell proliferation. Both
differences point to the importance of Ca2+ homeostasis in inflammation. Additionally, the
kynurenine-to-tryptophan ratio, a known inflammatory biomarker, emphasizes higher
inflammation in M. mulatta during log phase. Transcriptomics-aided metabolic
modeling provides a functional method for evaluating these changes and
understanding downstream changes in NAD metabolism and aryl hydrocarbon
receptor (AhR) signaling, with enhanced NAD metabolism in M. fascicularis and
stronger AhR signaling in M. mulatta. AhR signaling controls important immune genes
like IL6, IFNγ and IDO1. However, direct changes due to AhR signaling could not be
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established due to complicated regulatory feedback mechanisms associated with the AhR
repressor (AhRR). A complete understanding of the exact dynamics of the immune
response is difficult to achieve. Nonetheless, our comparative analysis provides clear
suggestions of processes that underlie an effective immune response. Thus, our study
identifies multiple points of intervention that are apparently responsible for a balanced and
effective immune response and thereby paves the way toward future immune strategies for
treating malaria.

Keywords: Plasmodium knowlesi, Macaca fascicularis, Macaca mulatta, kynurenine metabolism, tryptophan
metabolism, AhR signaling, antigenic variation, surface antigens

HIGHLIGHTS

• Macaca mulatta and Macaca fascicularis are closely related
macaque species that respond very differently to infection
with the malaria pathogen Plasmodium knowlesi.

• Early detection, sensing of the pathogen with associated
signaling, and balance between inflammation and cell
proliferation are the most important differences in the
immune response of the two hosts.

• Pathogen surface antigens of SICAvar Type 1 are most
highly correlated with host immune and pathogen
sensing mechanisms.

• Pre-infection differences in neutrophils and naïve CD4+
T cells result in differences in Ca2+ homeostasis, which
ultimately balances inflammation and cell proliferation
during the expansion log phase of the parasitemia.

• Dysregulation of ribosomal protein assembly in Macaca
fascicularis causes p53-dependent growth arrest, which is
essential for balancing the immune response and
inflammation.

• Tryptophan metabolism and its key control gene KMO
balance downstream energy metabolism and inflammation
pathways through NAD+ metabolism and AhR signaling,
hence playing an important role in the balance of cell
proliferation, immune response and inflammation.

INTRODUCTION

Malaria is one of the world’s deadliest infectious diseases, with an
estimated 229 million cases and 409,000 deaths reported in 2019
(World malaria report 2020, 2020). It is caused by parasites of the
genus Plasmodium. Ethical reasons render investigations of
molecular host-responses in malaria difficult in humans,
because treatment of patients is obligatory as soon as they are
diagnosed. Rodent malaria models have been widely used to
expand our understanding of these infections, but present
drawbacks due to major differences in human and mouse or
rat genetics and physiology. By contrast, nonhuman primates
(NHPs) are much closer to humans, and the clinical presentation
of malaria and consequent immune responses are quite similar in
humans and macaques (Coatney et al., 1971; Aikawa et al., 1992;
Coatney et al., 2003; Gardner and Luciw, 2008; Craig et al., 2012;
Joyner et al., 2015; Pasini et al., 2018).

Here, we contrast the drastically different responses of two
evolutionarily close macaque species (Morales and Melnick, 1998;
Tosi et al., 2000), the kra monkey (Macaca fascicularis, Mf) and the
rhesus monkey (Macaca mulatta, Mm), to infection with the same
pathogen, Plasmodium knowlesi. These two hosts are the most-
studied model NHPs and their infections with various pathogens is
studied as it is often comparable to those in humans (Van
Binnendijk et al., 1995; El Mubarak et al., 2007a; Baroncelli
et al., 2008; Sasseville and Mansfield, 2010; Salguero et al.,
2021). They are evolutionarily so close (3.7 MYA) (Hedges
et al., 2015) that one might expect a similar immune response
to a common pathogen. Long before P. knowlesi became a zoonotic
concern, Knowles and Gupta (1932) identifiedMf as a natural host
for P. knowlesi infection. Since then, numerous infection
experiments have demonstrated that the two macaques respond
very differently to infection (Garcia et al., 2004; El Mubarak et al.,
2007b; Maiello et al., 2018; Lu et al., 2020). Whereas Mf develops a
chronic infection that it tolerates relatively well, the P. knowlesi
infection in Mm is fatal, unless the monkey is subjected to
aggressive treatment. This outcome is somewhat surprising, as it
is widely accepted that Mm typically outcompetes other macaque
species, including Mf. A likely explanation is that Mf co-evolved
with P. knowlesiwithin a large geographical area of Southeast Asia,
whereas the distribution of Mm overlaps with that of P. knowlesi
only slightly (Street et al., 2007; Singh and Daneshvar, 2013; Moyes
et al., 2014; Gupta et al., 2021). Studies analyzing these differences
have begun to show that Mf generally launches a more effective
immune response (Waag et al., 1999; El Mubarak et al., 2007a;
Pinski et al., 2021). However, a better understanding of the control
of the biological programs that differentiate the immune responses
is of utmost importance, because it will not only offer insights into
the details of these responses but may also point to molecular
targets thatmight lead to improvedmalaria treatments for humans.

In a recent transcriptomics study (Gupta et al., 2021), we
analyzed the gene programs with which Mm and Mf respond to a
P. knowlesi infection, initiated with infectious sporozoites. This
comparative analysis revealed numerous transcriptomic
similarities, but also notable differences. In particular, Mf, but
not Mm, apparently detects this pathogen as early as the liver
phase of the infection, prior to the parasite infecting the blood,
and this correspondingly activates beneficial signaling pathways
early on. Later in the infection, significant differences arise in each
monkey’s immune responses, which in Mm lead to extended
inflammatory activities and prolonged inflammation. By contrast,
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Mf contains the infection and controls inflammation by
undergoing a transcriptional makeover toward cell
proliferation that accompanies its recovery.

The goal of the present study is to shed light on some of the
molecular mechanisms governing the different gene programs
and thus the ultimate fates of the two macaque species. In
particular, the study identifies and quantifies: differences in the
detection of the pathogen, associated differences in the immune
response, differences in cell proliferation that directly affect the
immune response and indirectly inflammation and, finally,
differences in pathways that regulate inflammation.

The detection of malarial parasites by the host immune system
is driven by parasite-encoded surface proteins, including among
others the Schizont-Infected Cell Agglutination (SICA) variant
proteins (Lapp et al., 2009) that are expressed from the SICAvar
gene family (al-Khedery et al., 1999; Wahlgren et al., 1999; Pain
et al., 2008; Lapp et al., 2018; Galinski et al., 2018). The
antigenicity and variability provided by these various proteins
stimulates the production of antibody repertoires and
immunogenicity that have been widely studied in the context
of vaccine development (Ferreira et al., 2004; Ouattara et al., 2015;
Rénia and Goh, 2016; França et al., 2017). The Plasmodium
pathogen multiplies within infected red blood cells (iRBCs)
and once matured these cells burst releasing new merozoite
progeny that infect other RBCs. This process generates
pathogen- and damage-associated molecular patterns (PAMPs
and DAMPs), which in turn stimulate various pattern recognition
receptor (PRR) signaling pathways in macrophages, monocytes,
neutrophils and dendritic cells, and execute various immune
mechanisms via protein kinase cascades (Alberts, 2002;
Schroder and Tschopp, 2010). Co-expression analysis has been
shown to be instrumental in determining these host-pathogen
interactions (Lee et al., 2018). The neutrophils and macrophages
not only target foreign content for phagocytosis but also trigger
the inflammatory and adaptive immune response. Our previous
analysis showed much stronger inflammation in Mm compared
to Mf, which launches extensive measures to control cell
proliferation. The balance between these pro- and anti-
inflammatory mechanisms appears to be the key to resilience,
and a deeper understanding of the underlying mechanisms is
therefore of utmost importance (Cicchese et al., 2018). The
energy-intensive nature of these processes makes metabolic
processes like glycolysis and tryptophan (Trp) metabolism
close accomplices in regulating the overall physiological
dynamics. Furthermore, the feedback loop of Trp metabolism
and Aryl hydrocarbon Receptor (AhR) signaling in controlling
inflammatory cytokines is essential for this balance.

The complete dynamics of the entire immune response is
obviously difficult to comprehend in full detail, as this response is
systemic and involves uncounted facets, some evident but others
subtle. Thus, while our comparative analysis clearly cannot
convey a complete picture of all chains of causes and effects
governing the responses by the two macaque species, it offers a
first glimpse into some of the same and some of the differentiating
processes evoked by the two monkey species. The study thereby
opens a new avenue toward potential future strategies of
immune-based malaria treatments and provides multiple

promising candidates for interventions targeting a balanced
and effective immune response.

RESULTS

Our analysis is based on data that were obtained with an
experimental design (Supplementary Figure S18) recently
detailed in (Peterson et al., 2021) and (Gupta et al., 2021). In
this longitudinal study of P. knowlesi infections in Mm and Mf,
peripheral blood and bone marrow samples were collected at
various time points (TPs), including baseline (before infection),
pre-patent (TP3 or 3 days post inoculation; dpi), log-phase (TP4
or eight dpi) and peak-phase (TP5 or 10 dpi). The first signs of
parasitemia were observed six dpi, and the infection increased
exponentially thereafter. The Mm subjects were euthanized by 10
dpi, at the time parasitemias were escalating to dangerous levels,
to carry out necropsies and characterize the infected tissues. We
previously observed that Mf shows very early signs of parasite
detection by three dpi (Gupta et al., 2021). Even though the
immune response was found to be similar between the hosts
during the log-phase of the blood infection, Mf was found to
switch its response near peak infection towards cell proliferation,
which we concluded is a sign of recovery. In the current study we
address these and other findings to shed additional light on the
molecular mechanisms governing these processes.

Correlated Nonhuman Primate Host and P.
Knowlesi Transcripts Suggest Common
Signaling Mechanisms and the Expression
of Key Pathogenic Proteins, Including SICA
Antigens
It is to be expected that amammalian host senses the presence of a
parasite based on the detection of pathogenic macromolecules or
signals from infected erythrocytes, which trigger signaling
pathways in the host that in turn control the gene programs
governing a systemic immune response (Figure 1A). In this
section, we analyze the sensing-signaling process by means of
co-expression networks, functional annotation, and logistic
regression analysis.

Co-Expression Networks of Host and Parasite Genes
Genes with similar functionality often have correlated expression
profiles, which may be identified using co-expression network
analysis (Fuller et al., 2007). We adapted this approach by
combining both host and pathogen transcripts in a weighted
correlation network analysis (WGCNA) (Langfelder and
Horvath, 2008) in order to identify modules of host and
pathogen genes that act in synchrony. We refer to these
modules based on their “hub genes.” Specifically, the analysis
resulted in three types of modules: (A) Host modules consisting
exclusively of host genes; (B) Host majority modules with both
host and parasite genes, but with a majority of host genes; and (C)
P. knowlesi majority modules with both host and parasite genes,
but with a majority of P. knowlesi genes (Supplementary
Figure S2).
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Genes involved with essential functions form well-defined
modules (Supplementary Table S1A). It is not surprising that
most of the differentially expressed genes (DEGs) during the
parasitemic log phase belong to the TOP1 module (immune
response), followed by C1D and ATAD3A modules (with
insignificant functional annotation) for both hosts. It is worth
noting that the NF2 (tRNA metabolic process), SNRPD2
(ribosomal assembly) and RACGAP1 (mitotic cell cycle)
modules are most highly correlated with the TOP1 module
(Pearson correlation between eigengenes with p < 0.01,
corrected for false discovery rate (FDR)), suggesting close
orchestration between these essential functions. The
interactions of host and pathogen genes are most evident
through interactions between Type C modules and Type A or
Type B modules. Significantly high correlations between host and
P. knowlesi genes (Supplementary Table S1B) are found in
modules ATAD3A (Type B) and PKNOH_S08507800 (Type
C). Interestingly, 23 out of the 26 highly correlated P. knowlesi
transcripts belong to Schizont-Infected Cell Agglutination variant
antigen (SICAvar) Type 1 genes (al-Khedery et al., 1999; Pain
et al., 2008; Lapp et al., 2018) (Supplementary Table S1C). The
corresponding SICA variant antigens, which are expressed on the
surface of infected erythrocytes (Howard et al., 1983) and
associated with virulence (Galinski et al., 2018), show high
correlations with several important host genes, including IL10,
ELK4 and HSPA6. This suggests that SICAvar Type 1 transcripts
play a role in regulating inflammation in the host, for example,

directly through IL10 expression and indirectly by regulating
stress signals through HSPA6 expression.

Parasite Gene Expression Affecting Host
Co-Expression Modules
In order to create more functionally robust host modules, we used
WGCNA with all host samples (including Baseline and TP3),
while excluding P. knowlesi genes (Supplementary Table S2).
Logistic regression followed by functional enrichment identified
key modules changing during infection in both host species. The
defense response module FBXO6, and modules GFRA2 and
RASGEF1A (with insignificant functional annotation), were
the most different during the log phase. Modules that were
different included RPS19 (SRP-dependent co-translational
protein targeting to membrane) and NR1H3 (cell activation
involved in immune response). Integrating module
membership data with host-pathogen transcripts correlation
data (see Section on co-expression networks) highlighted
Plasmodium proteins that affected each module. Most
noticeable are SICAvar Type 1 (Pain et al., 2008; Lapp et al.,
2018), Trp-rich antigen (Wang et al., 2015) and KIR-like proteins
(Pain et al., 2008) affecting modules RPS19 and NR1H3, which
differentiated the two hosts. Additionally, high correlation of
hemoglobin complex module EPB42 with several pathogenic
ribosomal proteins suggests a possible mechanism for
digesting hemoglobin as an essential nutrition source for the
pathogen (Counihan et al., 2021). Host specificWGCNA revealed

FIGURE 1 |Chain of events during the blood phase ofP. knowlesi infection. (A) Pathogen and RBCs: Once released from the liver into the blood stream,merozoites
invade uninfected RBCs leading to Infected RBCs (iRBC) with exposed surface antigens (schizont-infected cell agglutination antigens—SICA; black). The iRBCs are
partially eliminated by macrophages, a process that triggers the production of pathogen/danger-associated molecular patterns (PAMPs/DAMPs). These PAMPs/
DAMPs are sensed by other immune cells through Pathogen Sensing Mechanisms (PRR signaling), which activate various protein kinase signaling pathways.
These signaling pathways are responsible for immune response activation that is mediated through various leukocytes. (B) Among several protein kinase signaling
mechanisms, GPCR signaling pathways are enriched in both hosts. While purinergic nucleotide GPCRs are similarly enriched, glutamate GPCRs are noticeably different
in the two hosts. (C) Glutamate GPCRs are responsible for calcium sensing and functionally expressed in neutrophils, monocytes, macrophages and T cells. (D)
Comparative cell population deconvolution at baseline (i.e., before infection) shows these populations to be different, which might reflect an innate difference in Ca2+

signaling in the two host species.
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similar results with SICAvar Type 1 being most correlated to host
immune modules (Supplementary Notes).

Pattern Recognition Receptor Signaling
The co-expression network analysis is able to detect important
host-pathogen relationships that appear to be crucial for the two
hosts. In order to focus on detection of the pathogen by a host, we
modified the analysis to create a customized module of PRR
signaling related genes, which allowed us to identify Plasmodium
proteins that interact with their products. The most positively
correlated pathogen proteins include KIR-like protein (Pain et al.,
2008) and thioredoxin-like protein (Wang et al., 2018a; Yindom
et al., 2012). Among the genes that negatively co-express with the
PRR module are SICAvar Type II, AP-1 complex subunit sigma
and histones H2A/H2B. The host genes most highly correlated
with P. knowlesi genes include pathogen detection genes like
IFIT3, PLA2G4C, MX1, OASL, DDX60, OAS2, RSAD2, MX2,
DHX58, IFIH1, STAT1, FAS and TLR4 (for functional
annotations (Huang et al., 2009), see Supplementary Table
S3A). As reported before (Gupta et al., 2021), it is worth
noting that most of these signaling genes are upregulated in
Mf at TP3, which further supports the hypothesis of earlier
pathogen detection in Mf than in Mm.

For many mammalian hosts, the PRR signaling pathway has
been credited for detecting PAMPs or DAMPs, DNAs, and other
large molecules (Figure 1A) (Mogensen, 2009; Roh and Sohn,
2018; Amarante-Mendes et al., 2018). In our case, the activity of
this pathway is consistent with expression of PRR-related genes in
both hosts during the appropriate infection time points (TPs;
Supplementary Table S3B). Here we concentrate on the log
phase of infection because this phase is associated with the most
similar features between the two hosts, and any observed
differences might highlight critical processes. It is interesting
to note that many of the PRR signaling genes are in fact different
between Mm and Mf. This difference implies that even though
the more general PRR signaling pathway is activated in response
to the detected pathogen, the specifics of the pathway operation
are apparently different, which could be due either to the detected
pathogenic content or the interpretation of the signaling event by
the host’s immune responses. The major genes differentiating the
specifics of PRR signaling include TLR5, NLRP6, TNIP3,
SLC15A4, SLC15A3, CD36 and CD300A. We had reported
enriched pathways before, but the specific differences are not
as easy to deduce (Supplementary Table S4). Such differences are
evident in subsets of the TLR signaling cascade, especially in
TICAM1/RIP1 mediated IKK complex recruitment. Higher
expression of corresponding ubiquitination genes (UBE2D1,
UBA52, RPS27A and BIRC2) in Mm suggests activation of
NFκB (Festjens et al., 2007), which might be responsible for
stronger inflammation.

These differences between hosts are carried forward toward
responses by networks of protein kinases. We examined
enrichment of several protein kinase cascades including
mitogen-activated protein kinase (MAPK), G protein-coupled
receptor (GPCR) systems and p21-activated cascades. Both host
species exhibit higher activation of atypical cytokine activated
MAPK4/6 signaling involving PAK (p21 activated kinases) (De

la Mota-Peynado et al., 2011; Déléris et al., 2011) in comparison to
the typical stress activated p38/MAPK signaling pathway
(Supplementary Figure S3A). Major differences in protein
kinase activities are associated with higher inhibition activity in
Mm, which is probably due to peptidyl tyrosine
dephosphorylation. Although not fully understood, this pathway
has been implicated in both pro- and anti-cell proliferation roles
(Kostenko et al., 2012) and might be responsible for downstream
differences in p53 and HSP27 related cell cycle activity. Differential
regulation of protein kinase C activity (Supplementary Figure
S3B) might explain these differences (Saha et al., 2014).

Probably the most notable difference between the two species
is observed in their GPCR signaling (Figure 1B). Although both
species show similar positive enrichment of purinergic
nucleotide GPCR signaling, differences in glutamate GPCR
signaling highlight their differences in inflammation
(Figure 1B). Purinergic nucleotide GPCR activity explains
the upregulation of purine metabolism in malaria and points
to a potential role of macrophages (Barberá-Cremades et al.,
2016). Macrophage production is significantly upregulated in
both hosts during log phase (Supplementary Tables S5A,B),
with the same direction of fold change as the purinergic
nucleotide GPCR signaling. In contrast to these similarities,
glutamate GPCRs, which are Ca2+ sensing receptors, show clear
differences between the two hosts in both binding and
subsequent signaling pathways, thus suggesting downstream
implications of calcium homeostasis (Figure 1C). As
discussed later in the section discussing the effects of
inflammation, Ca2+ homeostasis plays a crucial role in
inflammation. Ca2+ sensing glutamate GPCRs are
functionally expressed on neutrophils, monocytes,
macrophages and T lymphocytes. An innate difference
between the two hosts is their difference in these cell
populations at baseline (Figure 1D, Supplementary Table
S5C). Some of these differences have been corroborated in
the literature (Koo et al., 2019).

Ribosomal Proteins Control p53 Pathway
Our previous work (Gupta et al., 2021) had suggested control over
the p53 pathway during the log phase of the infection as a crucial
difference between the immune responses of the two host species.
Binding of p53 to its target response element leads to the
expression of a multitude of genes with a spectrum of
functions, including cell cycle growth arrest, DNA repair,
cellular senescence and apoptosis (Haupt et al., 2002)
(Figure 2). An active p53 pathway also protects cells against
reactive oxygen species (ROS) through antioxidant genes like
TP53INP1 (Sablina et al., 2005) (Supplementary Figure S4).
Indeed, the early response of this pathway in Mf (at TP4) might
be crucial in saving cells from apoptosis via PIG3 (TP53I3 gene)
(Lee et al., 2010). Co-expression analysis, discussed in the earlier
section on parasite gene expression, revealed several closely
regulated modules controlling DNA binding, the
mitochondrial envelope, and the mitotic cell cycle, all of which
are more strongly enriched in Mf (Supplementary Table S2).

As observed in the previous section, certain MAPK signaling
mechanisms potentially regulate the p53 pathway. Generically,
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the p53 pathway is operational in the presence of molecular
stresses and depends on their severity as well as other factors.
Cellular stress signals that activate a p53 response include
hypoxia, DNA damage, ribosomal and oxidative stresses,
among others (Joerger and Fersht, 2016). These stresses are, of
course, not independent of each other and manifest in an
interrelated manner. In the case of a P. knowlesi infection, this
interdependence can be seen in the enrichment of associated
genes. In particular, the enrichment analysis demonstrates that
ribosomal stress is a differentiating factor between the two host
species, with stress caused by substantial downregulation of the
ribosomal assembly complex in Mf (Figure 2C). This
downregulation is achieved through the activity of various
RNA polymerases (Supplementary Figure S5), and the
significant downregulation of PLOR1C, POLR2E, POLR2A,
POLR2J and POLR2L in Mf at TP4 suggests that these genes
might be crucial for the control of p53.

The downregulation of associated ribosomal proteins (RPs) in
Mf at TP4 (Figure 2B, Supplementary Figure S6) is indicative of
alterations in ribosomal biosynthesis that results in unassembled
RPs and 5S rRNA, which binds to the p53 inhibitors MDM2 and
MDM4 and thereby prevents p53 degradation (Golomb et al.,
2014; Haupt et al., 2019). As a consequence, p53 facilitates
translation from its mRNA internal ribosome entry site
(IRES). Indeed, the co-expression network analysis reveals
high correlation of MDM4 with SICAvar Type 1 transcripts,

which suggests direct control that might be crucial in this
regulation.

As a consequence of RP downregulation, the p53 pathway in
Mf is upregulated, which is reflected in higher levels of
enrichment. However, the less pronounced changes in cell
cycle arrest and DNA repair appear to be the strongest
differentiating factors between the two species. The
important genes involved in these processes include
CDKN1A (p21), E2F7, PML and MDM2 (upregulated) and
TP73 (downregulated).

Another facet of p53 pathway activation and control is
provided by the transcription factor HSF1 (heat shock factor
1). Dysregulation of ribosomal biosynthesis processes leads to
proteotoxic stress and a balance between these processes must be
maintained (Albert et al., 2019). In comparison to Mf, Mm has
higher ribosomal biosynthesis and senses higher proteotoxic
stress during the log phase of infection, and these processes
are further increased near the peak (Supplementary Figure
S7). Of note in this context is the differential expression of
chaperone-mediated protein folding genes—HSPA1A, HSPA8,
DNAJB1 and FKBP4. This expression results in upregulation of
HSF1 target genes in Mm. p53 has been shown to form multi-
chaperone complexes with HSPA1, DNAJB1 or HSPA8, while
FKBP4 is essential for its transport to the nucleus (Toma-Jonik
et al., 2019). Among the apoptotic targets, ATF3 enrichment at
both TP4 and TP5 in Mm highlights differences with Mf.

FIGURE 2 | Involvement of the p53 pathway. (A) Schematic of cause, regulation, and effect of p53 pathway activation during the log phase of a malarial infection.
The overall process includes key stress signals that engage the p53 regulation pathway and result in regulation of downstream events. (B) Barplot for log2 fold-changes
in the expression of ribosomal proteins between TP4 and baseline, comparing the two hosts. (C) Barplot for normalized enrichment scores (NESs) of stress signals
involved in p53 activation. (D) Barplot for normalized enrichment scores of p53 related downstream events.
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Finally, the control over cell proliferation in Mf is eased near
the peak, which leads to upregulation of adaptive immune cells
and, in particular CD4 memory activated and follicular helper
cells (Supplementary Table S7F), both of which enhance the
adaptive immune response by supporting B cells and CD8 T cells
(MacLeod et al., 2009; Crotty, 2014).

Effects of Inflammation on Immune
Response and Cell Proliferation
Control of cell proliferation in Mf during the log phase of
infection constitutes a stark contrast to the elevated
inflammatory response in Mm. This difference can be seen
clearly in the enrichment of several inflammatory pathways,
elevated expression of inflammatory genes, inflammasomes
and inflammatory biomarkers like the kynurenine (Kyn)/Trp
ratio (see Supplementary Figures S8–S10 and next section).
Co-expression analysis revealed that most of the inflammatory
genes are part of the innate immune module (FBX06 module).
Not surprisingly, this module is most significantly changed
(according to logistic regression) in both hosts during log
phase. Although the fold-change for this module is similar
between the hosts, the lower adjusted p value (q) and higher
log-odds (B) suggest a stronger role of this module in the innate
immune response in Mf (q < 3e-17/B > 32) in comparison to Mm
(q < 1e-10/B > 17). This module further highlights the differences
between the hosts near peak infection as Mm (q < 7e-7/B > 8)
maintains its immune response while Mf (q < 4e-5/B > 1) does
not. The neutrophil activation and intracellular vesicle transport
(FYB) module is most highly correlated to the innate immune
module (FBX06). Also, worth noting is that both these modules
are negatively correlated to ribosomal biosynthesis and
localization modules RPS19, ZNF395, CHD6 and RASGEF1A.
This finding implies an important, sustained balance between
immune related inflammation and control over the cell cycle.

Several similarities in inflammation gene sets are found
between the hosts, especially with respect to an LPS-like
inflammatory response, which probably is a symptom of the
NLRP3 inflammasome (Supplementary Figure S8A). This
phenomenon might be attributed to significant upregulation of
monocytes and monocyte-derived pro-inflammatory M1
macrophages (Supplementary Tables S7A,B), which are the
first-line cells expressing inflammasome genes (Awad et al.,
2017) (Supplementary Figure S10). Important differences are
detected in the inflammatory response cytokine production and
an antigenic stimulus (Supplementary Figure S8B). Even though
the positive regulation of these functions is similarly enriched in
the two hosts, as seen in the important genes NOD2, GPX1 and
IL12B, the negative regulation shows a distinct and opposing
enrichment. The main distinguishing genes include IL10, NLRP6
and ABCD1.

The two hosts show similar enrichment of the chronic
inflammatory response; however, Mm has a higher acute
inflammatory response (Supplementary Figure S8B),
reaffirming the stronger inflammation in Mm during log
phase. The chronic inflammation changes near the peak and is

mostly driven by crucial genes like IL10, IDO1, TNF, TNFAIP3
and CXCL13 (Supplementary Figure S9).

Exploration of innate immune components of inflammation
reveals a crucial difference in S100 proteins (Figure 3). Ca2+

sensing S100 proteins have a wide range of functionality that
includes cell apoptosis, proliferation and inflammation
(Figure 3B) (Fox and Man, 2019). Differential upregulation of
S100A8, S100A9, S100A16 and S100P in Mm suggests a potential
role of Ca2+ in inflammation (Wang et al., 2018b), while
upregulation of S100A4, S100A2 and S100A3 in Mf suggests
possible regulation of p53 (Figure 3D) (Pan et al., 2018; Boye and
Mælandsmo, 2010). Since neutrophils release S100A8/A9 during
inflammation, their differential expression mediates Ca2+

signaling, which positively regulates NLRP3 inflammasome
assembly and pro-inflammatory activity of NFκB (Figures
3B,C) (Wang et al., 2018c; Xia et al., 2018). This
inflammatory activity is further exacerbated by master
regulator DDX3X (Fox and Man, 2019). Further enrichment
of processes specifically associated with innate and adaptive
immune processes reveals an interesting pattern that succinctly
differentiates the responses of the two hosts. Namely, TLR4
signaling is stimulated by Ca2+ via S100 proteins (S100A8 and
S100A9), which enhances the inflammatory activity of the NLRP3
inflammasome. These inflammatory pathways are responsible for
IFNβ regulation and IL6 production. This finding directly
complements earlier findings of differential Ca2+ glutamate
GPCR activity (Section PRR signaling), which directly affects
the inflammasome assembly.

Further exploration of differences in immunological
signatures reveals several important similarities and differences
between the two hosts (Supplementary Figure S11). Both hosts
show significant enrichment towards FOXP3+ CD4+ naïve T-reg
cells (GSE37533 (Cipolletta et al., 2012), GSE42021 (Toker et al.,
2013)), with gene sets pointing to the strongest enrichment of a
thymic T-reg subset of intermediate maturation, CD24int. A
related important difference appears between the two hosts:
Mf has a higher mature (CD24low) subset while Mm has a
higher immature (CD24hi) subset. Both hosts have enriched
naïve B cells (GSE42724 (Covens et al., 2013)), even though
this change could not be confirmed by deconvolution analysis.
Differences can be seen in gene sets derived from IL6 and IL10
stimulation as well. Taken together, these signatures suggest
downregulation of key genes in Mf, which is not observed in
Mm. Important genes that seem to be regulating this process in
both Mm and Mf include IL6, IL6R, TGFB3, IL23A, IL10 and
SOCS3.

Although not conclusive, pre-infection state differences in cell
populations point to eventual differences in the immune
response. For instance, at baseline, Mm has significantly more
naïve CD4+ T cells while Mf has higher levels of neutrophils (Koo
et al., 2019) (Figure 1D, Supplementary Table S5C). Although
there is no significant relative difference in cell populations
during the log phase of infection between the hosts
(Supplementary Table S5E), these initial pre-infection
differences persist (Supplementary Table S5D) and may be a
key differentiating factor in the immune response.
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Changes in Tryptophan Metabolism
Suggests Higher NAD+ Metabolism
Metabolomic and transcriptomic analysis of the Mf and Mm
hosts revealed prominent differences in the expression of genes
associated with Trp metabolism at TP4 and TP5 (Figure 4). Trp
metabolism can coarsely be divided into pathways responsible for
serotonin and melatonin, Nicotinamide Adenine Dinucleotide
(NAD+) and Kyn synthesis. Serotonin and related compounds are
not of interest in the present context, and their concentrations in
blood are very low. NAD+ metabolism plays a crucial role in
cellular energy regulation as well as the handling of ROS. The Kyn
pathway is responsible for the biosynthesis of several metabolites
that play key roles in immunomodulation and inflammation.

Both hosts had lower Trp and higher Kyn levels in the
peripheral blood during the log and peak phases of infection
in comparison with baseline levels (TP1 and TP2), as observed
previously with P. coatneyi infection of rhesus macaques (Cordy
et al., 2019; Colvin and Joice Cordy, 2020). Of special note here,
however, is that the Kyn/Trp ratio, a known inflammatory
biomarker, is reduced in Mf near peak infection, whereas it
remains at the same level as during the log phase in Mm
(Figure 4).

IFNγ signaling is responsible for upregulating the expression
of IDO (Taylor and Feng, 1991; Sarkar et al., 2007; Banzola et al.,
2018), which converts Trp into Kyn (Figure 4A). Even though
IFNγ signaling is upregulated in both hosts, a higher degree of
signaling inMf near the log and peak phases results in higher IDO
expression, which thereby leads to a higher conversion of Trp to
Kyn in Mf than in Mm (Figure 4C). One might expect that this
increased activity should lead to a higher level of Kyn. Yet, we
observe lower levels of Kyn and a lower Kyn/Trp ratio in Mf
(Figure 4A), which however is easily explained by the increased
activity of the subsequent enzymes KYNU and KMO in the Kyn
utilization pathway, which ultimately lead to higher NAD+

biosynthesis and immunomodulatory activities. In addition,
earlier downregulation of AhR and AADAT in Mf suggests
potential differences in AhR signaling (see next section).

In order to elucidate the role of Trp andKyn levels in the blood and
then understand changes in Trp-Kyn metabolism in white blood cells
(WBCs) during the infection, we adopted existingmetabolicmodels of
Trp metabolism in brain and liver (Stavrum et al., 2013) and adapted
them to reflect Trpmetabolism inWBCs.With this adaptedmodel we
can clearly differentiate Trp-Kynmetabolism in blood from brain and
liver (Supplementary Figure S12). Themodel confirms that over 90%
of Trp in whole blood is channeled toward Kyn through the activity of

FIGURE 3 | (A) Schematic of the inflammasome assembly process. Various host and pathogen derived stimuli are responsible for initiation of the inflammasome
assembly process. This process is very closely regulated by various signals and processes including ROS and Ca2+. Several effectors execute important processes like
inflammation and apoptosis. Different effectors are activated during acute and chronic phases. (B) Detailed schematic of NLRP3 inflammasome signaling including the
initiation and regulation of the assembly process, followed by pro-inflammatory effectors. (C) Heatmap of genes involved with NLRP3 inflammasome assembly
process are similarly enriched between the two hosts. (D) Balance and cross-regulation of p53 and NFκB showing importance of Ca2+ homeostasis.
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IDO, compared to tryptophan-2,3-dioxygenase (TDO) in the liver
model. Kyn itself is the substrate for different reactions, and flux
control analysis (Fell, 1992; Fell, 2007) reveals that KMO is the most
important control point for Kyn utilization. Extension of the blood
model during the log phase of the infection shows for both host species
that the transport of both Trp and Kyn through the cell membrane is
lowered in comparison to the baseline (Figure 4). This finding is
interesting as it potentially leads to serum levels of Trp and Kyn in
both hosts that change significantly during this phase and lead to a
higher Kyn/Trp ratio (Figure 4). At the same time, these increases are
accompanied by a major reshuffling of fluxes, which affects the
metabolite concentrations inside the cells.

Specifically, Trp can be metabolized through six reactions,
among which the pathway toward Kyn is most important, based
on relative fluxes (Figure 4A). Indeed, if the Trp concentration
inside the cells is decreased, the effluxes out of the Trp pool are
also decreased, with the notable exception of the Kyn pathway,
which receives essentially a normal influx from Trp. This flux is
important, because the pathway later leads to the formation of
quinolinic acid, which is a precursor of NAD+ and thus affects
energy metabolism and redox handling. At this juncture, the
differential expression of KMO becomes even more important as
a control point for Trp metabolism: here, it causes a higher flux in
Mf toward NAD+ synthesis (Figure 4C). This enhanced flux from
Trp to Kyn is compensated in both species by decreased fluxes
from Trp toward protein synthesis and serotonin production
(Supplementary Figure S13).

Near the peak of infection, the differences in the two hosts are
particularly pronounced, with Trp and Kyn transported through the
cellmembrane at higher rates inMf than inMm.As a result, the fluxes
through the Kyn pathway are higher in Mf (Supplementary Figure
S14). At the same time, the Kyn/Trp ratio is lower in Mf during this
phase of the infection, presumably due to the enhanced activity of
KMO (Figure 4A). It is also worth noting that the higher flux toward
NAD+ metabolism persists in Mf (Figure 4C). Furthermore, the
concentrations of other Kyn compounds remain high, and these are
potential ligands of the AhR (see next section), which ultimately serves
as a transcription factor for numerous genes (Figure 4B).

Among the other effluxes out of Trp, the indole-pyruvate and
tryptamine pathways are also responsible for AhR activation
(Hubbard et al., 2015; Roager and Licht, 2018) (next section).
Trp is incorporated into proteins via tryptophanyl-tRNA
synthestases (WARS proteins), a process that directly links
Trp sensing to p53 activation (Yu et al., 2021). Changes in
these fluxes during infection further show the central role of
Trp metabolism (Supplementary Figures S16A,B).

Aryl Hydrocarbon Receptor Signaling and
the Role of the Aryl Hydrocarbon Receptor
Repressor in Controlling Aryl Hydrocarbon
Receptor and HIF1A Signaling
AhR belongs to the basic helix–loop–helix-PER-ARNT-SIM
(bHLH-PAS) superfamily of transcription factors where

FIGURE 4 |Metabolomics (LC-MSmeasurements) andmodel predictions for tryptophanmetabolism. (A) LC/MSmeasurements for Trp, Kyn and the Kyn/Trp ratio
across infection timepoints, comparing Mm and Mf. (B) Fluxes predicted by Trp model for Trp consumed and Kyn produced by blood cells. (C) Flux towards NAD
metabolism predicted by the Trp model.
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multiple other members interact with each other and therefore
affect each other’s functionality. Prominent members include
AhRR, ARNT and HIF1α (Supplementary Figure S15).

Most of the biologically active intermediates of the Kyn
pathway, as well as several other compounds, can act as
ligands for AhR (Murray et al., 2014; Gutiérrez-Vázquez and
Quintana, 2018) (Figure 4B, Supplementary Table S6), which
makes this receptor a central control point for multiple
physiological changes, e.g., in heme degradation, hypoxia and
Trp metabolism. Once a ligand binds, AhR can form a complex
with the nuclear transporter ARNT, which is translocated to the
nucleus. Once in the nucleus, the AhR-ARNT complex binds to
the ARE promoter region of numerous genes.

Different Kyn derivatives may act as ligands for AhR, and their
dynamics differentiates the Mf and Mm hosts during infection.
Additionally, IL4I1 activity leading to indole-pyruvate derivatives
from Trp synthesis activates AhR (Zhang et al., 2020). Similarly,
multiple other ligands have been associated with AhR activity,
and some of these may constitute further differences between the
two host responses (Supplementary Figures S16C–F). For
instance, Plasmodium’s consumption of hemoglobin releases
heme, which is metabolized (Supplementary Figure S17).
Certain AhR ligands that are derived from heme metabolism
(Kapitulnik and Gonzalez, 1993; Phelan et al., 1998) may point to
additional differences between the two hosts.

Another level of control of AhR signaling occurs through the
competition between AhR, AhRR and HIF1α for ARNT and thus
for transport into the nucleus and binding to their corresponding
response elements. Given the molecular similarity of the
competitors, it is not surprising that most of the downstream
genes are simultaneous targets of both the AhR-ARNT and the
HIF1α-ARNT complexes (Supplementary Table S7A).

Exploring these targets through an enrichment analysis shows
that both complexes act quite similarly during log phase
(Supplementary Figure S18B, TP4). Yet, several differences
emerge near the peak of infection (Supplementary Figure
S18B, TP5). The most pronounced differences emerge with
respect to higher upregulation of AhR targets and HIF1α
targets in Mf, while targets of the AhR repressor AhRR are
downregulated in Mf. It appears that the relative hypoxia
stress is quite different between the two hosts (Supplementary
Figure S19), but it is unclear how the balance is achieved between
these complexes and their corresponding genes.

To shed light on the interference among these complexes, many
of which share numerous common targets, we calculated
enrichment of each subset of these targets (Supplementary
Figure S18). Specifically, we divided the targets into three major
groups (AhR targets, HIF1α targets, and AhR and HIF1α targets)
and compared them with and without the AhRR binding site to
account for repressor activity (Supplementary Figure S18A).

The effect of AhRR on AhR targets is quite clear in Mf, with
lower enrichment of targets at both TP4 and TP5, as opposed to
almost no effect in Mm. Corresponding effects of AhRR on
HIF1α targets are not easily identified. At TP4, HIF1α targets
with the AhRR binding site are more enriched than without
AhRR. At TP5, AhRR containing HIF1α targets are enriched
more in Mm and less in Mf.

As there are multiple levels of regulation, it is difficult to predict
the activity of these targets without further experimentation.
However, one may try to elucidate the specific functionality of
these targets by identifying the key genes along with their
functional annotation. The transcription factor complexes in
question are associated with a wide range of genes with diverse
functionality (Figure 4). Functional annotation of AhR and HIF1α
targets shows their involvement in key process like the p53
pathway, heme metabolism, cell cycle related pathways, and
immune related IFNγ and NFκB pathways (Supplementary
Table S7B). The complex nature of this response makes it
difficult to elucidate the specifics and differences during a P.
knowlesi infection, but the activity of individual genes suggests
potential outcomes. Their roles in immune and inflammatory
processes are evident in the activity of genes like OASL, STAT3,
IRF5, IL6, DDIT4, NRF2, REL, and LAG3. These IFNγ signaling
genes create a positive feedback loop, because IFNγ directly
regulates IDO expression, which leads to enhanced levels of the
AhR ligand Kyn. The control over cell proliferation is evident in the
operation of p53 and other cell cycle related genes likeMXD1, FOS,
BCL6, GADD45A, and CREBRF. Another possible contributor
with respect to malarial infection is heme metabolism with target
genes including CCND3, BLVRB, and KLF1.

DISCUSSION AND CONCLUSION

Malaria has haunted mankind throughout its history. Even after
several decades of active research, malaria continues to be a severe
global health concern with over 400,000 fatalities and about 3.2
billion people at risk annually. Among the six species of
Plasmodium known to cause malaria in humans, P. knowlesi
has become recognized as a major zoonosis in Southeast Asia
(Cox-Singh, 2012; Barber et al., 2017; Zaw and Lin, 2019; Raja
et al., 2020). A P. knowlesi infection in humans may range from
mild to severe, with 6–10% of the cases considered severe (Singh
et al., 2004; Daneshvar et al., 2009). A deeper knowledge of the
details of P. knowlesi infections can be expected to provide a
crucial basis for understanding the immune responses in general
and for comparing resilient and severe malarial responses in
particular. As a zoonotic species, P. knowlesi has the advantage
that it can be studied in different NHP species (Pasini et al., 2018;
Peterson et al., 2021). Among these NHP models, Macaca
mulatta (Mm) and M. fascicularis (Mf) provide unique
advantages specifically for comparing P. knowlesi infections
with different disease progression. Namely, even though Mm
and Mf are evolutionarily very close, Mm, once infected, suffers
from increasing parasitemia, which is in almost all cases fatal if
not treated, whereas Mf controls parasitemia and escapes death
without treatment (Knowles and Gupta, 1932; Napier and
Campbell, 1932; Peterson et al., 2021). These dramatic
differences provide unparalleled opportunities to study the
details of host physiology and immune responses in the
context of host-parasite interactions and explore mechanisms
of resilience in human malaria, and to potentially relate the
findings to other diseases that may also show drastically
different possible outcomes.
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In previous work, we had established crucial differences in the
transcriptomics of the two hosts that ultimately determines the
outcome in terms of susceptibility and resilience (Gupta et al.,
2021). As also noted in the clinical assessment by Peterson et al.
(Peterson et al., 2021), transcriptomics analysis showed that Mf
detects the pathogen earlier than Mm, and even though both host
species mount a similar immune response, Mf starts controlling
inflammation as early as the log phase of infection (Gupta et al.,
2021). Subsequently, Mf switches the immune response towards
cell proliferation pathways, which presumably aids recovery
(Gupta et al., 2021). The current analysis explores the key
findings further and explains the molecular functions that
determine the mild or fateful outcome. Interestingly as well,
early detection of the parasites by the Mf animals is also
consistent with a rise in temperature in this species
immediately upon patency, by seven dpi (Peterson et al., 2021).

The current results show consequential differences in signaling
mechanisms beginning with the early detection of the presence of P.
knowlesi pathogens by Mf. Once the merozoites invade the RBCs,
they transform the iRBC and express different antigenic forms of
surface molecules in an attempt to escape the immune response
(Brown and Brown, 1965; Howard et al., 1983; Biggs et al., 1991).
Specifically, antigenic variation of P. knowlesi SICA proteins is a
main factor responsible for chronicity in Mm (Brown and Brown,
1965) (reviewed in Galinski et al. (2018)). Moreover, expression of
SICAvar genes in P. coatneyi have been shown to change as chronic
rhesus monkey infections are established, also suggesting a role for
metabolites in regulating these changes (Cordy et al., 2019). Our
correlation analysis of host and pathogen transcripts sheds light on
possibly involved SICAvar Type 1 genes (al-Khedery et al., 1999;
Pain et al., 2008; Lapp et al., 2018) along with correlated host genes.
The specific correlations of individual transcripts from this large
pathogen gene family—with 136 SICAvar members (Lapp et al.,
2018)—could shed light on its transcripts and their variable gene
expression, which may trigger different antibody responses.
Additionally, correlations with host genes, especially the
differentially responding IL10 and HSPA6 genes, can help
associate parasite markers with the host immune response.

On the host side, differences in the mechanisms for pathogen
detection and PRR signaling pathways are surprisingly subtle.
However, these differences are magnified downstream with
MAPK signaling. There is a close relation of these signaling
cascades, especially the GPCR activity with the p53 pathway and
cell cycle (Zhang and Liu, 2002; Goldsmith and Dhanasekaran,
2007; New and Wong, 2007). Ca2+ drives intracellular
communication and interacts with GPCR to regulate various
aspects of the cell cycle, and by extension, regulates
inflammation and apoptosis during infection. This regulation is
even further augmented by inflammasome activity (Figure 5).
Specifically, some of the Ca2+ binding S100 proteins (S100A8,
A9 and A4) might be differentiating factors between the two
hosts. While S100A8 and S100A9 aid the inflammasome
assembly, S100A4 assists with the regulation of the p53 pathway.
Additionally, the inflammasome assembly process is regulated by
multiple other factors including ROS, IL10 and transcription factor
AP-1. These factors do not only relay the stress response but also
seem to be important in regulating the p53 pathway.

The most strongly differentiating factor between the two
species appears to be the control of cell proliferation by Mf
during log phase via the p53 pathway, along with subsequent
inhibition that leads to recovery. Similar stresses can trigger
both inflammation and cell proliferation, but it appears that it is
the stress related to fundamental ribosomal assembly that causes
the inhibition of cell proliferation in Mf through the p53
pathway. Several upstream kinases have been shown to cause
this stress. Since ribosomal assembly is one of the most energy
intensive functions, inhibition of this fundamental function to
conserve energy seems likely (Albert et al., 2019). Of course, that
is not the sole purpose. In particular, we observe that ribosomal
assembly leads to differences in p53 based cell cycle arrest and
DNA repair in Mf. The interrelatedness of this pathway with
p21, AP-1 and HSF1 activity provides additional regulators that
might be responsible for balancing cell proliferation with
inflammation.

Another known inflammation biomarker, the Kyn/Trp ratio,
shows surprisingly deep integration with these processes. Even
though the induction of IDO in malarial infection is quite often
discussed (Sanni et al., 1998; Hansen et al., 2000; Tetsutani et al.,
2007; Colvin and Joice Cordy, 2020; Santos et al., 2020), its biological
significance for the immune response is in general poorly
understood. Nonetheless, a mathematical model of the direct
upregulation of IDO through IFNγ signaling quite clearly shows
how the Kyn/Trp ratio changes during the infection (Figure 5). This
metabolic model is able to shed light on several important, although
indirect implications, such as the importance of KMO and KYNU in
regulating fluxes, redirection of fluxes towards NAD+ metabolism,
and metabolite pools of kynurenine compounds as ligands for AhR.
In summary, Trp metabolism diverts the fluxes towards the essential
functions, and especially NAD+ metabolism and protein synthesis.
The higher activity in Mf also indicates that this host maintains
essential functions in spite of the inflammation. Further analysis into
the kynurenines shows an impactful control of AhRR in regulating
both AhR and HIF1α related signaling. This process includes a
competitive effect ofmultiple stresses, hypoxia and infection induced
damage and cytokine response in determining the overall outcome.

Although this analysis dives deep into multiple molecular
mechanisms that play crucial roles in permitting resilience of the
host, it only paints a crude image of the immune response over time.
For example, a more detailed longitudinal and immunologically
based analysis of SICAvar gene expression and switching of SICA
proteins in each host (and with different parasite species (Cordy
et al., 2019)) is likely to advance our understanding of the different
antibody responses and immune evasion mechanisms (reviewed in
Galinski et al. (2018)). The combined analysis of immune response,
inflammation and cell proliferation also seems to reveal Ca2+ as a
crucial factor, which is known to play a role in iRBC egress
(Glushakova et al., 2013). If this general finding can be validated
and cross referenced with other bacterial and viral infections (Tran
Van Nhieu et al., 2018; Chen et al., 2019; Crespi and Alcock, 2021),
improved understanding of Ca2+ homeostasis might lead to novel
targets that could naturally aid the immune response against
Plasmodium infection. Similarly, the metabolic model we
employed, adjusted for transcriptional changes during the
infection, provides a deeper appreciation of the mechanisms of
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Trp metabolism and could possibly be extended to identify targets
that could predictably adjust metabolism to aid in resilience.

Overall, this work interprets transcriptional data and
integrates them in a manner that provides deeper
understanding of Plasmodium infections. It is hoped to suggest
new avenues of studying malaria and identifying valid candidates
for future drug development.

METHODS

Experimental Setup and Data
Pre-Processing (Ribonucleic Acid Seq/
LC-MS)
The analysis described here expands on previously published
studies (Gupta et al., 2021) with details about individual
processes. Briefly, four male Mm and seven male Mf were
infected with P. knowlesi sporozoites. Peripheral blood samples
were extracted before (baseline) and after inoculation with
sporozoites (pre-patent—TP3, log-phase—TP4 and peak-
phase—TP5). These blood samples were used for
transcriptomics and metabolomics analysis (Supplementary
Figure S1).

To assess the transcriptome, samples were sequenced using
Illumina Hi-seq 3,000, mapped using STAR and normalized
using DESeq2. Details of the process were previously
published in Gupta et al. (2021).

For metabolomics analyses, plasma samples were quantified
using the AbsoluteIDQ p180 kit (Biocrates Life Sciences AG).
Specifically, the metabolites were quantified using SCIEX Exion
LC and a QTRAP 5500 mass spectrometer in only positive

ionization mode with each sample injected using a separation
column. Specific details of the process can be found with the
corresponding submissions of MaHPIC data to PlasmoDB
(https://plasmodb.org/plasmo/app/static-content/PlasmoDB/
mahpic.html) with the Mm dataset available at MTBLS824 and
the Mf dataset at MTBLS822 from the MetaboLights repository.

Enrichment Analyses
Differential expression (DE) of genes was calculated using
DESeq2. Genes with low read counts were removed from
analysis. The genes were modeled using the design—Species +
TimePoint + Species:TimePoint and DE was calculated using
Wald’s test.

Gene set enrichment analysis was performed using the GSEA
toolkit (version 4.0) of the Broad Institute. The gene sets used for
the analysis were Hallmark (Liberzon et al., 2015), Reactome
(Jassal et al., 2020), ImmuneSigDB (Godec et al., 2016) and Gene
Ontology (Ashburner et al., 2000; Gene, 2021). The pre-ranked
GSEA module of the toolkit (Subramanian et al., 2005) was used
for the analysis, and all genes were ranked based on inverse of
adjusted p-values and the sign of fold changes. Files of custom
gene sets (gmt files) were created using R to contrast enrichment
scores between comparable data sets. To compare gene sets across
the two species and account for representation bias in individual
gene sets, rank scores for all genes were used to calculate
enrichment scores (ES), which were adjusted by normalization
of gene set sizes. Gene sets with small (<15) and large (>500)
overlaps were filtered out. This normalized enrichment score
(NES) was used to contrast various gene sets.

Enrichment analysis for targets of AhR, AHRR and HIF1A
was performed similarly to the method described above. The gene

FIGURE 5 | Tryptophan metabolism. (A) Schematic showing key features of tryptophan metabolism. (B) Schematic showing AHR signaling. (C) Heatmap of
differential expression of significant genes involved in tryptophan metabolism comparing the two hosts across TP4 and TP5.
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sets for target genes for each were created using ChIP-Atlas (Oki
et al., 2018) with ±5 Kb overlap with the transcription start site.
NES values for each subset described in the Results were
calculated with the method described above.

Weighted Gene Co-Expression Network
Analysis
Weighted gene co-expression network analysis (WGCNA) was
performed using the WGCNA package (version 1.70–3) (Zhang
and Horvath, 2005; Langfelder and Horvath, 2008) in R to
describe correlation patterns among genes. The analysis was
performed in multiple ways to serve different purposes. The
differences arose in the subsets of samples in datasets used for
each analysis. First, for co-expression networks with both host
and pathogen genes, only infection TPs (TP4 and TP5) were used
for both hosts, as there are no pathogen transcripts at baseline and
TP3. Next, to differentiate host-specific differences, subsets of
each host for different infection TPs were used. Finally, all TPs for
both hosts were used with host-only genes to form co-expression
networks among host genes.

WGCNA analysis begins with creation of a Pearson
correlation matrix of the expression of all gene pairs. These
were used to filter highest correlated pairs where required.
This step was followed by the creation of an approximately
scale-free adjacency matrix, using a power function. The soft
threshold parameter (B) for the power function in each case was
determined based on the criterion of approximate scale-free
topology, as described in the software manual (Langfelder and
Horvath, 2008). The topological overlap matrix (TOM) was
calculated to quantify the degree of overlap in shared
neighbors. Finally, modules were created using a dynamic tree
cut algorithm in WGCNA. To characterize each of the modules,
module eigengenes and GO annotations were calculated. To
calculate the similarities between various modules, Pearson
correlation between eigengene vectors was used.

Deconvolution of Cell Populations
Cibersortx (Newman et al., 2019) was used to analyze gene
expression data to obtain an estimation of abundances of
individual cell types from mixed cell populations in the
various blood samples. The LM22 signature matrix (Newman
et al., 2015) was used as a cell type reference profile. Previously
DESeq2 normalized expression data for all samples were used to
estimate the abundances of the 22 cell types from whole blood.

To contrast various groups, the lmFit function (limma package)
in R was used to model the cell populations as Species + TimePoint
+ Species:TimePoint and the eBayes function was used to compute
log fold changes, t statistics, p-values and adjusted p-values, using
the Benjamini–Hochberg method.

Dynamic Modeling of Tryptophan
Metabolism
To understand the implications of transcriptomic changes during
P. knowlesi infection, we used a well-established tryptophan
metabolic model (Stavrum et al., 2013) and adjusted its

parameters to represent changes in enzymatic activities in
accordance to changes in the expression of corresponding
genes (Tang et al., 2018).

The model was originally developed for liver tissue and had to
be adapted for blood. Due to the lack of tissue specific enzyme
concentration data, we used gene expression data for individual
tissues (in this case blood vs liver data from the GTEx project
(Consortium, 2013)) to form a crude estimate of enzymatic
concentration. Each reaction rate v in the model is described
with the Michaelis-Menten rate function

v � Vmax. S
Km + S

(1)

where Vmax is the maximum reaction rate, S is the substrate
concentration andKm is theMichaelis constant. According to our
assumption of proportionality between gene expression and
enzyme activity (Tang et al., 2018), Vmax is a function of
enzyme concentration and enzymatic turnover Kcat. Since
enzyme concentration is difficult to calculate, mRNA levels
were used as approximate quantities:

Vmax � F.mRNA.Kcat (2)
Here, F is a factor that converts expression values into enzyme
concentrations and mRNA is the measured expression.

Once the parameters were updated, the model was simulated
to a steady state to obtain baseline metabolite concentrations and
fluxes for the blood model.

Next, the kinetic parameters were updated by a factor
corresponding to the fold change in gene expression in order
to obtain the appropriate enzymatic activity, similar to Eqs. 1 and
2. For each case, the model was simulated to the steady state of all
metabolite concentrations and fluxes were used for comparison of
different scenarios.

For flux control analysis (Wildermuth, 2000) (Eq. 3), the
control coefficients were calculated as

CS
vi
� d ln J

d ln vi
(3)

whereCS
vi
is the flux control coefficient for the pathway flux Jwith

small changes in enzyme activity vi of step i.
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