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Simple Summary: The issue of spatial and temporal heterogeneity of high-grade serous ovarian
cancer (HGS-EOC) has hampered the possibility to shape the molecular portrait of relapsed disease,
which ultimately impacts our ability to develop a more rational second-line treatment. Liquid biopsy
offers the unique opportunity to track tumor evolution over time and infer the dynamic changes of
tumor clonal architecture. Differently from other tumors, no actionable driving lesions characterize
HGS-EOC, thus genome-scale analysis like whole-exome sequencing is not compatible with the
clinical turnaround time. In the present work, we provided a novel framework based on the analysis
of both qualitative and quantitative features of circulating tumor DNA (ctDNA) in order to identify,
at the time of molecular relapse, the early genetic vulnerabilities that will characterize the clinical
recurrence and thus be amenable of a more rational second-line treatment.

Abstract: We have previously demonstrated that longitudinal untargeted analysis of plasma sam-
ples withdrawn from patients with high-grade serous ovarian cancer (HGS-EOC) can intercept the
presence of molecular recurrence (TRm) earlier than the diagnosis of clinical recurrence (TRc). This
finding opens a clinical important temporal window to acquire through plasma sample analysis
a real-time picture of those emerging molecular lesions that will drive and sustain the growth of
relapsed disease and ultimately will confer resistance. In this proof of principle study, the same
genomic libraries obtained at the diagnosis (T0), TRm and TRc were further analyzed by targeted
resequencing approach to sequence the coding region of a panel of 65 genes to provide longitudinal
analysis of clonal evolution as a novel strategy to support clinical decisions for the second-line
treatment. Experiments were performed on plasma and tumor tissues withdrawn on a selection of
previously analyzed cohorts of cases (i.e., 33 matched primary and synchronous lesions and 43 plasma
samples from 18 patients). At T0, the median concordance of mutations shared by each tumor tissue
biopsy and its matched plasma sample was 2.27%. This finding confirms the limit of a single tumor
biopsy to be representative of the entire disease, while plasma analysis can recapitulate most of the
main molecular lesions of the disease. A comparable scenario was observed during longitudinal
analysis, where, with the exception of the TP53 gene and germline mutations in BRCA1/2 genes, no
other gene shared the same locus specific gene mutation across T0, TRm and TRc time points. This
high level of temporal heterogeneity has important implications for planning second-line treatment.
For example, in three out of 13 cases, plasma ctDNA analysis at TRm or TRc reported acquired novel
variants in the TP53BP1 gene not present at T0. In particular, patient 21564, potentially eligible for
PARP-inhibitor (PARPi) treatment at the time of diagnosis (BRCA1 c.5182delA mutation), would
unlikely respond to these drugs in second-line therapy due to the presence of eight distinct TP53BP1
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variants in plasma samples collected TRc. This study demonstrates that liquid biopsy provides a
real-time molecular picture to intercept those actionable genetic vulnerabilities or drug resistance
mechanisms that could be used to plan a more rational second-line treatment.

Keywords: high-grade serous ovarian cancer; liquid biopsy; targeted resequencing

1. Introduction

High-grade serous epithelial ovarian cancer (HGS-EOC), the most common and lethal
subtype of ovarian cancer, is a systemic disease often diagnosed when multiple metastatic
lesions (i.e., synchronous lesions) have already disseminated in the abdominal cavity (stage
III–IV). Although approximately 80% of cases are initially responsive to platinum (Pt)-based
chemotherapy, the majority of them relapse with a progressive Pt-resistant disease. One of
the most challenging issues that hampers the possibility to effectively treat the relapsed
disease is the lack of biological information about tumor recurrence. To date, the Pt-free
interval (PFI), an empirical measure of the time lagging between the end of front-line
chemotherapy and relapse, is the only and widely accepted parameter to predict patient
outcome and sensitivity to Pt second-line chemotherapy [1].

Longitudinal acquisition of multiple tissue biopsies is clinically impracticable, and
this limits the possibility to develop second-line treatments based on the knowledge of
acquired tumor molecular architecture.

The use of liquid biopsy has emerged as an attractive non-invasive tool able to over-
come this issue, allowing to monitor tumor evolution over time. Particularly, the analysis
of circulating tumor DNA (ctDNA) isolated from plasma in the pool of circulating free
DNA (cfDNA) has been proven to be a successful approach in anticipating recurrence and
in predicting therapy response [2–4]. ctDNA, defined as the fraction of tumor-released
DNA fragments, is shed by the tumor cells as a result of apoptosis, necrosis and active
secretion processes [5] and can be detected and quantified in cfDNA through the research
of genetic alterations that are specific for cancer tumor cells [6]. The analysis of ctDNA
has been extensively studied in cancer patients as it represents an alternative to tissue
biopsies for the analysis of the dynamic changes that occur in the genome between primary
tumor and/or relapsed disease [7–12]. Moreover, as ctDNA can be obtained through a
non-invasive procedure, the longitudinal plasma collections during treatment of follow-up
allow a real-time monitoring of drug response and risk of relapse in several cancer types,
making it an ideal biomarker [9,10]. Differently from other solid tumors, the development
of liquid biopsy in the clinical setting of HGS-EOC has been limited till now [13,14].

The majority of the HGS-EOC genome is characterized by marked chromosomal
instability and, with the exception of the TP53 gene, no other clonal driver mutations are
known [15]. These features have shifted the focus of liquid biopsy towards developing
an untargeted approach versus a targeted one. Recently, we have demonstrated that the
low-pass whole-genome sequencing (sWGS) approach is a suitable tool to intercept the
early molecular traces of the relapsing disease in the plasma of patients with a diagnosis of
HGS-EOC [2]. The calculation of tumor fraction (TF) allowed us to anticipate the diagnosis
of the relapsed disease by almost 240 days (range: 39–491) compared to conventional
biochemical (CA-125) and radiological (transvaginal sonography) tools [2]. Unfortunately,
TF provides only quantitative information of the amount of ctDNA with no qualitative
information on the genomic features of the emerging resistant clones, i.e., presence of novel
actionable vulnerabilities or somatic variants that could confer resistance/sensitivity to
frontline therapy.

In this proof of concept study, we have developed a two-step workflow in which
targeted resequencing libraries generated previously from sWGS were interrogated at
the time of molecular/clinical recurrence (TRm and TRc, respectively) to get quantitative
information of the genomic feature of relapsed disease. This workflow has the advantage to
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derive quantitative and qualitative genomic information from a single plasma withdrawal,
with a considerable cost-benefit advantage.

2. Materials and Methods
2.1. Patient Selection

A longitudinal retrospective cohort of 18 HGS-EOC patients derived from a larger
group of 46 patients previously analyzed [2] was selected for this study (Supplementary
Table S1). The CONSORT diagram depicted in Supplementary Figure S1 describes the
process of case selection. Particularly, all included patients received a diagnosis of advanced
stage (stage III/IV) HGS-EOC according to the International Federation of Gynecological
and Obstetrics (FIGO) classification guidelines [16] and underwent debulking surgery at the
Obstetrics and Gynecology Department of San Gerardo Hospital (Monza, Italy). After the
local scientific ethical committee approval and the obtainment of written informed consent
from all enrolled patients, a total number of 33 biopsies derived from both primary tumor
masses and synchronous lesions and 43 plasma samples were included for the purposes of
this study. The study has been carried out following the Declaration of Helsinki.

2.2. Tumor DNA and cfDNA Library Preparation

Targeted re-sequencing analysis was performed on sWGS libraries generated from
DNA purified from both single-spot tumor biopsies and matched plasma samples, as
previously described [2]. Briefly, 1000 ng derived from twelve barcoded sWGS libraries
(approximately 80 ng per sample) were pooled together and hybridized for 16 h with
custom probes covering the entire coding regions of 65 preselected genes. The complete list
of selected genes is reported in Supplementary Table S2. Capture probes were designed
using a free tool (Hyper Design, Roche. Basel, Switzerland) and optimized in order to have
100% coverage in the regions of interest (SeqCap EZ, Roche. Basel, Switzerland). Following
the manufacturer’s instructions, final libraries were generated, their amount assessed using
a fluorescent dye (HS dsDNA Qubit, Life Technologies, Carlsbad, CA, USA), and library
size distribution evaluated by exploiting Tape Station 4200 (Agilent Technologies, Santa
Clara, CA, USA). Libraries were then sequenced on a sequencing platform (NextSeq500,
Illumina, San Diego, CA, USA) to reach a mean of coverage of 7000× for each sample.

2.3. Sequencing Data Analysis

Raw reads were aligned to the reference genome (hg38) with BWA [17]. A size selection
filter was applied on aligned reads to only include cfDNA and exclude potential artifacts [2].
Variant calling was performed with MuTect2 [18] and VarDict [19]. Then, results from both
callers were merged into a single unified call set. When analyzing plasma samples, variant
calling parameters were adjusted to improve sensitivity, in particular, variant filtering from
VarDict [19] was adjusted to include very low (<1%) fraction variants. Called variants were
annotated with the Variant Effect Predictor (VEP) [20] and loaded into a custom in-house
database for further processing.

2.4. Variant Filtering and Prioritization

To remove sequencing and library bias artifacts, an aggressive filtering strategy was
employed. Firstly, sample-specific variant allele fraction (VAF) thresholds were defined
as the known tumor fraction (TF) (as published in Paracchini et al. [2]) increased by 5% to
account for sequencing errors. Secondly, only variants with at least five supporting reads
were selected, and likely germline variants were removed, as previously described [21],
and those present in the general population (>1%) were also excluded.

To exclude library artifacts, which appear as apparent insertions and deletions, we
removed all variants which satisfied these criteria:

• deletion of one base upstream of a repeated sequence of at least 3 of the same nucleotides;
• insertion of one or two bases upstream of a repeated sequence of at least 3 of the

same nucleotides;
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• single-nucleotide variant with flanking repeated sequences of at least 3 nucleotides;
• inframe insertion/deletions of repeats occurring at least twice upstream or down-

stream to the variant locus;
• frameshifts affecting more than 60% of the sample cohort.

To identify putative pathogenic variants, the data were uploaded to the Cancer
Genome Interpreter [22] to determine their tumor driver status. CGI results were fil-
tered to only include known driver variants, variants with high confidence (“tier 1”), and
variants with medium confidence but supporting evidence (“tier 2”). Oncoprints were
drawn using CoMut [23].

2.5. Jaccard Similarity Score

In order to define the concordance of variant calls between pairs of plasma sample in
each patient, we calculate the Jaccard score, defined as follows:

Jaccard scorea,b =
variant callsa

⋂
variant callsb

variant callsa
⋃

variant callsb

considering as overlapping variants those with the same locus, base change and annotation.

2.6. Lolliplots

Lolliplots were done with the trackViewer R package [24]. Protein domains were
retrieved from the protein database of the EMBL-EBI Pfam [25]

3. Results
3.1. Cohort Description

A retrospective cohort of 18 patients with a histologically confirmed diagnosis of
HGS-EOC was selected for this study. The main clinical, pathological, and demographic
information of patients enrolled are reported in Table 1 and were as previously described [2].
Briefly, the entire cohort is composed of 33 snap-frozen tumor biopsies—with a mean of
two synchronous biopsies per patient—collected during the debulking (61%) or interval
surgery (39%) and 43 plasma samples collected at the time of diagnosis (T0) and during
patients’ follow-up.

The study design is schematically reported in Figure 1. Briefly, the entire cohort was
divided into two subsets, named from now onwards as cohort A and cohort B, to achieve
the two following aims: (i) to quantify at T0 the spatial heterogeneity between ctDNA and
tumor DNA (cohort A); (ii) to evaluate ctDNA temporal heterogeneity and the extension to
which it impacts on second-line therapeutic options (cohort B).

As detailed in Supplementary Table S1, cohort A is composed of 12 patients naive to
chemotherapy for whom at least one primary and synchronous tumor lesion with matched
plasma samples were available. Cohort B includes only plasma samples withdrawn from
the 18 patients enrolled in the study. For each patient, we have at least two plasma samples
longitudinally collected during patients’ follow-up. Particularly, for cohort B plasma
samples were collected: (i) at the time of diagnosis or at the first time available during
patients’ follow-up (n = 3, Supplementary Table S1); (ii) at the time of TRm (defined as 20%
of increase in the percentage of TF compared to the previous point) [2] and/or (iii) at time
of TRc.
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Table 1. Clinical, pathologic, and demographic features of cases enrolled in the study 1.

Annotations

Number of patients 18
Median age (years) 64
Age range (years) 48–79

Follow-up time years (range) 3 (1–5)
Histologic type (%)

Serous 18 (100)
FIGO classification (%)

III NA -
III A -
III B 1 (5)
III C 11 (61)
IV 6 (34)

Pt status (%)
Sensitive (PFI > 12 mos.) 11(61)

Partially Sensitive (6 mos. < PFI ≤ 12 mos.) 7 (39)
Resistant (1 mo. < PFI ≤ 6 mos.) -

Refractory (PFI ≤ 1 mo.) -
NA -

Chemotherapy (%)
NACT 7 (39)

CT 11 (61)
Line of chemotherapy (%)

I 3 (17)
II 7 (38)
III 2 (11)
IV 6 (34)

BRCA germline status (%)
BRCA1 mut 4 (22)
BRCA2 mut 1 (6)
BRCA1/2 wt 9 (50)

NA 4 (22)
Total number of tumor biopsies 33
Total number of plasma samples 43

Number of plasma samples at
different time points (%)

T0 15 (35)
T1 3 (7)

TRm 13 (31)
TRc 11 (25)

TRm = TRc 1 (2)
1 The table summarizes the main clinical, pathologic, and demographic features of patients enrolled in this study.
Mut, mutant. Wt, wild-type. T0, time of diagnosis. T1, first time available after diagnosis (mean: 12 months after
T0). TRm, time of molecular recurrence. TRc, time of clinical recurrence. PFI, Pt-free interval. Mo(s)., month(s).
NACT, neoadjuvant chemotherapy. CT, chemotherapy.

3.2. Mutational Landscape of Matched Tissues and Plasma Samples in HGS-EOC Patients

Targeted resequencing analysis was performed on an arbitrarily selected panel of
65 genes representative of the main pathways reported to be deregulated in HGS-EOC,
some of them being potentially amenable to therapeutic intervention (Supplementary
Table S2). SNV profiles generated at diagnosis from cohort A were investigated to define
the extent to which ctDNA recapitulates the complex and heterogeneous genomic profile
of the disease. To this aim, we compared the mutational profiles of all nonsynonymous
variants called in each tissue sample at T0 with those in the matched plasma sample.
Data reported in Figure 2 show that, except for clonal pathogenic variants of the TP53
gene, plasma samples exhibited a clearly different mutational landscape compared to their
matched tissue biopsies. In line with the hypothesis that ctDNA recapitulates the genomic
profile of a disease characterized by multiple systemic lesions present at once, plasma
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samples carried significantly more variants than each matched tumor biopsy (median of
41.5 and 7 variants per sample, respectively; Mann–Whitney test p < 0.001). This difference
prompted us to investigate the extent to which plasma analysis can recapitulate the main
genomic features of the single matched tumor lesion in detail. We divided somatic variants
into three classes: (i) private, which refers to variants present only in a single sample
(plasma or tissue); (ii) shared, which refers to those variants that are present in plasma
samples and in at least one matched solid tumor biopsy; (iii) common, which refers to
those somatic variants that are present in the plasma and in at least two matched biopsies.
Globally, results suggest that the vast majority of SNVs (85.4%) were private to each
single sample while the median concordance of shared mutations was 2.27%. Common
variants represented only 0.1%. We next questioned whether the analysis of SNV profiles in
plasma captures the marked spatial heterogeneity of HGS-EOCs better than the analysis of
SCNAs [2]. Supplementary Figure S2 shows that plasma SCNA profiles have a percentage
of concordance among biopsies and matched plasma sample higher than SNVs profiles,
thus confirming the original finding that TF is a bona fide representative snapshot of the
molecular portrait of HGS-EOC [2].

Figure 1. Study overview. The study is mainly subdivided into two different sections focused on
defining the extension of spatial (cohort A, n = 12) and temporal (cohort B, n = 18) heterogeneity in
HGS-EOC patients. CT, chemotherapy. NACT, neoadjuvant chemotherapy, T0, time of diagnosis. T1,
first time point after diagnosis. TRm, time of molecular recurrence. TRc, time of clinical recurrence.
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Figure 2. The different genomic profiles of liquid and solid biopsies at the time of diagnosis. For cases
enrolled within cohort A (columns), oncoprint depicts all non-synonymous variants called in the
coding sequence of the selected 65 genes (horizontal lines). For each patient, A, B, C, D identify each
single tumor biopsy (see Supplementary Table S1), while T0 refers to the ctDNA analysis. The details
of the different variants are reported in the legend on the right side. Gray block means wild type.

3.3. Longitudinal Plasma Analysis to Overcome the Issue of Temporal Heterogeneity

Focusing on targeted resequencing data generated within cohort B, we investigated the
possibility to intercept in plasma samples those genomic vulnerabilities that characterize
the molecular portrait of the relapsed disease. This is the second aim of the work that meets
an important clinical need. We initially questioned whether the overall amount of SNVs
per patient, generally known as tumor molecular burden (TMB), parallels TF changes [2]
and thus could be associated with disease progression. The longitudinal distribution of
TMB values (Supplementary Figure S3) resulted as largely heterogeneous across samples
and within each patient (median TMB per sample = 35, range 1–1158), with no correlation
with the TF profile (Pearson’s correlation = −0.06, p > 0.5). This finding suggests that
analysis of SNV in HGS-EOC is not as informative as TF to intercept the timing of TRm. In
support of this notion, the nature of the identified SNV also showed the high heterogeneity
of HGS-EOC. Indeed, we focused our attention on those SNVs that were shared among
different time points of the same patient. The Jaccard score was used as a metric to estimate
the percentage of co-occurring variants (ranging from 0 = no concordance, to 1 = full
concordance). Figure 3a graphically depicts the Jaccard score of two representative samples,
namely, 21556 and 21557, while data for the entire cohort are reported in Supplementary
Figure S4. Globally, the Jaccard similarity scores were low (max = 0.16), confirming the
original hypothesis that temporal heterogeneity of SNV is the hallmark of HGS-EOC.
Oncoprints reported in Figure 3b depict the pathogenic variants called for these two cases
at T0, TRm and TRc (the complete list of pathogenic variants is available in Supplementary
Table S3). In both cases, with the exception of clonal pathogenic variants in the TP53 gene
(c.843C > A and c.1045G > T, for 21556 and 21557, respectively) and a germline mutation in
the BRCA1 gene (c.4327C > T for 21556), no other pathogenic SNV was shared between T0
and TRm or TRc. These findings are in line with the hypothesis that TP53 is the only driver
pathogenic lesion of HGS-EOC and that the molecular picture of the relapsed disease is
completely independent on the molecular portrait taken at diagnosis.
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Figure 3. Genomic landscape evolution of SNVs in plasma samples. Jaccard similarity score (a) and
oncoprints of pathogenic variants (b) for two representative cases (namely, 21556 and 21557) are
reported. (a) The Jaccard similarity score is a numeric value indicating the level of similarity of
sample pairs (see Section 2). Rows and columns report the name of the samples as in a square matrix
(i.e., T0, TRm and TRc). The Jaccard score is reported in a blue color scale on the right side of the figure.
The darker the color, the higher the similarity score, as reported in the legend (min = 0%, max = 20%).
(b) Oncoprints show longitudinal evolution (i.e., T0, TRm and TRc) of pathogenic variants in each
plasma sample. Variants are represented with the HGVS notation and referred to the genes reported
on the left. The legend on the right depicts the different SNVs identified.

3.4. Dissecting Temporal Heterogeneity for Therapeutic Opportunities

As HGS-EOC is characterized by a marked temporal heterogeneity [26], liquid biopsy
offers the unique opportunity to acquire real-time molecular portraits of those emerging
genetic vulnerabilities that could be used to plan second-line therapy. Thus, selected
pathogenic SNVs called in plasma samples at both TRm and TRc were further matched
across different databases from official guidelines, clinical trials, case reports, or preclinical
studies (see Section 2) for current knowledge on their potential actionability.

The lolliplots reported in Figure 4 refer to cases 21556 and 21557 as two paradigmatic
examples. Focusing on sample 21556, of the 18 pathogenic variants called at T0 (Figure 3),
only 6 were classified as actionable and, in particular, those affecting the BRCA1/2, ATR,
and POLE genes (Figure 4a). All of them have been classified as tier 1 except for the R1371*
variant in POLE that was classified as tier 2 (see Section 2). Variants in BRCA1/2 and POLE
have been associated with responsiveness to treatment with PARP-inhibitors (PARPi),
Pt-based drugs and PD1 inhibitors, while both Y1419H and D1915Y variants in ATM were
related to response to olaparib and temozolomide (Supplementary Table S4). The entire set
of actionable alterations for each patient are reported in Supplementary Table S4.
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Figure 4. Lolliplots showing actionable variants in two representative patients, namely, 21556 (a) and
21557 (b). The name of encoded proteins is reported below each graph and the related protein
domains, as described in the legend. Actionable variants are reported in correspondence of their
amino acid position and named as reported above each dot. Dots represent the presence of an
actionable variant in tumor and/or plasma samples, as indicated by the color in the legend.

Figure 4b depicts a completely different scenario for patient 21557. At TRm and
TRc, the distribution of somatic variants (all classified as tier 1) in selected genes is more
heterogeneous than that reported at T0. Focusing on pathogenic actionable mutations,
the plasma sample at T0 carried actionable variants in POLE and MSH3 genes, respec-
tively, the first associated with responsiveness to PD1 inhibitors and pembrolizumab,
while the latter to DNA-PKc inhibitors (Supplementary Table S4). At TRm, the plasma
sample harbors one variant in the ATM gene, reported to be associated with response
to Pt, temozolomide, PARPi, ATR-, and DNA-PKc inhibitors (Supplementary Table S4).
Plasma analysis of TRc (that occurred 531 days later) called variants in the PALB2 gene
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(D1141V) known to be involved in the response to PARPi, Pt and mitomycin, and a variant
in the FANCA gene (S1264P) reported to be associated with responsiveness to olaparib
(Supplementary Table S4).

Within this frame, we next reasoned how to exploit ctDNA genomic information to
predict the molecular mechanisms of acquired drug resistance, in particular against PARPi,
which are routinely used in the front-line therapy of HGS-EOC. Although this knowledge
is largely incomplete, the concurrent presence of BRCA1 mutation along with TP53BP1
loss is at the moment one of the best characterized molecular mechanisms [27]. Analysis
of cases enrolled in cohort A (Figure 2) shows that patient 21557 was the only one with
a SNV called in the TP53BP1 gene in all tumor biopsies but at T0. This analysis reveals
once more the importance of plasma sample analysis at the baseline to dissect the complex
spatial heterogeneity of HGS-EOC. Analysis of longitudinal cases enrolled in cohort B
(Figure 5) revealed that, in 13 out of 18 samples, a pathogenic variant in the TP53BP1 gene
was observed but with a different time frame that can be summarized in the scenarios
depicted in Figure 5.

Figure 5. Oncoprints of 13 patients carrying pathogenic mutations in the TP53BP1 gene. For each
oncoprint, mutated genes, e.g., BRCA1/2 or TP53BP1, are reported on the left; codon change is
reported on the right; the patient number is reported on the top, and the name of each sample at the
bottom. Colors as reported in the legend.

In eight out of 13 cases, we observed that the TP53BP1 gene is called as mutated
at T0 (or T1) but resulted wt at TRm and TRc. To note, cases 21520 and 21564 acquired
novel variants at TRm and TRc compared to those called at T0/T1. As a general comment,
findings derived from the dynamic changes in the TP53BP1 suggest that most of the
analyses of a single tumor biopsy, even at T0, are not adequate to predict the sensitivity or
resistance profile to PARPi.

4. Discussion

The two main findings of this proof of principle study, technically based on targeted
resequencing analysis of ctDNA from HGS-EOC patients, can be briefly summarized as
follows: (i) at diagnosis, analysis of ctDNA can complement genomic data derived from
conventional single tumor biopsy. (ii) Longitudinal ctDNA analysis can be used to intercept
the emerging genomic architecture of TRm, allowing a more rational second-line treatment.
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Early recurrence detection and its rational-based treatment are the two main clinical
needs that have hampered till now the improvement of the mortality rate of HGS-EOC.
Particularly, the optimization of the second-line therapy has been difficult because of
the inability to track tumor evolution and to study the genomic profile of relapse. The
work previously carried out by our group [2] and data presented in this study suggest
how longitudinal analysis of ctDNA, focusing on both quantitative (i.e., untargeted sWGS
analysis) and qualitative features (i.e., targeted resequencing analysis) of ctDNA, can
represent a novel strategy to unravel the issues related to the treatment of relapsed disease.

This study is in fact a natural evolution of previous findings in which we used untar-
geted sWGS to get quantitative information on changes in the amount of ctDNA (i.e., TF)
during patients’ follow-up. Data previously reported by our group clearly demonstrated
that analysis of SCNA in plasma samples of HGS-EOC patients can be reliably used in
the clinic as a tool to intercept the early onset of disease recurrence. By this approach, we
have demonstrated that the tumor recurrence (TRm) can be intercepted up to 491 days
before conventional biochemical and radiological assays, thus indicating TF as a reliable
biomarker to detect the relapse. This temporal gap between TRm and TRc offers a unique
opportunity and a temporal window wide enough to plan treatment of relapsed disease
with a more rational approach, rather than a measure of the extension of PFI. However, TF
is not informative on the possible therapeutic strategies that can be adopted to treat the
relapsed relapsed disease.

The detection of new pathogenic mutations through the targeted ctDNA analysis could
help identify actionable variants or alterations that could confer sensitivity or resistance to
drugs, thus optimizing treatment choice.

In line with current literature, we have previously demonstrated [26] that a single
tumor biopsy does not mirror the complex genomic portrait of the disease, and that the
genomic profile taken at time of relapse is markedly different (less than 5%) from that of
matched primary synchronous lesions naive to chemotherapy. In line with these findings,
data reported in this study confirmed that less than 2% of SNVs found in the plasma at T0
are shared by at least one matched synchronous lesion. This means that the genomic portrait
of the residual disease that has been exposed to Pt-based chemotherapy is completely
different from the one derived from the biopsy withdrawn at time of surgery. Pt-based
chemotherapy provides a positive selective pressure on the outgrowth of subclonal variants
that are responsible for relapsed disease, thus evidence that the genomic information taken
at the diagnosis is not necessarily useful to plan the second line of treatment. In this study,
we have demonstrated that—starting from the same sWGS genomic libraries previously
analyzed—it is possible to obtain genomic information characterizing the molecular relapse.

Over the last years, the introduction of PARPi in the current clinical practice has
changed the therapeutic scenario available for HGS-EOC. Although the majority of patients
eligible respond to PARPi treatment, a proportion of them show an intrinsic or acquired
resistance. The biological mechanisms related to resistance against PARPi are different and
include genomic alterations—e.g., BRCA1/2 reverse mutations or concomitant pathogenic
mutations in BRCA1 and TP53BP1 genes—that could exist already at time of diagnosis or
that could be acquired under a clonal selective pressure. The analysis of ctDNA both at the
time of diagnosis and during patients’ follow-up makes it possible to intercept the presence
of resistant clones, thus potentially avoiding unnecessary treatment to patients. As an
example, patient 21556, who carries a germline mutation in BRCA1, could be potentially
eligible for PARPi therapy, but the targeted analysis of cfDNA at the time of diagnosis
revealed the presence of two pathogenic variants in the TP53BP1 gene not detected in the
tumor lesions analyzed. The present study shows the potential importance of longitudinal
ctDNA analysis to follow dynamic changes in the SNVs profile of selected genes. For
example, patient 21564, potentially eligible for PARPi treatment at the time of diagnosis
(BRCA1 c.5182delA mutation), would be unlikely to respond to these drugs in second-line
therapy due to the presence of eight distinct TP53BP1 variants in plasma sample collected
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and analyzed at TRc. From a clinical point of view, this result could help avoid unnecessary
treatment to a patient who has a low probability of response to PARPi exposure.

Finally, from a technical point of view, we have developed a two-step framework of
analysis based on a combination of two different NGS-based strategies starting from a
single plasma withdrawn. As HGS-EOC is characterized by a marked genomic instability,
sWGS has been demonstrated to be the optimal tool to routinely monitor the extension of
PFI and provide quantitative information on the early increase in the amount of ctDNA
present in the bloodstream, and thus intercept the early molecular footprints of TRm. At
that time, it is important to get qualitative information on how a tumor evolves over
time after therapeutic positive fitness and which are the main genomic vulnerabilities that
will characterize the emerging resistant metachronous lesions that could be exploited for
therapeutic intervention. At this step, a high-depth targeted resequencing approach on
the same genomic libraries previously generated for sWGS represents the optimal strategy
to provide information in a pre-designed and updated panel of genes, the role of which
is important for therapeutic intervention. This double-hit strategy is versatile, cheap and
compatible with clinical turnaround times required for the management of relapse of
HGS-EOC patients.

This proof of principle study faces different limits that should be taken into considera-
tion before its use in clinical practice. First, the small sample size limits the generalizability
of our findings. Second, cases have been recruited within a spontaneous study rather
than within the frame of a clinical trial in which the rigid clinical protocol guarantees
homogenous time points and standard methods for sample collection. Third, we have no
information on the kineticity of ctDNA and the internal and external factors that could
influence the total amount of ctDNA. Thus, we do not know the minimal amount of ctDNA
present in an aliquot of plasma necessary to decisively call rare ctDNA molecules. Fourth,
panel selection has been arbitrary, as there are no standard-of-care targetable biomarkers
demonstrated to predict at progression, response to second-line treatment. In line with
this caveat, the clinical utility of our approach has not been established yet. There is no
evidence that treatment planned on the basis of the detection of ctDNA will improve the
response of relapsed disease. It is expected that future prospective clinical trials with a
large cohort of cases will allow to estimate the sensitivity and accuracy of this approach, as
well as its clinical utility.

5. Conclusions

In conclusion, data presented in this work are a proof of concept to demonstrate how
the use of liquid biopsy could represent a new avenue to overcome the issues of spatial
and temporal heterogeneity that has long limited the improvement of the clinical outcome
of HGS-EOC patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14153697/s1, Figure S1. CONSORT diagram describing
the process of case selection for this study and the definition of Cohort A and Cohort B; Figure S2.
Figure shows the percentage of concordance (%, y-axis) between tumor biopsies (namely A, B,
C, D) and matched liquid biospsies taken at the time of diagnosis (T0) for somatic copy number
alterations (SCNA, in blue) and single nucleotide variations (SNVs, in orange). Concordance data for
SCNA were retrieved from [2]; Figure S3. Figure shows the number of synonymous (light blue) and
nonsynonymous (green) variants for each liquid biopsy sample from the Cohort B.; Figure S4. Figure
reports the Jaccard similarity score (see Section 2) representing the level of similarity of sample pairs
from each patient. Rows and columns report the name of the samples as in a square matrix. The darker
the color the higher the similarity score as reported in the legend (min = 0%, max = 20%); Table S1.
Table reports the list of patients from Cohort A and B selected for this work. The related metadata
are provided.; Table S2. Table reports the list of the 65 genes selected for this work. Information on
chromosome, start and end positions, and gene identifiers are provided.; Table S3. The table contains
all the identified variants with potential tumor driver prediction extracted from the Cancer Genome
Interpreter (CGI). Each variant includes annotations on the impact (missense, stop gain, etc.) and
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in which sample it was called, along with the identified variant allele fraction.; Table S4. The table
contains all the potential actionable variants identified by the Cancer Genome Interpreter. For each
variant, data are available on the sample, the variant allele fraction, the drug and in which tumor it
was tested on, along with a score on the clinical evidence, ranging from A (FDA approved guidelines)
to D (tested in vitro). Variants which give sensitivity to drugs described in case reports are labeled
as such (“CASE REPORT”). Literature references, such as PubMed IDs, are provided as well. Only
variants in which both the gene and the exact variant are reported to be associated with a drug
are included.
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