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Background: Necroptosis has been found to be associated with tumorigenesis and tumor progression. 
However, the prognostic effect of long noncoding RNAs (lncRNAs) associated with necroptosis in clear cell 
renal cell carcinoma (ccRCC) is still unclear.
Methods: Pearson correlation analysis was used to identify necroptosis-related genes and lncRNAs obtained 
from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) dataset. Least absolute 
shrinkage and selection operator (LASSO) regression and Cox regression analyses were used to identify a 
novel necroptosis-associated lncRNAs signature that significantly correlated with survival of ccRCC. Next, 
single sample gene set enrichment analysis (ssGSEA) was employed to assess the extent of infiltration with 
immune cells. Analyses to predict the half-maximal inhibitory concentration (IC50) of patients in different 
risk groups were also conducted. Moreover, follow-up data of an immunotherapy cohort were used to test for 
differences in the immunotherapeutic efficiency between two risk groups. Finally, patients with ccRCC were 
divided into two groups based on 6 prognostic lncRNAs.
Results: We developed a signature of necroptosis-related lncRNAs, which was verified as an independent 
prognostic factor that can predict prognosis up to 7 years. Patients with higher risk scores were shown to 
have higher immune suppressive cell infiltration levels and expression of immune checkpoint genes, which 
suggests that these patients were in a state of immunosuppression. Patients in the low-risk group were 
found to have an increased response to immunotherapy. A prognostic prediction nomogram was conducted 
to predict long-term survival of patients. Cluster A tumors were considered hot tumors, since they were 
correlated with higher levels of immune infiltration and were more sensitive to immunotherapy.
Conclusions: A comprehensive bioinformatics analysis was conducted, which found that the necroptosis-
associated lncRNA signature might be a potent prognostic factor for patients with ccRCC, which could 
contribute to improved prognosis of these patients.
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Introduction

Renal carcinoma is currently one of the most common 
urinary tract malignancies, the morbidity and mortality 
of which have been increasing in recent years. It has 
been reported that more than 400,000 new cases of renal 
carcinoma are diagnosed each year worldwide (1). Clear 
cell renal cell carcinoma (ccRCC) is the major histological 
subtype, which accounts for about 75–80% of all cases (2).  
Although partial and radical nephrectomy shows good 
outcomes in treating patients with early stage ccRCC, about 
30% of localized ccRCC recur after surgical resection (3).  
Current strategies for stratifying patients with ccRCC 
in clinical practice are confined to a set of clinical and 
pathologic parameters, such as the tumor-node-metastasis 
(TNM) staging system, which relies primarily on anatomical 
information rather than biological features (4). The recent 
improvements of genetic testing technology and the 
emergence of new targeted drugs have brought new hope 
for treating end-stage or recurrent ccRCC (5). However, 
the prognosis of patients can differ significantly, even if 
they have identical clinical parameters and are receiving the 
same regimens. Thus, identification of reliable predictive 
biomarkers to indicate the risk, prognosis, and treatment 
response of patients is required. 

It was previously thought that necrosis was the opposite 
type of cell death to apoptosis. However, recent research 
has shown that apoptosis and necrosis frequently share 
common triggers (6). This form of programmed cell death, 
called necroptosis, is primarily mediated by receptor-
interacting protein kinase 1 (RIPK1), RIPK3, and mixed 
lineage kinase domain like pseudokinase (MLKL) and 
typically manifests with morphological features of necrosis 
(6,7). Previous reports showed that necroptosis can be 
activated by the tumor necrosis factor receptor (TNFR) 
superfamily, pattern recognition receptors (PRRs), T cell 
receptors (TCRs), interferons, and anticancer drugs, and 
these reports suggested that necroptosis plays a critical 
role in cancer progression (6,8). Interestingly, necroptosis 
has been reported to have dual effects of promoting and 
reducing tumor progression in different cancers (9). 

For instance, the expression of RIPK1 has been reported 
to be downregulated in head and neck squamous cell 
carcinoma and has been confirmed to be correlated with 
tumor progression (10). Similarly, tumor-suppressing 
effects of RIPK3 have been demonstrated, and patients 
with colorectal cancer and lower RIPK3 expression have 
been found to have worse prognosis (11). By contrast, the 

upregulation of RIPK1 expression is correlated with a poorer 
prognosis in patients with lung cancer and glioblastoma, 
which suggests an oncogenic effect of RIPK1 (12).  
Therefore,  the function of necroptosis  in cancer 
development is complex. However, there are limited 
studies reporting an association between necroptosis and 
tumorigenesis, progression, and metastasis of ccRCC. 
Therefore, further study of the relationship between 
necroptosis and the biological characteristics of ccRCC is 
needed to provide a basis for more precise management and 
therapy. 

Long noncoding RNA (lncRNA) is a type of RNA that 
does not encode proteins, with a length exceeding 200 
nucleotides. LncRNA is recognized as playing crucial roles 
in numerous cellular processes, some of which are associated 
with cancer initiation, progression, and metastasis, and 
whose dysfunction may contribute to tumorigenesis (13,14).

Based on the gene expression profile of ccRCC obtained 
from The Cancer Genome Atlas (TCGA) database, 
comprehensive bioinformatics analyses were performed 
to explore lncRNAs related to necroptosis genes and to 
construct the relevant prognostic signature. Patients with 
ccRCC were classified into two different clusters based 
on their prognostic lncRNAs expression. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-1764/rc). 

Methods

Data acquisition and processing

The study workflow is shown in Figure 1. The high-
throughput sequencing count data (HTSeq-counts) of 
transcriptome profiling containing messenger RNA 
(mRNA), lncRNA, microRNA (miRNA), somatic mutation 
profiles, and clinical manifestation data of kidney renal 
clear cell carcinoma (KIRC) were retrieved from TCGA 
KIRC program (https://tcga-data.nci.nih.gov/tcga/) and 
Genomic Data Commons (GDC) data portal (https://
portal.gdc.cancer.gov/). Genes expressed in less than 75% 
of samples were excluded. The eligibility criteria were as 
follows: (I) patients with complete follow-up information 
and with an overall survival (OS) of more than 30 days, 
and (II) samples with complete lncRNA expression levels. 
Clinical and RNA-seq data from 3 prospective clinical trials 
which applied the anti-programmed cell death-1 (PD-1)  
antibody nivolumab in advanced ccRCC were used to 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-1764/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-1764/rc
https://tcga-data.nci.nih.gov/tcga/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Figure 1 Workflow of the study. TCGA KIRC, The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma; LncRNA, long noncoding 
RNA; KM curve, Kaplan-Meier survival curve.
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examine the effects of immunotherapy with the established 
signature (15).

A total of 74 necroptosis-related genes were retrieved, 
including 12 genes were obtained from the Molecular 
Signatures Database (https://www.gsea-msigdb.org/gsea/
msigdb/), and the other 62 genes were retrieved from 
previous research and used for further analysis (16).

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Identification of differentially expressed necroptosis-related 
genes and enrichment analysis

T h e  R  p a c k a g e  ‘ b i o M a r t ’  w a s  u s e d  f o r  g e n e  
annotation (17). A total of 19,712 mRNA and 14,805 
lncRNA were identified. Subsequently, the expression 
matrix of 74 necroptosis-related genes was extracted from 
the filtered mRNA expression matrix. The R package 
‘limma’ was used to screen differentially expressed genes 
(DEGs) in KIRC and normal tissues with cut-off criteria of 
an adjusted P value (adj.P value) <0.05, and |logFC| ≥1 (18). 
The heatmap was plotted using the R package ‘pheatmap’. 
Gene Ontology (GO) was applied for enrichment analysis 
of the DEGs (19).

Identification of lncRNAs related to necroptosis-related 
genes

To identify differentially expressed lncRNAs, the R package 
‘limma’ was used (18). A total of 528 differentially expressed 
lncRNAs were screened using an adj.P value of 0.05, and 
|logFC| ≥2 as criteria. Next, Pearson correlation analysis 
between the expression profile of differentially expressed 
lncRNAs and necroptosis-related genes was performed. 
The thresholds of P<0.01 and |R| >0.6 were used to select 
lncRNAs (20).

Identification necroptosis-associated lncRNAs prognostic 
signatures for ccRCC

Using the sample screening criteria mentioned above, the R 
package ‘caret’ was used to randomly divide the 487 eligible 
ccRCC samples into the training and testing cohorts at a 
ratio of 7:3, which was also used to randomly divide the 487 
ccRCC samples into 10 groups based on the number of days 
survived.

To identify necroptosis-associated lncRNAs correlated 
with survival, univariate Cox regression analysis was 
conducted in the training cohort using the cut-off value 
of P<0.01. Subsequently, the least absolute shrinkage 

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
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and selection operator (LASSO) regression analysis 
was performed to select candidate prognostic lncRNAs. 
Next, candidate lncRNAs were subjected to multivariate 
Cox regression analysis using the R package ‘glmnet’ to 
establish the best prognostic risk profile. Furthermore, the 
risk score for each patient was calculated according to the 
following formula: Risk score=coef (lncRNA1) × expression 
(lncRNA1) + coef (lncRNA2) × expression (lncRNA2) + … 
+ coef (lncRNAn) × expression (lncRNAn). In the formula 
above, coef (lncRNAn) was defined as the regression 
coefficient of lncRNAs calculated using multivariate Cox 
regression analysis, and expression (lncRNAn) was defined 
as the expression level of lncRNAs (21).

Evaluation of the prognostic signature

The median risk score value was used to classify samples in 
the training cohort into low- or high-risk groups. Moreover, 
the test cohort and entire cohort were used to validate the 
model’s reliability. Kaplan-Meier (KM) survival curves 
were plotted to evaluate the survival difference between 
patients in the two groups. Meanwhile, a time-dependent 
receiver operating characteristic (ROC) curve was created 
to evaluate the predictive ability of the signature. The area 
under the ROC curve (AUC) was calculated from the ROC 
curves. The R packages ‘survival’ and ‘survminer’ were used 
to perform these analyses. Furthermore, univariate and 
multivariate Cox regression analyses were used to assess 
whether the risk score was independent of other clinical 
variables based on age, clinicopathological characters, and 
signature in the training, test, and the entire cohort. The 
stratified analysis was performed to assess the relationship 
between the prognostic risk score and clinical features with 
a threshold as P<0.05.

Establishment and validation of nomogram

In addition to assessing the survival probability of 
patients, traditional clinical characteristics, such as age, 
clinicopathologic characteristics, and risk score, were 
considered to construct a nomogram using the R package 
‘rms’ (22). The 1-, 5-, and 7-year OS probabilities of 
patients can be predicted by calculating the nomogram 
points. Subsequently, time-dependent ROC and calibration 
plots were created to evaluate the performance of the 
nomogram, and the AUC of risk score, grade, stage, and 
age 5 years from diagnosis were used to assess the accuracy 
for predicting OS.

Immune assessment, drug prediction, and 
immunotherapeutic efficacy of the risk model

Next, single sample gene set enrichment analysis (ssGSEA) 
was applied to obtain the extent of immune cells infiltration 
of ccRCC samples (23). The association between the risk 
scores and lncRNAs was used to construct the signature 
and the extent of infiltration of immune cells in ccRCC. 
The fractions of stromal and immune of each ccRCC 
sample were obtained using the Estimation of STromal 
and Immune cells in MAlignant Tumor tissues using 
Expression data (ESTIMATE) algorithm (24). In addition, 
the correlation between the risk score of the signature 
and checkpoints, such as programmed cell death (CD274), 
sialic acid binding Ig-like lectin 15 (SIGLEC15), cytotoxic 
T-lymphocyte-associated protein 4 (CTLA4), programmed 
cell death 1 ligand 2 (PDCD1LG2), tumor necrosis factor 
receptor superfamily, member 7 (CD27), programmed 
cell death 1 (PDCD1), hepatitis A virus cellular receptor 2 
(HAVCR2), and lymphocyte-activation gene 3 (LAG-3) were 
investigated. The chemotherapeutic response represented by 
the half-maximal inhibitory concentration (IC50) of patients 
with KIRC from the Cancer Genome Project (CGP) 
were analyzed using the R package ‘pRRophetic’ (25).  
Gene set enrichment analysis (GSEA) was employed to 
assess the biological processes that were significantly 
different between the 2 risk groups using the R package 
‘clusterProfiler’.

Mutation landscape analysis based on 6 prognostic 
lncRNAs

The R package ‘maftools’ was used to evaluate differences 
in the somatic mutations between the two risk groups. 
Subsequently, differences of tumor mutational burden 
(TMB) of patients in the two risk groups were explored.

Clusters based on 6 prognostic lncRNAs

P a t i e n t s  w i t h  c c R C C  w e r e  d i v i d e d  i n t o  t w o 
potential molecular subgroups using the R package 
‘ConsensusClusterPlus’ based on the expression of 6 
necroptosis-associated lncRNAs related to prognosis (26). 
A KM survival curve was plotted to evaluate the survival 
difference between subgroups of patients. The correlation 
between clusters and immune cells was further evaluated. 
The ESTIMATE algorithm was also used to acquire the 
fraction of stromal and immune of each ccRCC sample. 
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Furthermore, the correlation between clusters and 
checkpoints and immunotherapeutic response prediction 
was assessed using the R package ‘pRRophetic’.

Statistical analysis

R software v.4.0.1 was used for all statistical analyses in this 
study. The Pearson χ2 test or Fisher’s exact test was used to 
analyze categorical variables. The t-test or non-parametric 
Wilcoxon rank-sum test was used to analyze quantitative 
variables. Stratified k-fold cross-validation was used to 
evaluate model performance. Unless otherwise specified, 
P<0.05 was considered statistically significant.

Results

Identification of differentially expressed necroptosis-related 
genes and enrichment analysis

After differentially analyzing the extracted necroptosis-
related gene expression profile of the tissue samples 
from patients with ccRCC from TCGA database, 18 
differentially expressed mRNAs were identified, which were 
then subjected to enrichment analysis (Figure 2A,2B). As 
shown in Figure 2C, these genes were enriched in necrotic 
cell death, programmed necrotic cell death, necroptotic 
process, regulation of endothelial cell apoptotic process, 
cellular response to tumor necrosis factor, and regulation of 
inflammatory response, which suggests the potential role of 
necroptosis-related genes in the tumor immune response.

Identification a necroptosis-associated lncRNAs prognostic 
signatures for ccRCC 

In all, 528 differentially expressed lncRNAs were obtained 
from the lncRNA expression matrix. Then, necroptosis-
associated lncRNAs were identified by conducting Pearson 
correlation analysis between the differentially expressed 
lncRNAs and the necroptosis-related genes. 

Based on the inclusion criteria, 487 patients with ccRCC 
were retained and classified into a training and a testing 
cohort of 341 and 146 patients, respectively. LASSO 
regression analysis and univariate Cox regression analysis 
were used for the necroptosis-associated lncRNAs and 
identified 6 candidate lncRNAs that were significantly 
associated with the prognosis of ccRCC (Figure 3A,3B). 
Then, multivariate Cox regression analysis of these 
lncRNAs was performed to establish a prognostic signature. 

The results showed that the high expression of FLJ22763, 
RP11-968O1.5, and CTD-3162L10.3 were associated with 
a good prognosis, whereas the high expression of RP11-
932O9.1, EMX2OS, and LINC00460 were associated with 
a poorer prognosis (Figure 3C). However, the confidence 
intervals of EMX2OS and CTD-3162L10.3 included zero, 
and the P value was greater than 0.05, which indicated that 
the odds ratio (OR) was not significant. The risk score of 
each sample can be calculated using the following formula: 

Risk score = expression (FLJ22763)  0.18002207 
+ expression (RP11 968O1.5)  0.21069046 
+ expression (RP11 932O9.1)  0.28178770 
+ expression (CTD 3162L10.3)  0.07539515  
+ expression (EMX2OS)  0.

× −
− × −
− ×
− × −

× 02119149 
+ expression (LINC00460) 0.08449362×

 [1]

The KM survival curve of each lncRNA was plotted 
to evaluate the survival difference between patients in 
the different expression subgroups (Figure S1). It is 
worth noting that the KM survival curve shows that high 
expression of EMX2OS is associated with a favorable 
prognosis (Figure S1D).

Using the median risk score as a threshold, the sample 
was divided into the high- and low-risk groups. The 
expression of 6 lncRNAs in the high- and low-risk groups 
is shown in Figure S2. The Cox regression results indicate 
that lncRNAs signature is an independent prognostic factor 
for patients with ccRCC (Figure 3D, Table 1). Figure 4A-4C 
shows the distribution of risk scores, the survival status, and 
the expression of the 6 lncRNAs in the 2 risk groups, which 
demonstrate that patients in the low-risk group generally 
had better survival. As shown in Figure 4D, the survival 
time of patients in the high-risk group was shorter than 
that in the low-risk group. The AUC for 1-, 5-, and 7-year 
survival prediction were 0.73, 0.72, and 0.77, respectively  
(Figure 4E), which demonstrates the accuracy of the 
signature’s prediction ability.

Validation of the 6 lncRNAs prognostic signature

To further validate the robustness of the prognostic model, 
further examinations in the testing and the entire sets were 
performed with the same cut-off values as those used in the 
training cohort. 

Figure 4F-4H show the distribution of risk scores, survival 
status, and expression of the 6 lncRNAs in the 2 risk groups 
of the testing cohort. In addition, KM curves indicated 
that survival time of patients in the high-risk group 

https://cdn.amegroups.cn/static/public/TCR-22-1764-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-1764-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-1764-supplementary.pdf
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Figure 2 DE-necroptosis-related gene identification and enrichment analysis. (A) Volcano plot and heatmap of the DE-necroptosis-
related genes identified from the TCGA KIRC dataset. In the volcano plot, red dots represent upregulated genes, and green dots represent 
downregulated ones. (B) Enrichment analysis of DE-necroptosis-related genes. (C) The top 20 enriched terms are listed, and the color 
of the bar represents the value of −log10(P value). DE, differentially expressed; DEGs, differentially expressed genes; TCGA KIRC, The 
Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma.

was shorter than that in the low-risk group (Figure 4I).  
The AUC for 1-, 5-, and 7-year survival prediction of the 
time-dependent ROC curves were 0.74, 0.59, and 0.63, 
respectively (Figure 4J). 

Figure 4K-4M shows the distribution of risk scores, 
survival status, and expression of the 6 lncRNAs in the 2 
risk groups of the whole samples. In addition, KM curves 
indicated that the high-risk patients with ccRCC had a 
worse prognosis than the low-risk patients (Figure 4N). 
As shown in Figure 4O, the AUCs for 1-, 5-, and 7-year 

survival prediction of the time-dependent ROC curves were 
0.75, 0.71, and 0.77, respectively.

Taking into account that the model may be overfitted, 
stratified k-fold cross-validation was conducted to 
assess the stability of model performance. The samples 
were divided equally into 10 groups for the validation, 
which was performed 10 times, whereby 9 groups were 
selected for each run. The 1-, 5-, and 7-year mean AUCs 
of the 10 runs were 0.71, 0.69, and 0.71, respectively  
(Table S1).

https://cdn.amegroups.cn/static/public/TCR-22-1764-supplementary.pdf
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Figure 3 Construction of necroptosis-associated lncRNA risk model composed of 5 lncRNAs. (A,B) LASSO regression analysis was 
performed to screen candidate lncRNA for constructing the prognostic signature. (C) Forest plot presenting the HR values of the 6 
necroptosis-associated lncRNAs. (D) Forest plot presenting the HR values of the necroptosis-associated signature and clinical characteristics. 
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Table 1 Univariate and multivariate Cox regression analyses 

Variables 
Univariate Cox regression analysis Multivariate Cox regression analysis

HR Lower 95% CI Upper 95% CI P value HR Lower 95% CI Upper 95% CI P value

Age (years) 1.03 1.02 1.04 <0.001 1.03 1.01 1.05 0.002

Gender 0.967 0.7 1.34 0.843 1 0.67 1.51 0.989

Stage I 1 – – – 1 – – –

Stage II 1.213 0.6 2.44 0.587 1.5 0.63 3.53 0.358

Stage III 2.878 1.87 4.44 <0.001 2.37 1.38 4.07 0.002

Stage IV 6.899 4.6 10.35 <0.001 4.41 2.55 7.64 <0.001

Risk score 3.65 2.78 4.79 <0.001 1.86 1.47 2.35 <0.001

HR, hazard ratio; CI, confidence interval.
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Figure 4 Necroptosis-associated lncRNAs signature validated in the training cohort (n=341), test cohort and the whole cohort, and the 
expression of 6 necroptosis-associated lncRNAs in low- and high-risk group. The risk score (A,F,K) and survival status (B,G,L) of each 
patient with ccRCC distributed in low- and high-risk groups. (C,H,M) Expression values of the 6 signature lncRNAs. The colors from red 
to green correspond to the expression of a lncRNA from high to low. (D,I,N) KM survival analysis between the high- and low-risk groups. 
(E,J,O) Time-dependent ROC curves of the signature. LncRNA, long noncoding RNA; KM, Kaplan-Meier; ROC, receiver operating 
characteristic; AUC, area under the ROC curve.

Independent analysis of clinicopathological characteristics 
and the signature

To further validate whether the signature was an independent 
factor of clinicopathological characteristics, univariate and 
multivariate Cox regression analyses were performed on the 
signature and clinicopathological characteristics including 
age, gender, grade, and stage. In addition, stage was also 
demonstrated to be an independent clinicopathological 
prognostic factor for patients with ccRCC.

Correlations between the necroptosis-associated lncRNAs 
signature and clinicopathological characteristics

The results showed that patients with high- (III–IV) and 
advanced stage (III–IV) ccRCC had higher risk scores 

(Figure S3A,S3B). The KM curves and AUC of the time-
dependent ROC curves demonstrated that necroptosis-
associated lncRNAs signatures were still significantly 
correlated with worse survival in patients with advanced- 
(Stage III–IV) or early-stage (stage Ⅰ–Ⅱ) ccRCC and those 
with higher- (grade Ⅰ–Ⅱ) or lower-grade (grade III–IV) 
ccRCC (all P<0.05; Figure S3C-S3F), which suggests that 
the signature-based risk stratification still had significant 
effectiveness for patients with ccRCC of the same stage and 
grade.

Immune assessment, drug prediction, and 
immunotherapeutic efficacy of the risk model

The extent of infiltration of 28 immune cells of cancer 
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Figure 5 Immune infiltration analysis. (A) The infiltration levels of 28 immune cells of low- and high-risk groups. (B) The correlation 
between infiltrated 28 immune cells and 6 necroptosis-associated lncRNAs. (C-E) Associations between risk and immune score and stromal 
score and estimate score. *, P<0.05; **, P<0.01; ***, P<0.001. LncRNA, long noncoding RNA.

tissue samples were obtained using ssGSEA, which was then 
applied to explore the relationship between the extent of 
infiltration of immune cells and the risk scores in ccRCC 
(Figure 5A). The correlations between the immune cells 
and lncRNAs are also shown in Figure 5B. These findings 
demonstrate correlations of the high-risk group with higher 
levels of immune suppressive cells, such as regulatory T 
cells (Tregs), T follicular helper cells, and macrophages. 
Using the ESTIMATE algorithm, the estimate and immune 
scores of each ccRCC sample were obtained. As shown in 
Figure 5C-5E, immune and stromal scores were significantly 
and positively correlated with the risk score. Furthermore, 
we found that the expression level of immune checkpoints 
such as CD27, CTLA-4, LAG-3, and PDCD1 were increased 
in the high-risk group, while CD274 and HAVCR2 were 
decreased (Figure 6A), which further suggests that patients 

with a higher risk score were more likely to be in an 
immunosuppressive microenvironment. The results of 
prediction of chemotherapeutic response of patients with 
ccRCC are shown in Figure 6B-6H. Patients with higher 
risk scores were more sensitive to chemotherapeutic drugs, 
indicating that patients in the high risk-group may benefit 
from therapy that may prolong life.

Mutation data of 294 ccRCC samples were then analyzed 
and curated to investigate the potential mechanisms 
associated with the risk model. The top 10 genes with 
the highest frequency of alteration in the high- and low-
risk groups are shown in Figure 7A,7B, respectively. It was 
further found that tumor mutation burden was higher in 
the high-risk group than in the low-risk group (Figure 7C). 
Since immune checkpoint blockade targeting checkpoints 
has emerged as a promising strategy for treating cancers 
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Figure 6 Evaluation of immune checkpoint expression and therapeutic response prediction in the two risk subgroups. (A) Immune 
checkpoint expression between the high- and low-risk groups. (B-H) Results of prediction of therapeutic response. **, P<0.01; ***, P<0.001.

in clinical practice, the public immunotherapy cohorts 
were used to investigate the association between signature 
and immunotherapeutic response. Using progression-free 
survival (PFS) as a criterion, the R package ‘survminer’ was 
used to identify the best cut-off point to divide patients into 
two groups. The KM curve indicated that high-risk patients 
with ccRCC had a significantly shorter survival than low-
risk patients (Figure 7D). We further examined whether 
clinical benefit rates were significantly different between 
these two groups. The results suggested that patients 
with a lower risk score may be more likely to benefit from 
immunotherapy (Figure 7E).

The results of GSEA suggested that genes related to 
high-risk scores were mainly enriched in natural killer 
(NK) cell-mediated cytotoxicity, cytokine-cytokine receptor 
interaction, Th17 cell differentiation, and the TNF 
signaling pathway (Figure 7F).

Construction and validation of the nomogram 

To promote the clinical utility of this novel model, a 
nomogram for predicting the 1-, 5-, and 7-year OS 
among patients with ccRCC was constructed based on the 
independent factors assessed above by using the R package 
‘rms’ (Figure 8A). Time-dependent ROC curves were 
plotted and showed good discrimination of the nomogram, 
in that AUCs of 1-, 5-, and 7-year follow-up ROCs were 

0.82, 0.78, and 0.79, respectively (Figure 8B). Additionally, 
calibration plots were plotted to demonstrate the good 
predictive performance of the nomogram (Figure 8C-8E). 
Furthermore, we plotted multiparameter ROC curves to 
evaluate the discriminative ability of the 5-year OS of the 
nomogram (Figure 8F). All of the above results suggest that 
the 6 lncRNA prognostic signatures for ccRCC were robust.

Clusters of necroptosis-associated patterns in patients with 
ccRCC

We performed K-means consensus clustering based on 
the expression of the 6 necroptosis-associated lncRNAs 
described above to regroup patients with ccRCC using the 
R package ‘ConsensusClusterPlus’. The K-means consensus 
clustering placed patients into two groups, referred to as 
Clusters A and B with different immune infiltration levels 
(Figure 9A-9C). A KM curve with a log-rank test indicated 
that Cluster A had a worse prognosis than Cluster B  
(Figure 9D). Interestingly, the fraction of low-risk patients 
was significantly higher in Cluster B, which was consistent 
with the result of the KM curve. The patients in Cluster A 
had a stronger correlation with immune infiltration level, 
and nearly all of the 28 immune cells were highly infiltrated. 
The ESTIMATE results further suggested that the immune 
and stromal scores were significantly higher in Cluster A 
(Figure 9E-9G). The results above indicated that the tumor 
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Figure 7 Waterfall chart of the top 15 mutated genes in the high- (A) and low-risk groups (B). (C) Boxplot of tumor mutation burden 
of high- and low-risk groups. (D) KM survival analysis between the high- and low-risk groups in the immunotherapeutic cohort. (E) 
Differences in the percentages of clinical benefit, non-clinical benefit, and intermediate clinical benefit between the two groups. (F) The 
results of GSEA of the differentially expressed genes in the two groups. TMB, tumor mutational burden; KM, Kaplan-Meier; GSEA, gene 
set enrichment analysis; CB, clinical benefit; ICB, intermediate clinical benefit; NCB, no clinical benefit. 

microenvironments of the 2 clusters were significantly 
different. According to previous research, tumors that 
have high immune infiltration were considered hot tumors 
(27,28). We further explored whether Cluster A which was 
considered as hot tumors, would contribute to patients’ 
immunotherapy in high-risk groups. Almost all immune 
checkpoints, such as CD27, LAG-3, CTLA-4, and PDCD1, 
were more strongly expressed in Cluster A (Figure 9H). The 
results of the prediction of drug response suggest that hot 
tumors were more susceptible to chemotherapy (Figure 9I).

Discussion

CcRCC is the most common type of renal cell carcinoma 
(RCC), accounting for about 75% of RCC cases, and is 

associated with substantial morbidity, mortality, and cost 
(2,29). With the advance in understanding of the molecular 
biology and genetics of clear ccRCC, although partial and 
radical nephrectomy remain the gold-standard treatment 
for early stage ccRCC (30), the therapeutic options for 
advanced ccRCC have expanded. Immunotherapy with 
checkpoint inhibition and targeted molecular therapeutics 
has been applied to provide ‘precision treatment’ and 
prolong the OS and PFS of patients (31). However, drug 
resistance and insufficient understanding of molecular 
markers of ccRCC progression remain important obstacles 
to improving patient outcomes in clinical practice. Thus, a 
better understanding of the potential molecular mechanisms 
underlying ccRCC progression is vital for the management 
of ccRCC. The identification of effective molecular 
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Figure 8 Nomogram construction and validation. (A) Nomogram based on risk score, age, stage, and grade. (B) Time-dependent ROC 
curves demonstrate the performance of the nomogram in the 1-, 5-, and 7-year follow-ups. (C-E) Calibration curves of the nomogram 
for predicting the survival outcomes at 1, 5, and 7 years. (F) ROC curves demonstrate the performance of the nomogram, signature, and 
clinicopathological variables in the 5-year follow-up. ROC, receiver operating characteristic.

biomarkers to predict ccRCC progression and prognosis 
and to overcome drug resistance is critical.

Although numerous ccRCC prognostic models based 
on molecular biomarkers of especial gene sets have been 
developed in recent years, the signatures associated with 
necroptosis-associated lncRNAs have not been fully 
explored, especially in ccRCC. Necroptosis is a novel 
mode of programmed cell death, which is different from 
traditional apoptosis in that it has a mechanistic resemblance 
to apoptosis and a morphological resemblance to necrosis 
(6,32). Recent evidence suggests that high-grade RCC 
cells are correlated with higher expression of RIPK1 and 
RIPK3, which in turn are more prone to necroptosis (33).  
In the present study, we developed a signature of 
necroptosis-related lncRNA based on the lncRNAs related 
to necroptosis-related genes, which was validated to be 
associated with ccRCC progression and found to be an 
independent prognostic factor of the survival of patients 
with ccRCC. KM survival curves demonstrated that patients 
in the high-risk group had shorter survival than patients 
in the low-risk group, indicating that the signature was 

effective for predicting prognosis. The ROC analysis and 
AUCs for 1-, 5-, and 7- year follow-up results confirmed 
the signature was a highly effective tool for predicting 
prognosis. Moreover, the signature showed a significant 
correlation with clinical clinicopathological characters 
in that patients with higher-grade (III–IV) and -stage 
(III–IV) ccRCC had higher risk scores, thereby further 
demonstrating the robustness of prognostic prediction. The 
univariate and multivariate Cox regression results suggested 
that the signature can be utilized as an independent factor 
for the survival of patients with ccRCC. In summary, 
these findings demonstrated excellent prognostic and 
discriminable value of our lncRNAs signature.

The nomogram was further constructed based on age, 
stage, grade, and our signature to predict 1-, 5-, and 7-year 
survival rates of patients with ccRCC. Time-dependent 
ROC verified the effectiveness of our prognostic signature. 
Calibration analysis showed great convergency to the 
standard curve, which demonstrated the superior clinical 
utility of the nomogram. These results may help facilitate 
the individualized treatment of patients with ccRCC. 
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In addition, the tumor microenvironment plays a 
major role in the tumorigenesis and progression of 
cancers, and immunotherapy has promised to be an 
effective treatment for cancers (34). Necroptosis directly 
activates and modulates the inflammatory response, and 
necroptosis regulators, such as RIPK1 and RIPK3, have 
been shown to act independently in inflammation (6). 
Based on the statistical analysis between the association 
between infiltration level and risk score, we found that 
the microenvironment of patients with higher risk scores 
was more prone to immunosuppressive phenotypes, 
which is consist with previous reports and may influence 
immunotherapeutic resistance and efficacy (35,36). 
Consistent with these findings, we further found that 
patients in high-risk group had higher immune and stromal 
scores. Almost all of the expression of immune checkpoints 
was increased in the high-risk group. This underscores that 
necroptosis remodels the ccRCC tissue microenvironment, 
and that the underlying relationship between necroptosis 
and immune cell infiltration needs to be assessed further. 
Additional exploration in the intermediate clinical benefit 
cohort showed that low-risk patients had an improved 
response to immunotherapy, which provides a new 
therapeutic strategy for clinicians.

Finally, we divided patients into two groups using 
K-means consensus clustering. Cluster B included a higher 
fraction of low-risk patients and showed better prognosis 
and was associated with the presence of cold tumors. The 
results suggested that patients can be classified effectively 
according to lncRNA, and that the biological functions of 
the two groups are significantly different. The immune 
infiltration status of hot tumors was more active than that 
of the cold tumors, and hot tumors were also more sensitive 
to immunotherapeutic drugs. These results suggest that 
the lncRNAs selected in our study could not only predict 
prognosis but also guide tumor treatment.

LncRNA is involved in the regulation of protein 
translation and mRNA transcription. Aberrant expression 
of lncRNA is a common biological phenomenon and is 
closely related to the prognosis of cancers (37). LINC00460 
is widely and highly expressed in human cancers and 
acts as a potential oncogene, which is a potential 
biomarker for cancer diagnosis, prognosis, and therapy 
(38). The correlation between lncRNAs and immune 
cells suggests that LINC00460 was highly and positively 
associated with immune status, indicating it might be the 

essential biomarker for the signature. The underlying 
mechanism of LINC00460 needs to be assessed further. 
Moreover, EMX2OS has been reported previously as being 
downregulated in ccRCC tissues and has been found to be 
significantly associated with higher grade, advanced stage, 
and poorer outcome (39). EMX2OS has been found and 
validated as a prognosis-associated enhancer in gastric cancer 
and papillary thyroid cancer (40,41). Additionally, FLJ22763 
is downregulated in gastric cancer tissues and has been 
revealed to play a protective role in the prognosis of gastric 
cancer (42). The results suggest that the lncRNAs selected 
for the signature play an important role in cancer progression 
and might be potential biomarkers for treatment. 

Our study has some limitations. First, the constructed 
signature was only verified internally. Second, because 
our study was a retrospective study and the clinical 
information of patients is prone to bias, prospective 
studies are needed to further validate the findings. Third, 
the ability of the risk score to predict drug response 
needs to be confirmed in sufficiently large samples using 
experimental validation of clinical studies. Finally, the 
specific molecular mechanisms for necroptosis-associated 
lncRNAs in ccRCC need to be investigated further in in 
vivo and in vitro experiments.

Conclusions

A 6 necroptosis-associated lncRNAs prognostic risk 
score model was developed to act as a novel independent 
prognostic  factor for ccRCC. The s ignature was 
positively and significantly correlated with the infiltration 
level of immune cells, such as T follicular helper cells, 
Tregs, and macrophages, which suggests that the risk 
level was correlated with the tumor immunosuppressive 
microenvironment. We also found that patients with a 
lower risk score might benefit from immunotherapy. The 
predictive nomograms of the 6 lncRNA signature may 
help to predict the individual odds of death, which may 
assist clinicians with the selection of precision therapy for 
patients with ccRCC. Samples were identified as either 
hot or cold tumors based on the 6 prognostic lncRNAs 
to help clinicians predict tumor immune status and 
select individual chemotherapy regimens. Necroptosis 
remodels the ccRCC microenvironment, which was 
important for understanding response and resistance to  
immunotherapy.
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