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Phenome-wide association studies identified numerous loci associated with traits and dis-

eases. To help interpret these associations, we constructed a phenome-wide network map of

colocalized genes and phenotypes. We generated colocalized signals using the Genotype-

Tissue Expression data and genome-wide association results in UK Biobank. We identified

9151 colocalized genes for 1411 phenotypes across 48 tissues. Then, we constructed bipartite

networks using the colocalized signals in each tissue, and showed that the majority of links

were observed in a single tissue. We applied the biLouvain clustering algorithm in each

tissue-specific network to identify co-clusters of genes and phenotypes. We observed sig-

nificant enrichments of these co-clusters with known biological and functional gene classes.

Overall, the phenome-wide map provides links between genes, phenotypes and tissues, and

can yield biological and clinical discoveries.
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E lectronic health records (EHR)-linked biobanks coupled
with genome-wide genotyping and sequencing data allows
for the study of the impact of genetic variation on thou-

sands of medical phenotypes simultaneously. Phenome-wide
association analyses have been conducted in several EHR-linked
biobanks and genome-wide association study (GWAS) summary
statistics have been made publicly available for large biobanks
such as the UK Biobank and FinnGen study. For example, GWAS
summary statistics from a phenome-wide scan of the UK Biobank
(UKBB)—a prospective cohort with deep genetic and rich phe-
notypic data collected on approximately 500,000 middle-aged
individuals (aged between 40 and 69 years old) recruited from
across the United Kingdom1—now exists and is a rich resource in
the human genetics community.

Large-scale EHR-linked biobanks with available genetic data,
such as the UKBB, permit the study of the relationship of tens of
thousands of genes and phenotypes simultaneously. However, a
major challenge is an interpretation due in large part to the
complexity and heterogeneity of this wealth of data. Furthermore,
there is a general lack of statistical methods available for such
high-throughput analysis. Hence, only a few efforts have sys-
tematically characterized disease relationships in EHR data2,3.

In this study, we sought to enhance our understanding of the
complex relationship of genes and phenotypes in the medical
phenome by constructing a tissue-level phenome-wide network
map of colocalized genes and phenotypes. Our main motivation
was to create a tool for researchers to evaluate shared links
between colocalized genes and a wide array of phenotypes. The
approach is an extension of the PheWAS approach but instead of
simply uncovering cross-phenotype associations4, the approach
directly generates links between specific colocalized genes and
phenotypes in specific tissues and identifies clusters within these
shared links that reflect meaningful common causal mechanisms
and/or pleiotropic genetic effects. To construct the phenome-
wide map, we first generated tens of thousands of colocalized
expression quantitative trait loci (eQTL) from 48 tissues of the
Genotype-Tissue Expression (GTEx) v7 project5–7, and from
~3800 GWAS of biological and medical phenotypes from the
UKBB. We then applied a bipartite (or two-mode) network
approach8,9 followed by the biLouvain clustering method10, to
identify networks of genes and phenotypes that co-cluster toge-
ther in different tissues, giving us broad insight into the biological
structure of genes, phenotypes, and tissues. Finally, we demon-
strate the functionality of the phenome-wide map by highlighting
co-clusters that are biologically relevant.

Results
We performed three steps to generate the phenome-wide network
map of genes and phenotypes: (1) identification of colocalization
signals of eQTLs and GWAS loci for various continuous and
binary phenotypes in 48 tissues from the GTEx project v7; (2)
construction of a bipartite network using the colocalization sig-
nals to establish links between genes and phenotypes in each
tissue; and (3) identification of co-clusters of colocalized genes
and phenotypes in each bipartite network using the biLouvain
clustering algorithm. A graphical flowchart of the study is shown
in Fig. 1.

Identification of colocalization signals of eQTL and GWAS loci
in multiple tissues. We used coloc211, along with GWAS sum-
mary association statistics available for 3822 phenotypes in UKBB
and eQTL data to identify colocalization signals in 48 tissues from
the GTEx project. Before running coloc2, we performed stringent
quality control (QC) on the phenotypes in UKBB. We removed
phenotypes related to cause of death and case–control phenotypes

with less than 1250 cases (or controls), except phenotypes showing
prior gene/locus association as reported in the NHGRI-EBI GWAS
catalog. In Neale GWAS data, we retained coloc2 results for 496
continuous and binary phenotypes. In SAIGE data, we excluded
case–control phenotypes with less than 200 cases, retaining coloc2
results for 915 case–control (PheCode) phenotypes. We selected
variants with minor allele frequency (MAF) > 0.1% in both Neale
and SAIGE datasets; in GTEX, we included cis-eQTL variants with
MAF >1% from Analysis V7. We restricted our study to the list of
48 tissues (from 620 donors) having a sample size of at least 80. In
total, after QC (see “Methods”), we identified 9151 unique colo-
calized genes for 1411 unique phenotypes across the 48 selected
tissues. Colocalization results for each tissue are reported in Sup-
plementary Data 1. Unsurprisingly, the number of colocalized
genes and phenotypes increases with respect to the GTEx tissue
sample size (from n= 80 for brain–substantia nigra to n= 491 for
muscle− skeletal), reflecting the enhanced statistical power of the
method to uncover colocalized genes (see Supplementary Fig. 1).

Construction of tissue-level bipartite networks. Using the
colocalized data of 9151 genes and 1411 phenotypes, we next
created a bipartite network for each tissue. In brief, a bipartite
network—also called a two-mode network—is a network in which
nodes of one mode (i.e., type) are only connected to nodes of the
other mode, as opposed to a unipartite (or one-mode) network
commonly found in the network literature. In our colocalization
results, phenotypes are not directly connected to other pheno-
types, but could only be indirectly connected to each other
through genes they share, while genes are indirectly connected to
other genes if they appear in the same phenotype. In Supple-
mentary Fig. 2a, a typical graphical representation of a bipartite
network is displayed, comprised of seven phenotypes and six
genes. Associations between genes and phenotypes are indicated
by links (or edges) between them.

For each tissue, Supplementary Data 2 displays the number of
unique colocalized genes and phenotypes, along with the number
of links between the two sets. When all 48 tissues are aggregated,
there are 9151 unique colocalized genes and 1411 unique
phenotypes, with 25,710 unique links between the two sets. We
aggregated the tissues using an unweighted approach which
means that if a link between a gene and a phenotype was found in
more than one tissue, we counted this link only once. In fact, we
observed that the majority of links between a given gene and
a given phenotype are observed in one single tissue, but a few

Fig. 1 Flowchart of the study. The flowchart illustrates all the different
steps of our study. GWAS genome-wide association study, GTEx
Genotype-Tissue Expression, eQTL expression quantitative trait locus.
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links are present in all 48 tissues (see Supplementary Fig. 3 and
Supplementary Data 3).

To characterize and compare colocalization results across
tissues, we computed the average degree of colocalized genes and
phenotypes in each tissue. The degree of a given gene (respectively,
phenotype) is simply the number of unique phenotypes (respec-
tively, genes) connected to it in the network, the average being
taken over the total number of genes (respectively, phenotypes)12.
The average degree for both genes and phenotypes does not vary
much across tissues (see Supplementary Data 2), although it
increases with larger tissue sample size. When aggregating all 48
tissues, each gene is connected to an average of ~2.8 phenotypes,
while each phenotype is connected to an average of ~18.2 genes.
The fact that the majority of gene and phenotype links are observed
in a single tissue and not across all tissues, but the average degree of
genes and phenotypes does not vary across tissues, suggests an
architecture where tissue-specific gene regulatory mechanisms
drive GWAS loci, and the size and structure of these mechanisms
are largely similar across different tissues.

Identification of co-clusters in tissue-level bipartite networks.
To identify structure within the phenome-wide map, we applied a
clustering algorithm, called biLouvain, which extends the well-
known unipartite Louvain clustering algorithm10. This algorithm
efficiently identifies co-clusters of non-overlapping genes and
phenotypes by maximizing a bipartite modularity measure (see
“Methods” for details). Supplementary Fig. 2b illustrates co-
clusters identified by the biLouvain algorithm in the bipartite
network of Supplementary Fig. 2a.

We applied the biLouvain algorithm to identify co-clusters in
each of the tissue-level bipartite networks. We identified a large
number of co-clusters, ranging from 218 co-clusters for tissue
brain-anterior cingulate cortex (BA24) to 314 co-clusters for
adipose–subcutaneous. Across all bipartite networks, we observed
that the majority of co-clusters had a small number of genes and
phenotypes, on one hand, whereas a few co-clusters had a large
number of genes and phenotypes, on the other hand (Fig. 2a,
Supplementary Fig. 4 and Supplementary Data 4). Across the 48
tissues, the vast majority of co-clusters (8389/9472= 88.6%) were

found in only one tissue (Fig. 2b). Hence, the structure of the
phenome-wide map involves hundreds of isolated tissue-specific
subnetworks comprised of a small number of interrelated genes
and phenotypes. Large co-clusters were also identified, although
these are the exception rather than the norm. The complete list of
genes and phenotypes per co-cluster in each tissue is provided in
Supplementary Data 4.

Enrichment analysis of co-clusters with biological and func-
tional gene classes. To demonstrate the functionality of the
phenome-wide map, we tested if the identified biLouvain co-
clusters were enriched with known biological and functional gene
classes. We selected 183 co-clusters consisting of 10 genes or
more, and performed enrichment analysis using PANTHER13,14

on four different annotation types: Biological process (2064 gene
ontology (GO) terms), Cellular component (520 GO terms),
Molecular function (532 GO terms), and 164 different Pathways.
For each co-cluster and each annotation type, we selected the
minimal P value of all Fisher overrepresentation tests, and plotted
it against the expected minimal P value under the null hypothesis
of no enrichment (see “Methods” for details). All four annotation
types demonstrated significant enrichment (Fig. 3). We observed
enrichment in GO terms related to (i) antibody-mediated
immune response, upregulation response to biotic stimulus,
glutathione metabolism, zymogen activation, downregulation of
blood pressure, and cellular nitrogen compound metabolism in
seven co-clusters in the Biological process annotation; (ii) outer
surface of cytoplasmic membrane, and obsolete intracellular part
in two co-clusters in the Cellular component annotation; (iii)
signaling receptor binding, metallopeptidase activity, zinc ion
binding, NADH-dependent glyoxylate reductase, and phospha-
tase activity in five co-clusters in the Molecular function anno-
tation; and (iv) toll-like receptor signaling pathway, muscarinic
acetylcholine receptor 2 and 4 signaling pathway, serine and
glycine biosynthesis, and heterotrimeric G-protein signaling
pathway-Gq alpha and Go alpha mediated pathway in six co-
clusters in the Pathway annotation.

As an example, the most significant pathway detected by
PANTHER is a toll-like receptor signaling pathway for co-cluster

Fig. 2 Characteristics of biLouvain co-clusters across tissues. a Number of genes and phenotypes per co-cluster identified by the biLouvain algorithm.
Diamonds are proportional to the frequency of co-cluster size across all 48 tissues. Both axes are displayed on the log scale. b Number of unique co-
clusters and how many times they appear in a given number of tissues. y axis is displayed in log scale.
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111 comprised of hypothyroidism/myxedema and levothyroxine
sodium medication, and genes TLR1, TLR6, and TLR10 in the
cells—EBV-transformed lymphocytes tissue (Fig. 3a, Table 1, and
Supplementary Fig. 5). Toll-like receptor 1 (TLR1), 6 (TLR6), and
10 (TLR10) genes are located in the same gene cluster on
chromosome 4p14, and they play a fundamental role in pathogen
recognition and activation of innate immunity15. Previous studies
have shown that TLR1 and TLR10 are linked to Graves’ disease16

and Hashimoto’s disease17, which are clinical subtypes of
autoimmune thyroid diseases. Furthermore, variants in CD22618,
and RASGRP119 were found to be associated with autoimmune
thyroid diseases and with thyroid preparations (H03A medication
class, which comprises levothyroxine sodium)20.

In addition to the PANTHER gene set enrichment analysis, we
identified seven co-clusters comprised of known relationships
between genes and phenotypes in relevant tissues (Table 1),
providing strong biological relevance. For example, the same gene
GGCX appears in two co-clusters in related tissues, co-cluster 161
in heart-left ventricle and co-cluster 11 in Whole Blood (Table 1
and Supplementary Figs. 6 and 7). Gamma-glutamyl carboxylase
(GGCX) encodes an integral membrane protein of the rough
endoplasmic reticulum that carboxylates glutamate residues of
vitamin K-dependent proteins to gamma carboxyl glutamate.
Vitamin K-dependent proteins affect a number of physiologic
processes including blood coagulation, inflammation, and pre-
vention of vascular calcification21. Furthermore, a meta-analysis

including the UKBB data identified an intronic variant in GGCX
associated with coronary artery disease (CAD), with inclusion or
exclusion of angina22. Taken together, these results suggest that
the identified co-clusters contain relevant biological information
highlighting functional links between genes and phenotypes.

Comparison between eQTLGen and GTEX. We compared the
colocalizated loci found in GTEX with a larger gene expression
level dataset. The eQTLGen Consortium identified cis-eQTLs in
blood based on a meta-analysis of 37 different cohorts in up to
31,684 individuals23. We reran coloc2 using the same GWAS
summary statistics (Neale and SAIGE) as before, but this time
using cis-eQTL variants from the eQTLGen consortium (see
“Methods”). All colocalization results can be found in Supple-
mentary Data 5. As expected, more unique links between genes
and phenotypes (2474) were discovered compared to links found
using GTEX Whole Blood tissue (1755), most likely due to
increased statistical power. However, we found 430 overlapping
loci (a single colocalized locus can contain more than one gene)
between GTEX and eQTLGen colocalization results in 251 dis-
tinct phenotypes (Supplementary Data 6). After running the
biLouvain algorithm, we compared the clustering obtained in
the colocalized loci from the eQTLGen dataset with those in
the GTEX whole blood tissue. All co-clusters in the eQTLGen
colocalization results are listed in Supplementary Data 7. Large
co-clusters mostly contained the same phenotypes, although the
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colocalized genes could differ between eQTLGen and GTEX. One
such large co-cluster in eQTLGen (co-cluster 42) includes many
of the same phenotypes as in co-cluster 11 in GTEX Whole Blood
(Table 1), and many genes are common to both co-clusters
(DDAH2, FES, PSRC1, FAM177B, RPS12P26, MCL1).

Colocalization with disease case sample size larger than UKBB.
We assessed the effect of using GWAS summary statistics with case
sample size in various diseases larger than in UKBB. Increased case
sample size as observed in consortia data should in theory generate
more colocalized signals than using a population-based cohort such
as UKBB. To this end, we evaluated three GWAS meta-analysis
case–control datasets as generated by three different consortia:
coronary artery disease (CAD) from CARDIoGRAMplusC4D24,
schizophrenia from the Psychiatric Genomics Consortium
(PGC)25, and type 2 diabetes (T2D) from DIAGRAM26. We reran
coloc2 by combining each of these three GWAS datasets with the
same GTEX cis-eQTL dataset used before (all 48 tissues). All
colocalization results are found in Supplementary Data 8 for CAD,
in Supplementary Data 9 for schizophrenia, and in Supplementary
Data 10 for T2D.

Regarding CAD and T2D, many colocalized loci discovered
using either Neale or SAIGE datasets were replicated using
the GWAS meta-analysis consortia data, even though
CARDIoGRAMplusC4D24 defined CAD more comprehensively
as either myocardial infarction, acute coronary syndrome, chronic
stable angina or coronary stenosis >50% (~61,000 CAD cases)
while in Neale and SAIGE, such a composite diagnosis is not
available, only subphenotypes such as heart attack/myocardial
infarction (Neale 20002_1075) or coronary atherosclerosis (SAIGE
PheCode 411.4). In DIAGRAM26, the number of T2D cases
(~55,000 cases, excluding the UKBB cohort) is about three times
the number of cases in Neale (16,183 cases for 2443—Diabetes
diagnosed by a doctor) or SAIGE (18,945 cases for PheCode
250.2—Type 2 diabetes), which enhanced the statistical power to
detect more colocalized signals. By contrast, using the GWAS
summary statistics dataset from the PGC25 largely increased the
number of colocalized signals compared to using either Neale or
SAIGE datasets. No colocalized signal was found with Neale (337
cases for 20002_1289—Self-reported schizophrenia) and only a few
using SAIGE (571 cases for PheCode 295.1—Schizophrenia). The
PGC summary statistics (which include ~37,000 schizophrenia
cases, about 65 times the number of cases using SAIGE) uncovered
many colocalized loci undetected by using either Neale or SAIGE:
for example, genes BNIP3L, CNTN4, THOC7, TRPC4, ZNF823,
CLCN3, PAX6 were prioritized in the context of synaptic location
and function from genome-wide enrichment tests in the latest PGC
schizophrenia meta-analysis27.

Discussion
In this study, we have constructed a tissue-level phenome-wide
network map, called biPheMap, of colocalized genes and phe-
notypes using a bipartite network and biLouvain clustering
approach on 1411 phenotypes and eQTL data from 48 tissues
from the GTEx project. In the phenome-wide map, we observed
the following: (1) the majority of colocalized gene and phenotype
links are observed in a single tissue, implying that tissue-specific
gene regulatory mechanisms drives phenotypic variation; (2) the
majority of co-clusters are comprised of a small number of gene
and phenotype links; (3) specific co-clusters are enriched with
functional gene set annotations; (4) specific co-clusters are
identified with biologically relevant gene, phenotype and tissue
functions.

While most network analyses have focused on unipartite net-
works, this study used the less familiar bipartite approach. Many

such bipartite networks have been studied in different contexts:
actor-movie network in cinema industry, author-scientific paper
networks in academia, pollinator-plant in ecological networks,
etc., but their topological features and related metrics are unique
and different from their more classical unipartite counterpart.
A simpler analysis could have been proposed by projecting the
bipartite network into two unipartite networks to produce a gene-
gene network and a phenotype-phenotype network. However,
this projection method entails a loss of information since the
original links between genes and phenotypes are no longer
available. Such a projection approach was employed in ref. 28 to
create a disease-disease network where more than 500 diagnosis
codes were linked on the basis of shared variant associations.

An important feature of the phenome-wide map is the
exploration and discovery of co-clusters of related genes and phe-
notypes. So far, few community detection algorithms in bipartite
networks could be run in a reasonable amount of time. One fast and
precise algorithm is the biLouvain algorithm10 which maximizes
bipartite modularity, an extension of the modularity measure found
in unipartite network clustering algorithms. The biLouvain creators
compared their algorithm against five state-of-the-art bipartite
community detection algorithms. In their evaluation, they conclude
that biLouvain is always close or equal to the maximum bipartite
modularity achieved by any of the five methods while being
consistently one of the fastest algorithms for the large real-world
datasets tested.

Table 1 displays various examples of gene-phenotype co-clusters
confirming known genetic associations and also suggesting
unsuspected etiological links between phenotypes. We note that
this represents only a small fraction of interesting co-clusters we
chose to highlight in our paper. For example, many epidemiological
and genetic studies have suggested shared loci between migraine
and CAD, and one study identified gene PHACTR1 as the strongest
shared locus between the two disorders29. However, some co-
clusters might also consist of phenotypes being observed as a
consequence of another phenotype. For example, we observed
lipid-lowering medications in the same co-cluster as lipid disorders.

There are numerous limitations to our study that deserve
mention. First, some phenotypes are highly correlated in UKBB,
and therefore, colocalized signals were sometimes redundant in
our phenome-wide map. However, this redundancy provided
some internal replication of the strongest colocalized signals
between Neale and SAIGE association datasets, while sometimes
complementing signals found in one dataset but not in the other
due to different criteria of case and control definition (ICD-10
codes versus PheCodes)30. The PheCode scheme, as utilized in
SAIGE genetic association scans, applies stringent exclusion cri-
teria to prevent contamination by cases in the control group,
which could decrease the statistical power of association tests.
Second, we applied stringent quality control in our phenotype
selection to avoid reporting false colocalized loci. This came at the
expense of missing some loci, especially if the leading associated
variant in a locus is rare (minor allele frequency <0.1%). Third,
the coloc2 method assumes that at most one causal variant affects
both the gene expression and the trait association at the locus
under consideration. In presence of allelic heterogeneity (more
than one causal variant), the false discovery rate is maintained but
coloc2 might suffer a loss of power31. In contrast, a method such
as the regulatory trait concordance (RTC) score assumes that a
GWAS variant and eQTL variant located in the same genomic
region delimited by recombination hotspots tag the same func-
tional variant. In ref. 32, the authors proposed to compute a
probability of shared functional effect, called P(shared), based on
the regulatory trait concordance (RTC) score, and to compare
this probability with PPH4 as generated by coloc. Interestingly,
their simulation study suggests that, knowing the GWAS and
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eQTL P values for every variant in the region, coloc is a better
choice as it uses all the information in the locus. Fourth, the
literature cited to support the links between genes and pheno-
types of co-clusters displayed in Table 1 relies heavily on genetic
associations found in the GWAS summary statistics of European
ancestry participants in UKBB. Incorporation of findings from
diverse ancestry populations will be necessary to yield more
genetic association phenotypes. Fifth, we used the bipartite net-
work approach over the more common unipartite approach,
which limited the set of tools to analyze our results. Fortunately,
the bipartite network and its characteristics are gaining more
attention in the network literature, and future methodological
developments will expand the range of tools and analyses that
could be performed in this type of networks. Sixth, the first
version of biPheMap currently utilizes Neale v1 GWAS summary
statistics and GTEX v7 data. Recently, more GWAS summary
statistic data (e.g., Pan-UK Biobank33) and more recent versions
of GTEX (e.g., GTEX v834) have been published. Furthermore,
additional large-scale phenome-wide association datasets origi-
nating from exome sequencing data (e.g., genebass35) have
become available. We expect subsequent versions of biPheMap
will incorporate these resources as they become publicly available
over time. Seventh, while we recognize that the GWAS of many
binary (case–control) phenotypes in UKBB are underpowered
due to the reduced number of cases for many of them -hence
reducing the power to detect colocalization loci- our study was
more focused at identifying the strongest shared links between
genes and phenotypes in a single population-based cohort.
Nonetheless, to increase the number of colocalization loci, an
alternative route is to include GWAS summary statistics from
other consortia (which usually include more cases than UKBB),
in addition to a larger gene expression level dataset, such as the
whole blood eQTLGen consortium23. Our colocalization analyses
using larger case–control GWAS and/or eQTL datasets inde-
pendently confirmed many colocalized loci found in the biPhe-
Map while uncovering additional ones that were missed due to
the lower number of cases in Neale and SAIGE for CAD, schi-
zophrenia, and T2D. We note that although the eQTLGen whole
blood sample size is much larger than the GTEx whole blood
sample size, the identified cis-eQTLs are based on a meta-analysis
of 37 different cohorts and therefore heterogenous cell type-
composition effects might persist. Finally, some tissues in the
GTEx project involve an in vitro manipulation such as EBV-
transformed lymphocytes. We identified co-clusters and sig-
nificant pathways within EBV-transformed lymphocytes that
warrant cautious interpretation.

In this study, the intention was to report colocalization signals
and identify clusters of phenotypes sharing colocalized genes at
the tissue level. One possible research avenue could exploit the
sharing of eQTLs among biologically related tissues to improve
statistical power to detect colocalized genes at the tissue level. The
recently published method JTI36 leverages this abundance of
shared eQTLs to improve prediction of gene expression levels.
This method relies on prediction models of gene expression, and
has to be distinguished from colocalization methods. This
approach of combining predicted expression data with a coloca-
lization method has been recently proposed37.

In conclusion, we showed that the phenome-wide map can be a
useful resource to understand gene, phenotype, and tissue links
across a wide spectrum of biological classes and diseases. We
expect that further interrogation of the phenome-wide map will
yield more biological and clinical discoveries.

Methods
Datasets. This study uses two resources: (a) the UK Biobank (UKBB) project; and
(b) the Genotype-Tissue Expression (GTEx) project. The UKBB project is a

prospective EHR-linked cohort with deep genetic and rich phenotypic data col-
lected on ~500,000 middle-aged individuals (aged between 40 and 69 years old)
recruited from across the United Kingdom1. Ethics approval for the UK Biobank
project was obtained from the North West Centre for Research Ethics Committee
(11/NW/0382) and all participants provided written informed consent. The GTEx
project is a resource database and associated multi-tissue bank aimed at studying
the relationship between genetic variation and gene expression in different human
tissues5–7.

Colocalization method. We integrated multiple association datasets to assess
whether two association signals, one from a genome-wide association study
(GWAS) on a phenotype, and the other from expression quantitative trait locus
(eQTL) analysis in a tissue, overlap in such a matter that they are consistent with a
shared causal gene. This approach, referred to as colocalization, was conducted
using coloc211, an enhancement of the previously published method coloc38. The
coloc method is a Bayesian approach which computes the posterior probability that
a genetic variant is both associated with the phenotype and the gene expression
level in the tissue. Our coloc2 implementation improves over the original coloc
method by (1) aligning eQTL and GWAS summary statistics in each eQTL cis-
region; (2) estimating the likelihood of mixture proportions of five hypotheses (H0:
no association, H1: GWAS associated only, H2: eQTL associated only, H3: both
associated but not colocalized, H4: both associated and colocalized) from genome-
wide data. These proportions serve as priors in the empirical Bayesian calculation
of the posterior probability of colocalization at each locus. Asymptotic Bayes fac-
tors are averaged across three different values of the prior variance term (0.01, 0.1,
and 0.5)39. We defined a colocalized signal using a posterior probability for H4

(PPH4) ≥ 0.80, as described previously38.

GWAS and eQTL summary statistics. coloc2 requires both GWAS summary data
and eQTL association summary data. For GWAS data, we used two sets from the
UKBB project. The first set of results are GWAS association test statistics publicly
available from the Neale lab (Round 1 in 2419 phenotypes). We selected variants with
minor allele frequency (MAF) > 0.1%. More details on the data quality control and the
full list of phenotypes can be found at www.nealelab.is/uk-biobank. We further used a
second set of UKBB GWAS association statistics computed by the SAIGE testing
method40. In total, 1403 case–control phenotypes (PheCodes) were available. We
selected variants with MAF > 0.1%. Full datasets and list of PheCodes can be
downloaded at https://www.leelabsg.org/resources. For eQTL association signals, we
used data from Analysis V7 of the GTEx project available at https://www.gtexportal.
org/home/datasets. We restricted our study to the list of 48 tissues (from 620 donors)
having a sample size of at least 80. Cis-eQTLs with MAF > 1% were considered as
input for coloc2 (detailed in https://storage.googleapis.com/gtex-public-data/Portal_
Analysis_Methods_v7_09052017.pdf available on the GTEx Portal).

Before running coloc2 on the Neale GWAS data, we performed stringent quality
control. First, we removed results from phenotypes related to cause of death (since
these phenotypes generally had very low number of cases), and we also removed
case–control phenotypes with less than 1250 cases (or controls), except phenotypes
showing prior gene/locus association as reported in the NHGRI-EBI GWAS catalog
(https://www.ebi.ac.uk/gwas/)41. The rationale for excluding phenotypes with less
than 1250 cases (or controls) is based on the recommendation by Neale to keep
only variants with at least 25 minor alleles in the sample of cases (or controls), in
order to avoid inflation in association test statistics due to extreme case–control
ratio imbalance and ensuring reliable P value computation as detailed in http://
www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-
gwas. With the Neale GWAS data, we retained coloc2 results for 496 continuous
and binary phenotypes. In the same vein, before running coloc2 with SAIGE
association data, we excluded case–control phenotypes with less than 200 cases, as
recommended by the authors40. With SAIGE data, we generated coloc2 results for
915 case–control (PheCode) phenotypes.

Construction and descriptive statistics of bipartite networks. To construct the
phenome-wide map of genes and phenotypes using the colocalized data of 9151
genes and 1411 phenotypes, we created a bipartite network for each tissue. In brief,
a bipartite network, also called a two-mode network, is a network in which nodes of
one mode (i.e., type) are only connected to nodes of the other mode (for a review,
see refs. 8,9). Associations between phenotypes and genes are indicated by links or
edges between them.

To characterize and compare colocalization results across tissues, we computed
descriptive statistics adapted to bipartite networks. We computed the average
degree of colocalized genes and phenotypes in each tissue. The degree of a given
gene (respectively, phenotype) is simply the number of unique phenotypes
(respectively, genes) connected to it in the network, the average being taken over
the total number of genes (respectively, phenotypes)12.

biLouvain clustering algorithm. For each tissue, it is expected that the bipartite
network of coloc2 results will tend to cluster in small groups of related phenotypes
with their causally associated genes. To uncover clustering within each network, we
applied the biLouvain clustering algorithm, an extension of the unipartite Louvain
clustering algorithm. This algorithm identifies co-clusters, also called communities,
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of non-overlapping genes and phenotypes through maximization of a modularity
score adapted to bipartite networks (see ref. 10 for details). To decrease the overall
computational time of the algorithm, we opted for the Fuse preprocessing step
before running the co-clustering step per se. In rare occasions, this fusing step
incurred some loss in clustering quality, hence resulting in missing edges in the co-
cluster (e.g., Supplementary Fig. 5).

Comparison between eQTLGen and GTEX. The eQTLGen consortium identified
cis-eQTLs with MAF > 1% based on a meta-analysis of 37 different cohorts in up to
31,684 individuals23. Every SNP-gene combination within a distance <1Mb from
the center of the gene and tested in at least two cohorts were included. We ran
coloc2 using as input the same GWAS summary statistics (Neale and SAIGE) and
cis-eQTL variants from the eQTLGen consortium. An overlapping locus between
GTEX and eQTLGen was reported if one signal found in one set of colocalization
results overlapped within 2Mb in the other set of results (as a consequence, many
genes may appear in the same locus). The biLouvain algorithm was run in
eQTLGen colocalization results using the same options as in GTEX results.

Colocalization with disease case sample size larger than UKBB. In order to
assess the effect of using GWAS summary statistics with case sample size in various
diseases larger than in UKBB, we downloaded three GWAS meta-analysis
case–control datasets as generated by three different consortia: coronary artery
disease from CARDIoGRAMplusC4D (60,801 cases and 123,504 controls)24,
schizophrenia from the Psychiatric Genomics Consortium (36,989 cases and
113,075 controls)25, and type 2 diabetes from DIAGRAM (55,005 cases and
400,308 controls, after excluding UKBB participants)26. We ran coloc2 by com-
bining each of these three GWAS datasets with the same GTEX cis-eQTL dataset
used before (all 48 tissues).

PANTHER enrichment analysis. To test if biLouvain co-clusters were enriched
with some functional gene classes, we selected 183 co-clusters consisting of 10
genes or more, and input them into the online PANTHER enrichment analysis
tools13,14. We applied Fisher overrepresentation tests on four different annotation
types: Biological process (2064 Gene Ontology (GO) terms), Cellular component
(520 GO terms), Molecular function (532 GO terms), and 164 different Pathways.
For each co-cluster and each annotation type, we took the minimal P value of all
Fisher tests, and plotted it against the expected minimal P value under the null
hypothesis of no enrichment. We assumed that P values within each annotation
type are independently distributed uniformly over the interval (0,1), which
represents a conservative approach. Note that the minimal P value of n indepen-
dent P values from a Uniform (0,1) is not uniformly distributed under the null: its
cumulative density function is instead given by

Prob X ≤ xð Þ ¼ 1� 1� xð Þn; 0< x < 1: ð1Þ

In each panel of Fig. 3, we plotted a straight line with slope equal to 1, which
crosses the y axis at x= (observed 1st quartile – expected 1st quartile) using the
above expected cumulative density function. Gene enrichment was deemed
significant if the minimal P value was less than 0.05/(183 × 4)= 6.8 × 10−5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All colocalized results analyzed in this study are available through a R Shiny app called
biPheMap at https://rstudio-connect.hpc.mssm.edu/biPheMap/. This research has been
conducted using the UK Biobank Resource under Application Number “16218”. UK
Biobank data is available to researchers upon approval of an application form at https://
www.ukbiobank.ac.uk/. The GTEx Analysis V7 dataset can be freely downloaded at
https://www.gtexportal.org/home/datasets. At the time of our colocalization analysis, we
utilized Round 1 of Benjamin Neale’s lab GWAS summary statistics in the UK Biobank.
The Round 1 results are no longer accessible and has since been replaced by a more
recent Round 2, which can be freely downloaded at http://www.nealelab.is/uk-biobank.
Seunggeun Lee’s lab GWAS summary statistics in the UK Biobank using SAIGE can be
freely downloaded at https://www.leelabsg.org/resources. The full cis-eQTL summary
statistics from the eQTLGen Consortium are publicly available at https://www.eqtlgen.
org/cis-eqtls.html. GWAS summary statistics from CARDIoGRAMplusC4D (http://
www.cardiogramplusc4d.org/data-downloads/), the Psychiatric Genomics Consortium
(https://pgc.unc.edu/for-researchers/download-results/), and DIAGRAM (https://
diagram-consortium.org/downloads.html) are publicly available and can be freely
downloaded.

Code availability
R codes to run coloc2 are available at https://github.com/Stahl-Lab-MSSM. The
biLouvain algorithm may be downloaded and installed by following instructions at

https://github.com/paolapesantez/biLouvain. The PANTHER classification system is
available at http://www.pantherdb.org/. R software and packages (https://cran.r-project.
org/) were used to analyze the data and generate the figures, except Fig. 1, which contains
graphical elements from a free version of Canva (https://www.canva.com/en/).
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