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Abstract: Ultrasonic nanocrystal surface modification (UNSM) is a unique, mechanical, impact-based
surface severe plastic deformation (S2PD) method. This newly developed technique finds diverse
applications in the aerospace, automotive, nuclear, biomedical, and chemical industries. The severe
plastic deformation (SPD) during UNSM can generate gradient nanostructured surface (GNS) layers
with remarkable mechanical properties. This review paper elucidates the current state-of-the-art
UNSM technique on a broad range of engineering materials. This review also summarizes the
effect of UNSM on different mechanical properties, such as fatigue, wear, and corrosion resistance.
Furthermore, the effect of USNM on microstructure development and grain refinement is discussed.
Finally, this study explores the applications of the UNSM process.

Keywords: ultrasonic nanocrystal surface modification; severe plastic deformation; gradient nanos-
tructured layers; microstructure; mechanical properties

1. Introduction

A dynamic and challenging working environment demands components with su-
perior surface integrity and surface mechanical properties. Enhanced surface integrity
and surface mechanical properties play a paramount role in improving the longevity of
engineering materials. The literature revealed that more than 80% of mechanical engi-
neering failure, including fatigue, corrosion, and wear, originates from the surface of the
components [1]. These failures depend on the surface microstructure and surface properties
such as surface hardness, surface roughness, and residual stress state rather than bulk
properties [2]. The failure of the mechanical component during their service life brings
enormous economic loss. Failures originating from the surface can be prevented by con-
trolling the surface microstructure and the mechanical properties [3–6]. It is well known
that inducing a nanostructured layer on a substrate surface can prevent crack initiation
and propagation. The nanostructuring can be conducted either by coating deposition or
by adopting different surface modification techniques. However, coating deposition may
induce tensile stress between the coating and the substrate, which initiates microcracks. In
recent years, surface modification using severe plastic deformation (SPD) techniques or
surface nanocrystal (SNC) modification treatment has been widely perceived to improve
the surface mechanical properties and surface integrity [7,8]. These treatments induce
a nanostructured layer on the surface without affecting the chemical composition of the
substrate. These methods can prevent crack initiation and propagation, thereby preventing
the onset of the failure. Researchers used various SPD techniques, such as shot peening
(SP) [9–11], severe shot peening (SSP) [12–14], ultrasonic impact peening (UIP) [15,16],
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ultrasonic shot peening (USP) [17–19], laser shock peening (LSP) [20–22], direct and indi-
rect laser shock patterning [23–25], ultrasonic surface rolling process (USRP) [26–29], and
surface mechanical attrition treatment (SMAT) [30–32], to enhance the surface properties.
These SPD techniques help to introduce residual compressive stress (RCS) and surface
hardening. During the process, gradient nanostructured surface (GNS) layers contain-
ing high-density dislocations, twinning, high-angle grain boundaries, and subgrains are
formed [33,34]. In the GNS layer, a gradient variation of grain size or lamella thickness
is observed. The size varies from the nanoscale on the surface to the microscale in the
core of the substrate material [35]. This gradient microstructure can provide the optimum
combination of strength and ductility based on the Hall–Petch relationship [36,37]. Surface
hardening and nanostructuring during SPD can enhance the wear, fatigue, and corrosion
resistance [38].

Even though these SPD techniques improve surface integrity, scholars have searched
for techniques that can provide superior control over plastic deformation and surface
roughness. In their detailed review, John et al. [8] explained a new SPD technique named
“USRP” and its benefit when applied to various engineering materials. They summarized
that this method could improve surface mechanical properties without much surface
roughness and provide superior control over plastic deformation, which other techniques
did not address appropriately. However, a significant increase in surface roughness during
multiple passes was an issue observed in USRP. Furthermore, they revealed that the
surface hardened during previous rolling passes, and immobile dislocation hindered
further plastic deformation and grain refinement. Therefore, scholars put extensive research
into developing a method that could accurately control plastic deformation of the treated
specimen without much increase in surface roughness. Subsequently, scholars developed
another new SPD technique named ultrasonic nanocrystal surface modification (UNSM),
which is considered to be a fully controlled metal-dimpling process. The striking density
during UNSM is controlled with a computer numerical controller (CNC) to produce a
uniform structure with precise control of the surface uniformity [39]. The striking density
is such that it produces a micro cold forging which induces severe plastic deformation.
Appropriate selection of the process parameters can control the microstructure of the
GNS layer, and the surface performance of the substrate can be further improved. In
addition to that, the CNC machine tools allow the UNSM process to create an innovative
surface on complex geometries without much rise in surface roughness. Furthermore,
the mechanical impact can be superimposed with ultrasonic vibration, which allows a
precise uniformity in peening. The process parameters can be selected in such a way
that the gradient microstructure developed can be accurately controlled, and surface
performance can be further improved. The UNSM technique is recommended when
superior mechanical properties are the primary concern. The ability of superior control over
surface roughness and surface deformation makes it the ideal candidate for strengthening
mechanical components when working in extreme and dynamic conditions.

UNSM is a patented technology that uses low-frequency ultrasonic vibrations su-
perimposed on a static load that strikes the substrate surface up to millions of times per
second and induces SPD and GNS layer on the substrate surface [40]. UNSM is a high
strain rate SPD technique, and the plastic deformation induced due to the mechanical
impact improves the substrate’s performance and property. The thickness of the GNS layer
depends on the chosen frequency of ultrasonic vibration, static load, and the diameter of
the ball, the properties of the ball material, and the substrate [41].

The surface after UNSM treatment has reduced surface roughness and superior me-
chanical property. UNSM possesses advantages such as ease in operation, low cost, bet-
ter controllability, and high-efficiency [42]. Scholars have explored many metallic ma-
terials whose surface integrity and surface mechanical properties have been improved
through the UNSM technique. These are not limited to steel grades [33,34,43–45], titanium
alloys [46–49], aluminum alloys [50–52], nickel-based superalloys [53–55], magnesium
alloys [56,57], copper alloys [58,59], shape memory alloys [60–62], and high entropy al-
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loys [63,64]. Similarly, it can enhance the surface integrity of the components manufac-
tured through different processing routes, such as additively manufactured (AM) [61,65],
sintered [42], and case hardened components [66–68]. Researchers demonstrated the
effect of UNSM on different materials which reveals the improvement in surface hard-
ness [40,43,57,69,70], introduction of RCS [67,69–72], enhanced fatigue strength [43,69,71,72],
superior grain refinement [43,57,67,73], enhanced wear resistance [40,57,73], improved cor-
rosion resistance [57,70] and reduction in surface roughness [61,74,75].

Numerous reviews on different surface modification techniques are available, ensuring
superior mechanical properties. For example, Liu et al. [49] provided a detailed review
of the UNSM technique on titanium and titanium alloys. They demonstrated superior
tribological properties, enhanced fatigue properties, and improvement in other mechanical
properties. However, no review article demonstrates the beneficial nature of UNSM on
various engineering materials. Surface modification through UNSM is unexplored and
needs to be reviewed comprehensively for various industrial applications. This review
paper aims to give a comprehensive overview of the UNSM technique. Section 2 discusses
the mechanism of the UNSM. The microstructural development and features of UNSM-
treated substrate materials are elucidated in Section 3. The effect of UNSM on mechanical
properties is summarized in Section 4. Recent advances are summarized in Section 5.
Finally, potential applications of UNSM are explained in Section 6.

2. Mechanism of UNSM

UNSM is presented as an effective, energy-efficient, and economical surface modi-
fication technique that can potentially enhance a treated material’s surface integrity and
mechanical properties. UNSM is a cold forging technique that induces SPD through the
impact of the ball tip on the component’s surface with a very high strike rate. UNSM works
on the principle based on transforming a harmonic oscillation into impact energy on the
surface imposed with an ultrasonic frequency [76]. A static load is applied to the ball tip
and is driven by an ultrasonic transducer which produces tens of thousands of waves per
second. The amplitude generated by the ultrasonic generator is in the range of micrometers,
which is amplified by an acoustic horn. Hard tungsten carbide (WC) or silicon carbide
(SiC) materials are usually used as ball tips. Ultrasonic cold forging technology (UCFT) is
another common name used for UNSM. However, the most used name is UNSM. Figure 1
demonstrates the working of UNSM.
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Figure 1. Schematic of UNSM process.

A standard UNSM system consists of an ultrasonic wave generator and an air com-
pressor. The static load is produced by compressed air, inducing optimum properties on
the specimen surface. UNSM is controlled to perform homogeneous impact strikes and
give more accurate control intensity during each sway. Equation (1) shows that the load
applied on the surface is the sum of the static and ultrasonic waves [76]. Fs is the static load
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applied, and Fu is the load added by the ultrasonic waves. Fu changes with processing
frequency asω is 2πf, where f is frequency. Therefore, the load intensity can be changed by
changing the Fs component.

Load on the specimen surface = Fs + Fu sin(ωt) (1)

The load wave pattern shown in Figure 2 demonstrates the load acting on the substrate
and the force applied. UNSM causes the formation of the nanostructured surface with the
GNS layer, demonstrating the synergistic effect of the mechanical impact and ultrasonic
vibration. This way, UNSM can provide improved surface mechanical properties and
surface integrity.
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3. Effect of UNSM Treatment on Microstructure Development

UNSM is an SPD technique that can generate a nanocrystalline layer at the mate-
rial’s surface, leading to significant improvements in mechanical properties, performance
level, and useful life of the component [41,45,77]. The extent of formation of the nanocrys-
talline layer (scale, depth, distribution of nanocrystallites, etc.) depends on the processing
parameters and the material being considered [40,45,77,78]. Important processing parame-
ters are load on the specimen surface (which itself has two components, as presented in
Equation (1)), vibration strike numbers per unit area, the amplitude of impact, and the
diameter of the impacting ball [45,77–79]. During UNSM, the energy is transferred from the
impacting ball to the material surface. The amount of transferred energy can be compared
using strain energy density E as given in Equation (2) [71,79].

E = (FNA)/d (2)

Here, E refers to the energy density available for deformation; also called deformation
energy density, it is the amount of elastic and plastic deformation energy transferred to the
material surface via the UNSM; F is the load used, N is the number of impacts per area,
A is the ultrasonic wave amplitude, and d is the ball tip diameter. In turn, N is obtained
using Equation (3)

N = (60f)/(vs) (3)

Here, f is the ultrasonic vibrations, v is the scanning speed of the ball tip, and s is the
interval between straight-line paths. In general, an increase in strain energy density (E)
increases the amount of strain energy transferred to the surface, hence making it easier
to refine the crystal grain. However, the transferred energy dissipates in different ways,
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such as by loss due to adiabatic heating, defects, and elastic and plastic strain energy. For
nanocrystalization, the fraction of plastic strain energy is important, but the fraction itself
is a function of the processing variables and material parameters.

High values of plastic strain energy induce SPD in the material. In UNSM, deformation
is limited to the material’s surface and hence is also called surface severe plastic deformation
(S2PD) [45,78]. During each ball’s impact, the deformation is limited to a certain depth
from the material’s surface, causing extensive microstructure refinement. The depth and
extent of the refinement increase with repeated impact on the surface. The fineness in
the microstructure increases, and the lattice becomes distorted due to accumulated micro-
strain. Micro-strain in the lattice leads to the formation of the nanostructures. The degree
of refinement reduces along the depth direction [40,45,77]. The repeated impact is also
responsible for micro-dimples forming on the substrate surface [40]. S2PD during UNSM
created deformation with strain rates ranging from 0.5/s to 106/s.

A large strain refines the metal surface by slips, twins, shear bands, etc., creating
nanostructures at the surface. It can produce a nanocrystalline surface layer with depths
ranging from micrometers to a few tens of micrometers. Gradual transitions in grain
size and strain from the surface to the interior lead to a nanostructured material [71].
Using CNC tools, it is possible to position the tool head, precisely leading to a surface
that is uniformly modified throughout the surface. Figure 3 presents a schematic of the
arrangement producing a modified surface on the material.
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Nanocrystallization in different materials

The mechanism of the deformation and refinement of the microstructures during the
impact of the UNSM tool head varies from material to material. It is also to be noted that the
nanocrystalline surface formation depends on the amount of local strain and the strain rate,
temperature, multi-directional deformation, alloying elements, presence of a second phase,
etc. [71]. In materials with high stacking fault energy (SFE), such as aluminum and iron,
grain refinement involves the formation and rearrangement of dislocations in the form of
dense walls and dislocation tangles. Many dislocations are induced in the metallic systems
using a high strain rate at low temperatures. When the strain exceeds the threshold value,
lattice rotation begins, and the misorientation angle increases, generating nanocrystals.
Here, the key to the nanocrystallization of the bulk is to introduce grain boundaries in the
surface layers so that its microstructure is transformed into nanocrystallites [30,40,80,81].
For materials such as copper (SFE- 78 mJ/m2), dislocation manipulation and rearrangement,
deformation twinning forming nanoscale twin-matrix lamellae bundles, and shear banding
in the twin/matrix lamellae are the mechanisms of grain refinement [71,82]. In the case of
materials such as austenitic stainless steels (ASS), planar dislocation arrays and twins and
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the intersection of multi-directional twins generate subdivision in the grains. This, along
with the strain-induced martensitic transformation, is responsible for the refinement and
formation of the nanocrystals. Here, the initial sample would be austenite, and after UNSM,
the surface microstructure would be an extremely fine martensite [83–85]. In some systems,
refinement and nanocrystallization occur by refining the lath martensite and rearranging
the martensite units [86].

In the case of double-phase materials, the softer phase is refined first. The presence
of a harder phase promotes refinement in the softer phase. Moreover, it is reported that
with an increased fraction of the harder phase, the smaller grains are nucleated near the
interface between the soft and hard phases due to the easiness of dislocation formation in
the soft phase near the hard phase. There are also situations wherein the harder phase is
refined first, and then, the dissolution of the second phase particles is reported, as in [87–89].
There is another set of materials (such as Mg alloys) where the number of slip systems is
limited. Dislocation slip is possible only with selected grains and orientations. Because of
the imposed SPD conditions, shear bands are generated within a single grain in multiple
directions. Some of the shear bands cross the grain boundaries and continue in nearby
grains. In such systems, shear bands initiated at the surface during UNSM propagate
to the interior, causing refinement of the grains; the extent is greater at the surface [57].
Whatever the material may be, the UNSM-treated material surface exhibits a top surface
that experiences the highest energy effect (most of the time nanocrystallization), followed
by regions affected relatively less and finally by unaffected substrate material. Figure 4
represents the gradient microstructure and micro-dimples produced after UNSM.

Nanomaterials 2022, 12, x 6 of 34 
 

 

and shear banding in the twin/matrix lamellae are the mechanisms of grain refinement 
[71,82]. In the case of materials such as austenitic stainless steels (ASS), planar dislocation 
arrays and twins and the intersection of multi-directional twins generate subdivision in 
the grains. This, along with the strain-induced martensitic transformation, is responsible 
for the refinement and formation of the nanocrystals. Here, the initial sample would be 
austenite, and after UNSM, the surface microstructure would be an extremely fine mar-
tensite [83–85]. In some systems, refinement and nanocrystallization occur by refining the 
lath martensite and rearranging the martensite units [86]. 

In the case of double-phase materials, the softer phase is refined first. The presence 
of a harder phase promotes refinement in the softer phase. Moreover, it is reported that 
with an increased fraction of the harder phase, the smaller grains are nucleated near the 
interface between the soft and hard phases due to the easiness of dislocation formation in 
the soft phase near the hard phase. There are also situations wherein the harder phase is 
refined first, and then, the dissolution of the second phase particles is reported, as in [87–
89]. There is another set of materials (such as Mg alloys) where the number of slip systems 
is limited. Dislocation slip is possible only with selected grains and orientations. Because 
of the imposed SPD conditions, shear bands are generated within a single grain in multi-
ple directions. Some of the shear bands cross the grain boundaries and continue in nearby 
grains. In such systems, shear bands initiated at the surface during UNSM propagate to 
the interior, causing refinement of the grains; the extent is greater at the surface [57]. What-
ever the material may be, the UNSM-treated material surface exhibits a top surface that 
experiences the highest energy effect (most of the time nanocrystallization), followed by 
regions affected relatively less and finally by unaffected substrate material. Figure 4 rep-
resents the gradient microstructure and micro-dimples produced after UNSM. 

 
Figure 4. Schematic presentation of the grain refinement on the surface of a material subjected to 
UNSM. The numbers are only typical ones corresponding to a set of parameters in the selected ma-
terial. 

There are many research investigations on developing nanostructured surfaces using 
UNSM. The following section elucidates the generation of nanostructures in nonferrous 
and ferrous-based materials subjected to UNSM. 

3.1. Nanostructures on the Surface of UNSM-Treated Nonferrous Materials 
Oh et al. [52] explored UNSM to develop nanostructures on the surface of Al5083 

material. The initial grain size was 132 μm, and after UNSM, it was reduced to an ultrafine 
size (~1 to 1.5 μm), with Mg-rich precipitates of approximately 50 nm being embedded in 

Figure 4. Schematic presentation of the grain refinement on the surface of a material subjected to
UNSM. The numbers are only typical ones corresponding to a set of parameters in the selected
material.

There are many research investigations on developing nanostructured surfaces using
UNSM. The following section elucidates the generation of nanostructures in nonferrous
and ferrous-based materials subjected to UNSM.

3.1. Nanostructures on the Surface of UNSM-Treated Nonferrous Materials

Oh et al. [52] explored UNSM to develop nanostructures on the surface of Al5083
material. The initial grain size was 132 µm, and after UNSM, it was reduced to an ultrafine
size (~1 to 1.5 µm), with Mg-rich precipitates of approximately 50 nm being embedded
in the Al-based matrix. The extent of refinement was maximum at the surface, and the
effect of UNSM reduced along the depth direction, producing a gradient of nanostructures.
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Maleki and Teimouri [58] explored obtaining a nanocrystalline copper surface using UNSM.
They started with a copper of initial grain size equal to 13 µm and with UNSM were able to
achieve 2 µm grains. They proposed that further work with different parameters should
be explored to obtain the nanostructured copper surface. Amanov et al. [81] used UNSM
to introduce grain refinement at the surface of a Ti alloy, namely Ti6Al4V. Their process
parameters generated a deformation depth of about 60 µm. The deformation depth is a
function of temperature during processing. The top region deformed at a very high strain
rate (103/s to 105/s), leading to extensive grain refinement and producing nanoscaled
grains at the surface. Their activity and the dislocation density increased drastically during
UNSM. The dislocation movement, dislocation–dislocation interaction, dislocation–grain
boundary, dislocation pile-up, etc., increased extensively, contributing further refinement.

Furthermore, Zhang et al. [90,91] explored the use of UNSM to improve the fatigue
property of 3D-printed Ti6Al4V. The initial microstructure consisted of acicular martensite
(α’) morphology. After UNSM treatment, a plastically deformed surface was observed,
but deformed martensite could not be differentiated in the scanning electron microscope
(SEM). However, in XRD, SPD was observed in the form of peak broadening. The peak
broadening was attributed to a reduction in grain size and an increase in dislocation density.
Amanov and Pyun [88] subjected Ti6Al4V to UNSM at different temperatures to explore the
possibility of nanostructuring at the surface. The X-ray analysis indicated nanostructuring
and residual stress at the surface. Liu et al. [92] explored UNSM to bring nanocrystallization
to the surface of Ti6Al4V. The initial material had a βmatrix in which equiaxed α grains
were embedded uniformly. On UNSM, a 10 µm thick layer was deformed. On the top,
(1.8 µm depth) nanocrystals of a 25 nm to a 95 nm size were observed. They had irregular
boundaries, and in some places, the boundaries were also not clear. These were attributed
to deformation during UNSM. Figure 5 presents transmission electron micrographs (TEMs)
of nanocrystals on the surface of UNSM-treated Ti6Al4V.
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Amanov and Umarov [93] used UNSM to modify the surface microstructure of the
Inconel 690 alloy. The untreated material had a nickel-based matrix with an average grain
of 32 µm with Cr-rich precipitates along the grain boundaries and TiN inclusions in the
matrix and along the grain boundaries. On UNSM, the surface became nanostructured
with grains on the scale of 200 nm, as shown in Figure 6. It had extensive mechanical
twins with different orientations. Considerable dislocation activity was observed, leading
to dislocation accumulation at the grain boundaries, dislocation tangles, and dislocation-
assisted sub-boundaries. All these changes led to nanostructuring at the surface, which is a
function of the depth from the surface.

Maleki et al. [54] used UNSM to create nanostructures on the surface of the Inconel
718 alloy. They varied the static force in the range of 10 to 50 N by keeping the other
parameters constant. The alloy’s initial grain size was about 40 µm, which was reduced
to 22 nm (average value measured using X-ray analysis at the surface). The total UNSM
affected region was measured at close to 160 µm. Kottoura et al. [69] investigated the
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effect of UNSM on the Inconel 718 plus alloy. They noted that from an initial grain size of
32 µm (with embedded 30 nm–50 nm sized Υ’precipitates) the microstructure changed to a
nanostructured one at the surface. At the top surface (~1 µm), the crystallites ranged from
10 nm to 50 nm. Below this, the layer had a very high dislocation density with extremely
thin deformation twins. In addition, the region presented a cellular structure.
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3.2. Nanostructures on the Surface of UNSM-Treated Ferrous Materials

The effect of UNSM and the creation of nanocrystallites on the ferrous substrate
depends on the type and composition of the substrate. Cao et al. [43] investigated the
effect of UNSM on S45C steel. They observed that SPD induces nanograins, and the grain-
size gradient develops along with the depth of the steel, without a change in chemical
composition. The formation of the nanostructured surface layer from the initial coarse
polycrystals involves the generation of dislocations and twinning and the developing of
grain boundaries with high-angle misorientation. Using UNSM, from an initial 30 µm grain
size, they generated grains of the scale of 50 nm. Though the depth of the nanostructured
region was a function of the vibration strike number, the relation was non-linear. By
varying the strike numbers from 34,000 times/mm2 to 68,000 times/mm2, they generated
a nanostructured layer thickness of 2 µm to 30 µm. Wu et al. [71] varied static loads in
the ranges of 50 N, 60 N, and 70 N to explore the effect of UNSM on S45C steel. The
initial material was quenched and tempered with a 20 µm average grain size. Considerably
tempered sorbate was observed. After UNSM, they observed a refined layer ranging from
30 µm to 55 µm in depth. X-ray diffraction analysis presented a widening of the diffraction
peak, indicating considerable grain refinement. Jo et al. [94] explored the effect of the
processing angle during UNSM of S45C steel. They reported a deformation depth of as
much as 330 µm. Amanov and Karimbaev [95] explored the effect of UNSM on AISI 4150H
steel. Due to water quenching, the base material had a quenched martensite structure,
which was refined extensively to generate scale 55 nm–60 nm nanocrystals. Karimbaev
et al. [96] treated AISI 4340 steel with UNSM, and they produced a hardened layer of a
depth of 275 µm, and at the top, nanograins of 76 nm were observed. Karademir et al. [97]
modified the surface of S500 MC automobile steel using UNSM. The initial grain size was
3.7 µm, and after UNSM, they reported an SPD’ed depth of 60 µm, in which the average
crystallite size was 100 nm, as shown in Figure 7. The EBSD measurements indicated that
more than 85% of the grains were less than 200 nm at the top surface.

Zou et al. [98] modified the surface of DZ2 axle steel using UNSM. They reported
three distinct zones in the deformation zone produced due to UNSM. The three zones are a
severely deformed topmost surface layer, a transitional layer affected by the shear stress,
and an unaffected matrix with equiaxed and coarse grains. They noted that the grains
in the topmost layer are compressed and elongated due to static pressure and ultrasonic
vibration. The extent of deformation was a function of the number of passes. After the
fourth pass, the total deformation depth was 311 µm. Using full width half maximum
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(FWHM) measurements in X-ray diffraction, they concluded that the top surface had
nanocrystallites in the range of 16 nm. Amanov et al. [40] modified the surface of SAE
52100 bearing steel using the UNSM technique. The initial grain size was in the range of
1500 nm. On UNSM, a 100 µm thick modified surface was observed. In this, the top 10 µm
thick layer exhibited nanocrystallites on the scale of 50 nm, followed by slightly coarser
crystallites of 100 nm (between 10 µm to 30 µm depth). The crystallite size was in the range
of 500 nm, in the depth range of 30 µm–100 µm.
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Further down the depth, there was the original grain structure. Zhao et al. [77]
subjected 300 M steel to UNSM treatment. The base material was a low alloy, ultra-high-
strength steel with tempered martensite as the matrix. S2PD using UNSM caused an
increase in dislocation density, grain boundaries, and grain refinement. The microstructure
was affected up to a depth of 200 µm. The top part (~32 µm) presented refined grains. The
top layer presented nanoscale grains (Figure 8). Below the nanoscale grains, the martensite
was elongated along the scanning direction and distorted.
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Zhao et al. [86] explored the use of UNSM to improve the microstructure of A100
steel to enhance fatigue resistance. The initial martensite was lath martensite with random
orientation. After UNSM treatment, the top material up to a depth of about 29 µm was
severely deformed. Here, the lath martensite was extensively refined, and the martensite
lattice was distorted. The dislocation multiplication and rearrangement were extensive.
Even within that, the top 4.1 µm layer was severely deformed, and the martensite was
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refined greatly. Kim et al. [45] studied the effect of UNSM on AISI M4 tool steel. Before
UNSM, the microstructure consisted of austenite and martensite with minor quantities of
vanadium carbide, molybdenum carbide, and WC. On UNSM, the austenite was trans-
formed to martensite. This transformed martensite was extremely fine, and they observed
more at the surface. This martensite lattice was heavily distorted and strained.

Kim et al. [79] studied the effect of UNSM on AISI D2 tool steel. They explored the role
of quench heat treatment given to AISI D2 tool steel on the modification brought by UNSM.
The substrate material without heat treatment had a ferritic matrix and a higher strain-
hardening capacity. Because of higher ductility, more deformation energy was transferred
during the UNSM treatment. The deformation was extended up to 500 µm. Because of
the ductility, the extent of deformation was greater, and considerable pile-up took place
during each impact. The pile-up was flattened, with re-pile-up during successive pile-ups,
increasing the grain refinement. In the case of tool steel, the initial microstructure was
martensite with embedded fine carbides with a pre-quench treatment. The martensite was
consolidated during each impact of the ball. However, pile-up and strain hardening were
not considered due to limited ductility. Excessive coverage leads to microcracks at the
bottom of the pile-up material. Eventually, these would peel off as small chips.

There are research works on the nanocrystallization of stainless steel (SS) surfaces
using UNSM. Many of these works report the formation of strain-induced martensite
on a small scale. Cherif et al. [99] subjected AISI 304 to UNSM treatment. The residual
stress analysis revealed that a 0.4 mm depth is affected during UNSM. They reported
the formation of strain-induced martensite of a fine scale, up to 35% at the top surface.
Moreover, the value of the martensite was more than that obtained from shot peening
and deep rolling. Yasuoka et al. [44] reported a gradient in the nanocrystalline plastic
deformation layer, up to a depth close to 200 µm. They varied the static load from 70 N to
130 N and observed that the 90 N load gave the highest nanocrystallization. They observed
that the surface of the steel was a mix of microstructures of austenite and martensite, as
shown in Figure 9. The microstructure scale was several nanometers. At a depth of 20 µm,
the scale of the microstructure was a couple of hundred nm. They also reported that SPD
associated with 50 microseconds is optimum for rapid martensite transformation. Still,
it suppresses the growth of martensite units, and the condition controls the scale of the
nanocrystals within several nanometers.
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Ye et al. [41] generated a nanostructured layer on the surface of SS304 using UNSM to
improve its mechanical properties. They noted that the effect of UNSM is highest on the
surface, leading to 100% martensite at the surface. A strain gradient was observed along
with the depth, and the martensite fraction was gradually reduced. At a depth of 80 µm, the
martensite fraction was 5%. TEM analysis revealed that nanograins of 4.1 nm at the surface
and 18 nm at a 10 µm depth were observed. This is an extensive grain-size refinement
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considering that the initial grain size was 20 µm. Cho et al. [85] subjected AM’ed AISI
316L to UNSM. They noted that more energy density during UNSM leads to increased
refinement, producing a gradient in the microstructure from the surface.

4. Effect of UNSM Treatment on Fatigue, Wear, and Corrosion Properties

Surface roughness and surface morphology are two critical parameters that predom-
inantly affect the engineering material’s fatigue, wear, and corrosion properties. Conse-
quently, surface modification techniques are widely employed to prevent failure originating
from the surface and to extend the service life. Fatigue performance is an important property
that can affect the stability of the components used for structural, automotive, and aerospace
applications [100]. Cao et al. [43] performed fatigue experiments on S45C steel subjected to
UNSM, with three vibration strike numbers of 34,000, 45,000, and 68,000 times/mm2. The
specimens corresponding to these vibration strikes were UNSM C1, UNSM C2, and UNSM
C3. The authors revealed that with an increase in the vibration strike numbers, the SPD
layer thickness increases from 2 µm to 30 µm, and the surface roughness decreases from
1.49 µm to 1 µm. As the vibration strike numbers increase, the fatigue limit is increased.
The reduction in the slope of the stress versus the number of cycles to failure (S-N) diagram
is a clear depiction of the enhanced fatigue limit. In addition, the authors observed a 33%
increase in fatigue strength, corresponding to vibration strikes of 68,000 times/mm2, com-
pared to the untreated S45C steel. The authors studied the fatigue fracture surface, and it is
presumed that sub-surface fisheye cracks could cause fatigue fracture when the static load
is increased. The surface crack growth diagram in Figure 10 validates the presumption that
the nanostructured layer delays the crack initiation. The effectiveness of the nanostructured
layer in delaying fatigue crack initiation leads to a greater endurance limit of the UNSM C3
substrate. The crack propagation through the nanostructured layer is very slow, and after
that, it is very fast and, subsequently, a catastrophic failure. They summarized that UNSM
could effectively hinder the propagation of fatigue crack.
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Zhang et al. [90] revealed the enhancement in fatigue performance of the 3D-printed
Ti64. The UNSM treatment improved the surface finish, reduced the subsurface porosity,
and changed the residual stress from tensile to compressive. They considered two UNSM-
treated specimens: UNSM-S and UNSM-F, which correspond to the slow and fast rotation
of the specimen during UNSM treatment. The authors conducted a rotating bending
fatigue (RBF) test, with a rotary speed of 3600 rpm and a stress ratio of −1. The RBF results
indicated improvement in fatigue strength for the UNSM-treated specimen for all tested
stress levels. The cycles to failure for a stress level of 250 MPa in untreated UNSM-S and
UNSM-F were 23,000, 35,000, and 70,000. The RBF on UNSM-F led to a 100% improvement
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and on UNSM-S led to a 160% enhancement in fatigue strength compared to the base
material. The frequency of the ultrasonic vibration is constant in both cases. However, the
slower rotary speed in UNSM-S compared to UNSM-F causes a higher number of ultrasonic
strikes, which increases SPD, enhances plastic strain, improves surface hardness, and gives
a superior surface finish. The authors summarized that UNSM is a potent post-processing
method to enhance the fatigue performance of engineering materials.

Wu et al. [67] elucidated the effect of using UNSM as a post-treatment to improve
the surface integrity of nitrided S45C steel. They performed nitriding for 8 h and 48 h.
Even though UNSM treatment improved the fatigue limit of 8 h of nitrided material
from 700 MPa to 820 MPa with 34,000 strikes/mm2, a decrease in the fatigue limit was
observed with an increase in the number of strikes. UNSM treatment on 8 h of nitrided
steel improved hardness from 443 Hv to 540 Hv after 34,000 strikes/mm2 and 560 Hv
after 69,000 strikes/mm2. The substrate nitrided for 48 h has shown an even higher
hardness of up to 650 Hv. It is inferred that hard particles at the interphase hinder the
dislocation movement and act as nucleation sites for dislocations. This phenomenon
led to deformation grain refinement in the surface layer, increasing the hardness. More
nitriding time implies more nitrogen diffusing into the surface, and more hard particles
are formed, further increasing the surface hardness. It is observed that an increase in
strike numbers has no significant impact on hardness below 30 µm depth from the surface.
Wu et al. [71] conducted UNSM treatment on quenched and tempered S45C steel and
reported improvement in the fatigue properties. The untreated specimen possesses a
fatigue strength of 464 MPa, whereas the UNSM-treated specimen’s fatigue strength was
523 MPa and 550 MPa. The SPD due to UNSM causes increased surface hardening, which
improves the fatigue performance. Kattoura et al. [69] explored the fatigue performance
and failure analysis of UNSM’ed nickel-based superalloy (ATI 718 plus). The authors used
three specimens in their experiments: as-received (AR), heat-treated (HT), and USNM-
treated. UNSM was carried out on the HT specimens. A WC ball with a static load of 40 N
and an amplitude of 16 µm was used for the UNSM treatment. Compared to AR, the HT
specimens showed a 14% increase in endurance strength. In addition, UNSM improved the
endurance strength of the HT specimen at 5,000,000 cycles by 13.5%, which is a 100 MPa
increase. The S-N curve for the three specimens is shown in Figure 11. The enhanced
fatigue performance of the USNM’ed specimen is attributed to the synergistic effect of
surface hardening and RCS.
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A mechanical cyclic relaxation study has been conducted on the UNSM’ed specimen
to interpret the effect of the number of cycles on residual stress relaxation during cyclic
loading. Three fatigue stresses, such as 888 MPa, 844 MPa, and 832 MPa, were selected
for the cyclic relaxation study. At the early stages of cyclic loading, the RCS was suddenly
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reduced from 1450 MPa to 1100 MPa, which varied slightly with applied stress. A drastic
RCS relaxation after 200,000 cycles at the high stress of 888 MPa was observed due to
plastic strain, and the specimen failed at 320,000 cycles. This trend was not observed in
the intermediate and low stresses, 844 MPa and 832 MPa, respectively, where the fatigue
life also increased to 757,000 cycles and 5,000,000 cycles. The residual stress relaxation is
shown in Figure 12. These results reveal that the RCS relaxation occurs in the initial cycles
and remains constant with slight changes up to 200,000 cycles. The crack propagation rate,
calculated from the striation per area, has shown that the UNSM treatment significantly
slowed crack propagation by increasing the stress required for micro plasticity. An intact
nanocrystalline layer, high dislocation density, subgrains, and thin deformation twins were
observed on the fatigue sample. This surface structure significantly contributes to surface
integrity and gives a gradient nature of hardness and residual stress distribution [101].
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Ye et al. [41] investigated the effect of UNSM on 304 ASS, and their studies revealed
an increase in fatigue strength by 100 MPa. The surface hardening during UNSM increased
the resistance against the fatigue crack propagation. The improvement in fatigue strength
is attributed to the synergistic effect of the RCS, the surface hardening, and the changes
in microstructural features due to SPD. Yasuoka et al. [44] explored the effect of UNSM
treatment on SUS304 ASS. UNSM treatment is carried out with four static loads, such as
70 N, 90 N, 110 N, and 130 N. The fatigue limit for untreated specimens was 280 MPa.
The fatigue strength corresponding to 70 N and 90 N was 430 MPa and 530 MPa. The
fatigue strength corresponding to a 110 N and a 130 N static load is lower than other static
loads. This is due to the bending of the specimen at a higher fatigue load. The authors
summarized that the optimum static load corresponding to UNSM in their experiments is
90 N. Cao et al. [102] has studied fatigue properties of Ti6Al4V shaft, subjected to UNSM
treatment with a static load of 25 N, the amplitude of 30 µm, and 36,000 strikes per minute.
The authors chose two specimens for UNSM: stress relief annealed (SRA) and solid solution
aged (SSA) Ti6Al4V. The coarse polycrystalline grain specimen surface is transformed
into a nanostructured one, generating dislocations, twinning, and grain boundaries with
high-angle misorientation. The surface microhardness of SRA is 310 Hv, and SSA is 340 Hv.
The authors reported that UNSM improves the fatigue strength of SRA substrate by 7%
and that of SSA by 11.7%. In UNSM specimens with a fatigue life longer than 106 cycles,
a subsurface crack at a depth of 100 µm–200 µm was observed where the hardness and
RCS were way below the surface. After UNSM, the microhardness of the SRA specimen
increased to 380 Hv (an approx. 22% improvement), and the SSA specimen increased
to 395 Hv (an approx. 16% improvement). The researcher perceived a rapid decrease in
hardness up to a 120 µm depth from the surface. UNSM on the SRA specimen induced
an RCS of 540 MPa, whereas in the SSA specimen, it was 510 MPa. Both UNSM’ed SRA
and UNSM’ed SSA showed the same trend in distribution; high compressive stress was
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observed up to 80 µm from the surface, and a gradual decrease was observed until 200 µm.
On a similar note, Suh et al. [103] observed improvement in fatigue strength by 25%, surface
hardness by 37%, and RCS by 83% when tool steel SKD-61 was treated with UCFT. The
fatigue crack was observed to have originated from the interior in UCFT-treated material,
which validates the inhibition of the fatigue crack produced by the nanostructured layer
and RCS. On a similar note, scholars revealed the improved wear properties and corrosion
of many engineering materials after UNSM treatment. Amanov et al. [56] investigated the
effect of UNSM on AZ91D magnesium alloy. They considered three specimens named
UNSM 1, UNSM 2, and UNSM 3. These corresponded to a static load of 10 N, 20 N, and
30 N; all the other USNM process parameters remained the same. The friction and wear
studies were performed using a ball-on-disk setup with Si3N4 counter material. The load
used for tribological testing varied from 20 N to 100 N. The authors observed an increase in
the coefficient of friction (COF) with an increase in sliding distance. Moreover, after 45 m
of sliding, the COF was almost stable for the UNSM’ed specimen. This is attributed to the
presence of dimples on the surface due to UNSM. These micro-dimples were bulges worn
out, providing easy sliding after completing a certain sliding distance. The COF for the
untreated specimens was higher than the UNSM’ed specimens. Figure 13 demonstrates
the effect of UNSM on COF. It is noted that microhardness was improved from 230 Hv
to 295 Hv along with enhancements in the tribological properties. This study showed a
marginal increase in hardness with an increase in static load, which became insignificant at
a depth of 100 µm. Hindrance to dislocation movement caused by the grain boundaries
and dislocation multiplication due to dislocation pile-up are the main factors influencing
the hardness of the material. However, the Hall–Petch relation may not hold well if the
grain size is less than 10 nm. Table 1 demonstrates the changes in mechanical properties
and microstructural changes in the UNSM.
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Scholars reported that UNSM could provide superior tribological and corrosion prop-
erties. Zhao et al. [73] also studied the effects of UNSM on the tribological performance of
300 M martensitic ultra-high-strength steel. In this work, a WC tool of 2.38 mm diameter
was applied at a 20 kHz frequency along the surface of the 300 M steel. Through varying
the loads (30 N, 40 N, and 50 N) and scanning speeds (250 mm/min, 500 mm/min, and
1000 mm/min), the primary goal of this work was to determine the influence of UNSM on
a material that has a body-centered tetragonal (BCT) martensitic structure. The findings of
this work conspicuously showed that the processing condition of a 250 mm/min scanning
speed and 50 N load resulted in nearly a 40% decrease in wear rate compared to the original
substrate, as shown in Figure 14.
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Table 1. Mechanical properties and microstructural features of USNM-treated substrate materials.

Materials Static Force Roller Material,
Hardness, and Diameter

Frequency and
Amplitude Observation

304 ASS [41] 20 N WC; Not Specified 20 kHz; 10 µm

• SPD layer of 50 µm thickness.
• High hardness of 7 GPa.
• Increase in yield strength by 85.29%.
• Fatigue life improved by 7.67 times
• Maximum RCS of 1400 MPa

SUS 304 [44] 70 N, 90 N, 110 N
and 130 N

WC; Not Specified,
Diameter 2.38 mm ~20 kHz; 30 µm

• Surface roughness decreased from
1.05 µm to 0.32 µm.

• Maximum RCS of 43.1 MPa.
• Maximum fatigue strength of 510 MPa at

90 N, 82.14% increase.

AISI 304 [96] Not Specified WC; Not Specified 20000 or more per
second; Not Specified

• Surface roughness improved from 1.7 µm
to 1.3 µm.

• Maximum RCS of 1100 MPa.
• Surface hardness increased from 220 Hv

to 390 Hv

300 M [77] 50 N WC; Not Specified 20 kHz; 24 µm

• Surface roughness decreased by 40%
compared to the nitrided specimen.

• Surface hardness increased by 40.64%
compared to base material

• Surface hardness increased by 13.40% on
the nitrided specimen.

A100 [86] 50 N Cemented WC;
Not Specified 20 kHz; 24 µm

• Surface hardness increased from 574 Hv
to 707 Hv (23.17% increase)

• Maximum RCS of 1706 MPa is induced,
which is a 4.4 times increment.

• 14 times increase in plain fatigue life and
2 times increase in fretting fatigue life.

AISI 4340 [96] 40 N WC; Not Specified;
2.38 mm 20 kHz; 30 µm

• Ra and Rz decreased by 72.7% and 52.9%.
• Surface hardness increased by 38.59%.
• Maximum RCS of 717 MPa.
• Increase in fatigue strength by 45.45%.
• Increase in fatigue life of 214 times.

AA7075-T651 [51] 1 kg WC; Not Specified 20 kHz; 8 µm

• Fatigue life increased by 11 times when
UNSM was applied on normal material.

• The fatigue life was 4 times higher in
specimens subjected to corrosion for 2 h
followed by UNSM than in specimens
subjected to corrosion alone for 2 h

• Surface roughness increased from 2.3 µm
to 2.4 µm for specimen subjected to
corrosion for 2 h

• The maximum RCS was 600 MPa

AA7075-T6 [75] 30 N WC; Not Specified;
2.38 mm 20 kHz; 30 µm

• Surface roughness decreased by 15.75%
• Maximum RCS of 780 MPa.
• Microhardness increased by 26%.
• The wear rate improved by 2.75 times.
• COF was reduced by 6.4%.

CP Ti [47] 30 N WC; Not Specified;
2.38 mm 20 kHz; 30 µm

• Grain refined to 200 nm.
• Surface hardness increased by 32.19%.
• Maximum RCS of 1279.4 MPa

Ti64 [90] 60 N WC; Not Specified;
2.38 mm 20 kHz; 30 µm

• Grain refined to 1.2 µm and 0.8 µm for α
and β.

• Surface hardness increased by 15.55%.
• Maximum RCS of 1142.7 MPa.
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Table 1. Cont.

Materials Static Force Roller Material,
Hardness, and Diameter

Frequency and
Amplitude Observation

Ti-Nb-Ta-Zr [46] 25–40 N WC; Not Specified 20 kHz; 24 µm; 40 µm

• Decrease in surface roughness by 44.32%
• Surface hardness increased by 13.40%.
• Maximum RCS of 1094 MPa.
• Fatigue life increased by 100% in slow

rotation and 160% in fast rotation
during UNSM.

Inconel 718 [54] 40 N WC; Not Specified;
2.38 mm 20 kHz; 40 µm

• GNS layer formed up to a depth of
60 nm–200 nm.

• Increase in hardness of 102.63%.

ATI 718 plus [69] 10 N/50 N WC; Not Specified;
2.5 mm 25 kHz; 40 µm

• Grain refined up to 21.95 nm.
• Increase in surface hardness by 44%.
• Maximum RCS was higher than

1000 MPa.
• Fatigue life improved by 5.25 times

Inconel 690 [93] 20–40 N WC; Not Specified;
2.5 mm 25 kHz; 8–16 µm

• Surface hardness increased by 44.1%.
• Maximum RCS of 1376 MPa.
• Yield strength increased by 13%.
• Endurance strength increased by 13.5%.

CP Cu [104] 50 N WC; Not Specified;
2.38 mm 20 kHz; 50 µm

• Grain refinement up to 200 nm.
• Surface hardness increased by 142.65%.
• Maximum RCS of 1.5 GPa.
• Yield strength enhanced by 44.15%.
• Tensile strength increased by 6.75%.

AZ31B Mg
Alloy [57] 5 N WC; Not Specified; 4 mm 20 kHz; 8 µm

• Surface roughness reduced by 21.19%
• Surface hardness increased by 63.98%.
• Yield strength increased by 43.48%.

AZ91D Mg
Alloy [56] 10 N; 20 N; 30 N WC; Si3N4; 2.38 mm 20 kHz; 30 µm

• Grain refinement up to 39 nm.
• Surface hardness increased by 28.26%.
• The wear rate was reduced by 30%.
• COF was reduced by 23%.

Co-Cr-Mo
Alloy [105] 50 N WC; Not Specified;

2.38 mm 20 kHz; 30 µm

• Surface roughness was reduced by
83.02% and 87.69% at room temperature
(RT) and high temperature (HT)

• Surface hardness increased by 35.1% and
44.3% at RT and HT.

• Yield strength increased by 3.4% and
11.78% at RT and HT.

• Tensile strength increased by 5.5% and
10.8% at RT and HT.

• COF reduced at 23.36% and 48.07%.
• Specific wear rate (SWR) reduced by

43.1% at RT and 77.3% at HT.

CoCrFeMnNi High
Entropy Alloy [63] 10 N; 20 N; 60 N WC; Not Specified;

2.4 mm 20 kHz; 30 µm • Increase in surface hardness by 98.28%.
• Yield strength increased by 142.49%.

Nickel-Titanium
Shape Memory
Alloy [61]

3 kg WC; Not Specified;
2.4 mm 20 kHz; 20 µm

• Surface roughness decreased from
12.1 µm to 9.0 µm.

• Surface hardness increased from 304 Hv
to 408 Hv (34.2% increase).

• Corrosion current decreased from 157 nA
to 53.1 nA.

Nickel-Titanium
Shape Memory
Alloy [106]

20 N WC; Not Specified 20 kHz; 12 µm
• Corrosion resistance improved
• Surface hardness increased by 21.81%.
• Cell adhesion increased
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According to Zhao et al. [73], the intrinsic enhancements influenced by UNSM altered
the wear mechanisms of the steel substrates. For the non-processed sample, it was observed
that there was severe abrasion along the wear track, whereas UNSM changed the wear
mechanisms to a more adhesive, fatigue, and oxidative wear mode. This was made
especially evident by the higher concentrated carbon, oxygen, and tungsten content along
the wear track, thus reflecting that the formation of a protective oxide film on the surface
was present during triboloading. As reported by Zhao et al. [73], three core mechanisms
enabled these findings. First, the accumulation and entanglements of dislocations within the
subgrain boundaries of the martensitic structure (from the high plastic strain of the UNSM
process) allowed the surface to become increasingly work-hardened. By forming various
twins, solid solution strengthening occurred due to the number of supersaturated carbon
atoms in the structure, allowing the surface to better resist the tribological loads. Second, the
severe strain induced by UNSM healed the pre-existing surface defects (i.e., micro-cracks),
as reflected by the relatively low surface roughness. In fact, the presence of micro-cracks
(whether they are already intrinsic or induced from porous surfaces) can result in an
early brittle fracture as the stress concentrations from the applied triboload result in the
emission of localized dislocations [107]. Consequentially, third body wear can occur from
the accumulated debris (from fractured asperities to larger macro-sized debris), increasing
the friction and wear rates [108–110]. Lastly, the large degree of RCS improved the quality of
the surface, which similarly maintained the working integrity of the surface (via inhibiting
the degree of micro-cracks) as it was subjected to triboloading. By combining these aspects,
the wear rate of UNSM 300 M martensitic ultra-high-strength steel was reduced.

Amanov et al. [111] also observed a notable decrease in wear rate from UNSM. In
their work, a WC-Co coating on a heat-treated SAE 52100 bearing steel substrate was
fabricated through a high-velocity oxygen fuel (HVOF) process. Post-deposition, the as-
sprayed surface was subjected to the UNSM process. The applied parameters consisted
of a 20 kHz frequency, 10 N static load, 30 µm amplitude, 0.07 mm interval, and 2.38 mm
ball diameter (being composed of WC). Once processed, the coatings were subjected to a
ball-on-disk tribotest. The sliding distance was set to 10 mm, with the load progressing
from 20–120 N while keeping a constant sliding speed of 20 mm/min. Similar to the earlier
discussions, the dominant grain-refining mechanism of UNSM enabled a higher degree of
surface hardening, which consequentially decreased the overall wear rate. However, the
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novelty which the work presents is through the relationship of the wear rate to the change
in surface roughness and the adhesive/cohesive coating strength.

Given that the surface roughness (Ra), skewness (Rsk), and kurtosis (Rku) values of the
as-fabricated coating were high, the intense peening effects of the UNSM process resulted
in a decrease of these surface parameters. From a tribological perspective, this is significant
as the reduction in peaks (influenced by Rsk) and the blunting of asperities (influenced by
Rku) can reduce the stress concentrations along the surface during triboloading. However,
in the case of high-stress concentrations, the likelihood of third-body wear again increases,
which can negatively influence the wear rates. In fact, there was also a decrease in small-
sized pores throughout the surface as the localized valleys were filled and densified,
which also assisted with the improved wear resistance. From another perspective, this
densification also improved the particle-to-particle bonding of the peened region, which
prevents particle debonding and fracturing during triboloading. Amanov et al. [111]
support this observation by calculating the difference in adhesion energy of the tested
specimens, which was calculated using the following equations:

W = K1(σs + σR)
2t

1−v2
f

E f
(4)

σs =
0.15

R

( PH f
H

)0.5
E0.3

f E0.2 (5)

where W is the adhesion energy, K1 is the corresponding spallation constant, σs is the
stress induced from the scratch test, σR is the residual stress, v f is Poisson’s ratio, E f is
the coatings elastic modulus, R is the radius of the indenter, P is the critical load, H is the
hardness of the substrate, H f is the hardness of the coating, and E is the coatings elastic
modulus. Considering these values, the adhesive energy increased from 42.4 J/m2 to an
improved value of 71.3 J/m2, which was evident from the reduction in initiated cracks
along the wear track (as shown in Figure 15).
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When the wear track was characterized through EDX mapping, the non-processed
HVOF specimen depicted a high concentration of Fe within the wear track, indicating an
adhesive failure within the coating. Contrary to these findings, there was only a partial
inception of Fe detection for the peened specimen, thus further validating the effectiveness
of UNSM for not only bulk components but also coatings.

From an electrochemical perspective, the application of USNM can also improve the
corrosion resistance of various alloys. For example, Kim and Kim [112] studied the effects
of static load (spanning from 10 N, 30 N, and 50 N) on the pitting corrosion resistance
of face-centered cubic (FCC) Ni 690 alloy in 1% NaCl solution. In this work, the WC
tip (of 2.38 mm) was subjected to a reciprocating amplitude of 30 µm along a 0.07 mm
pitch. According to their findings, the pitting potential (Epit) of each proceeding specimen
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(from untreated to 50 N) was markedly improved. Similarly, all the processed specimens
demonstrated decreased passive current density (ipass), which acts as an indicator for a
decreased corrosion rate (icorr), as per the widely known Faraday’s law [113]. However,
the protection potential (Eprotection) decreased at the highest applied load, suggesting
that the severe plastic deformation of 50 N might be detrimental to the electrochemical
characteristics of the specimens. For a clearer insight into these findings, the corresponding
cyclic potentiodynamic polarization (CPP) curves concerning these findings are shown in
Figure 16.
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Similar trends were also observed with the Nyquist plots derived from electrochemical
impedance spectroscopy (EIS), where the radius of the capacitive curves was greater,
indicating a greater polarization resistance. From a mechanistic perspective, the grain
refinement from the USNM process predominantly influenced the corrosion behavior of this
alloy. In fact, due to the increase in grain boundaries (from the refined microstructure), the
chemical activity of the surface is largely improved, which helps to assist the sturdiness and
reliability of the passive film. This implies that the amount of electron activity and diffusion
increases, acting as central sites of oxide film nucleation. From another perspective, the
increased rates of electron diffusion also enable a greater presence of triple-junctions, which
can help increase the activity of neighboring electrons, thus improving the integrity of the
passive film. The authors further supported these findings by calculating the lattice plane
spacing of each specimen, as the XRD findings imply the formation of an amorphous state,
which is quite reflective of the grain-refining characteristics of UNSM. Nonetheless, the
inter-atomic spacing decreased, which further supports the findings.

It should be mentioned that the only problematic surface defect found in this work
pertained to the wave formation topography formed along the overlapped processed
regions, which act as sensitive sites for pitting initiation. Although the authors do not
elucidate the influence of the roughness parameters on these findings, it can be assumed
that increased roughness (as well as an increase in Rsk and Rku values) increases the
contacted area of the electrolytic solution of the severely deformed surface, which can
exacerbate localized corrosion rates [114]. This would assume that the surfaces reflect the
behavior of Wenzel’s model, which states that contacting liquid will penetrate the valleys
of rough surfaces due to the strong adhesive forces [115]. Although this observation is
far from the scope of this work, the authors suggest that future researchers investigate
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these characteristics and provide further insights into the influence of surface quality on
the corrosion resistance of UNSM-based materials.

From an AM perspective, the application of UNSM can also greatly improve the corro-
sion resistance of 316L coatings fabricated by selective laser melting (SLM), as shown by
Amanov [116]. This work applied UNSM at R and at HT. For reference, these samples are
referred to as UNSM + RT and UNSM + HT. The UNSM processing parameters were set to
a normal load of 30 N, an amplitude of 30 µm, a frequency of 20 kHz, and a moving speed
of 2000 mm/min. Understanding that AM components tend to suffer from various surface
defects, the primary focus of this work was to study how temperature (during UNSM)
can control the surface quality and porosity while maximizing corrosion resistance in a
3.5% NaCl solution. Interestingly enough, the authors found that although the UNSM + RT
demonstrated a lesser icorr value than the as-printed substrate, applying heat treatment
during UNSM decreased the corrosion resistance. Namely, the degree of localized pitting
regions resulted in increased corrosion rates, as is evident from the combination of the de-
creased corrosion potential (Ecorr) and positive shifting of the Tafel curves. A visualization
of the chloride-attacked regions is shown in Figure 17.
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Although Amanov [116] did analyze these observations, the decrease in corrosion
resistance for the UNSM + HT substrate can also be attributed to the change in surface
roughness from the process. As indicated by his findings, the surface roughness of the
UNSM + RT and UNSM + HT substrates is quite similar; however, the standard deviation
of the UNSM + HT substrate is much greater. Although other surface roughness parameters
were not studied, this finding most likely represents that the influence of heat treatment
resulted in diffusion, which would increase the degree of plastic deformation along the
surface during UNSM. Consequentially, the surface would have a greater deviation of
peaks and valleys, acting as preferential sites for pitting corrosion. This aspect, combined
with the less refined microstructure, most likely prevented the proper formation of the
passive film along the surface and increased the likelihood of pitting corrosion along the
surface.

In understanding the key mechanisms of the corrosion resistance of UNSM in chloride-
based solutions, many have also studied its corrosion resistance in other solutions such
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as stagnant simulated body fluid (SBF) for biomedical applications. For example, Hou
et al. [57] studied the effect of UNSM on AZ31B Mg alloy for orthopedic applications.
In this work, UNSM was applied using a normal load of 5 N, a vibrational frequency
of 20 kHz, a scanning speed of 1000 mm/min, a vibratory amplitude of 8 µm, and an
interval of 0.01 mm. It was found that although the UNSM substrate demonstrated a nobler
Ecorr value, icorr was found to be increased. This finding was largely attributed to the
change in surface roughness as micro-galvanic coupling from both the anodic and cathodic
regions accelerated the corrosion rate during Mg dissolution, which can be described by
the following corrosion reaction.

Mg + 2H2O→ Mg(OH)2 + H2 (gas) (6)

Given that this reaction is accelerated, this can cause quite negative implications in
an implant operation as localized reactions can result in increased toxins, reducing the
usefulness of the implant. Consequentially, this will cause the host body to reject the
implant altogether. Although SPD techniques refine the dislocation density of Mg alloys,
which helps to form a robust and stable film, the increase in surface roughness results in
an increased exposed area during electrochemical testing. Due to the lack of a low surface
finish, the stability of the film generated during corrosion testing can fluctuate, which can
cause metastable-like behaviors and thus increase the likelihood of accelerated corrosion
rates. This was evident in this work as the P and Ca relation ions had a greater tendency to
attack the surface of the UNSM substrate, as reflected by the Tafel curves. To mitigate these
defects, the authors suggest that a separate post-processing technique be used to smoothen
the surface, thus reducing the likelihood of enhanced corrosion rates.

5. Recent Advances of UNSM

To enhance the existing benefits of UNSM, scholars introduced modified USNM tech-
niques such as continuous current-assisted UNSM (CC-UNSM), electro pulsing-assisted
USNM (EP-UNSM), and laser-assisted UNSM (LA-UNSM). These techniques can sig-
nificantly enhance the surface mechanical properties and surface integrity compared to
conventional UNSM. Researchers have demonstrated that pulsed current assisted with
surface modification techniques could enhance the effectiveness of the process [117,118].
The conventional UNSM technique integrated with electropulsing led to the development
of EP-UNSM. The electric pulsing during the process improves the plasticity of the pro-
cessed material. Compared to CC-UNSM, EP-UNSM is more effective and most commonly
used for developing deeper SPD’ed and S2PD’ed layers [119,120]. This is attributed to the
higher peak current during electropulsing than continuous current for the same current
density. In addition to that, electropulsing causes thermal and athermal effects, promoting
dislocation mobility and atom diffusion [121]. During the EP-UNSM process, a high elec-
tropulsing current is applied to the substrate for a short period. This causes a reduction in
the flow stress of the material and improves the substrate’s plasticity. The schematic of the
EP-UNSM technique is shown in Figure 18.

Ye et al. [122] studied the effect of EP-UNSM on the mechanical properties and mi-
crostructural evolution of Ti-6Al-4V. The reported surface hardness for the base material
was 315 Hv, which increased to 364 Hv after the UNSM and a 300 µm thick SPD layer
was observed. The EP-UNSM treatment increased the hardness to 407 Hv and the SPD
layer thickness to 550 µm. The authors reported that the surface roughness of the substrate
was 0.918 µm, which was reduced to 0.028 µm by conventional UNSM, which further
reduced to 0.19 µm after EP-UNSM. The electropulsing and UNSM effect synergistically
caused superior enhancement in the surface properties compared to USNM. The authors
also reported a significant enhancement in wear resistance during UNSM compared to
EP-UNSM. Ma et al. [123] demonstrated for the first time that EP-UNSM can enhance the
plasticity of bulk metallic glass. The synergistic effect of electropulsing and UNSM generate
a hybrid structure with the nanocrystals uniformly embedded in the amorphous matrix.
The authors revealed an enhancement in plasticity from 0% to 2.03 ± 0.29%. The authors
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summarized that EP-UNSM is a promising technique to develop bulk metallic glasses with
superior strength and plasticity.
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Zhao et al. [121] studied the effect of EP-UNSM on the microstructural features and
mechanical properties of 300 M steel. In their experiments, the authors considered four
specimens. The substrate, UNSM’ed substrate, CC-UNSM’ed substrate, and EP-UNSME’ed
substrate. The authors revealed that the pulsation of current significantly enhanced the
plasticity of 300 M steel compared to the continuous current UNSM and the conventional
UNSM. The substrate microstructure consisted of tempered martensite. The authors ob-
served an SPD layer of 31 µm on the surface of 300 M steel. In this SPD’ed layer, up to
4.6 µm from the surface S2PD’ed regions were reported. In addition, in the S2PD’ed region,
refined lath martensite was observed, which lies in a direction parallel to the UNSM’ed
direction. The micrographs of 300 M steel, UNSM’ed substrate, CC-UNSM’ed substrate,
and EP-UNSME’ed substrate are shown in Figure 19.

During CC-UNSM, the depth of the SPD layer increased to 35 µm, and the S2PD
region thickness increased to 5.1 µm. The enhanced SPD layer and S2PD region thickness
is attributed to the improved plastic deformation ability of the specimen due to the rise
in temperature during the CC-UNSM process. A significant refinement of lath martensite
was observed. When EP-UNSM was adopted, the SPD layer thickness and the S2PD region
thickness increased to 46 µm and 7.8 µm. The authors revealed that during CC-UNSM
and EP-UNSM, the rise in temperature of the specimen was the same, and EP-UNSM was
more efficient in generating deeper SPD layers and S2PD regions. The authors reported
that EP-UNSM is a superior technique for developing a deeper SPD layer and S2PD region
thickness, which can remarkably improve the surface properties.

Several studies demonstrate improved surface mechanical components by combining
UNSM techniques with other surface modification techniques or using heat treatment
methods [42,75,91,96,116]. Amanov and Pyun [91] conducted various tests to study the
influence of local heat treatment (LHT) on Ti6Al4V alloy with and without the UNSM
process. The results indicated an improvement in hardness with LHT alone. However,
further enhancement was found on specimens subjected to combined UNSM and LHT
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processes. Even though the LHT followed by UNSM resulted in a significant improvement
in hardness, it did not have any improvement in the wear resistance. Amanov [116] a similar
study on SS 316L synthesized by selective laser melting (SLM). The surface roughness was
decreased considerably after the UNSM treatment at HT. In addition, they achieved a lower
COF and a slightly higher wear rate with the UNSM at HT compared to the UNSM at RT.
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The property enhancement of the material’s surface by combining SP and UNSM is
another interesting area where the material’s properties can be significantly improved. AISI
4340 alloy, having high strength and toughness, is a material that finds applications as
aircraft landing gear and other structural applications. The enhancement of the surface
properties of this alloy using SP and UNSM was explored by Karimbaev et al. [93]. The



Nanomaterials 2022, 12, 1415 24 of 31

result showed improvement in fatigue characteristics with SP alone, which was further im-
proved by combining SP and UNSM. Still, the highest fatigue properties were obtained with
UNSM alone. Amanov et al. [42] explored the advantages of combining SP and UNSM in
AISI 304 for fatigue properties. They validated that the combination of SP + UNSM achieved
better properties than SP alone. The UNSM process displayed better fatigue properties
compared to the combination of SP and UNSM. This is because of the high RCS induced by
the UNSM process compared to the combination of SP and UNSM. Efe et al. [124] examined
the improvement in microstructural and mechanical characteristics of AA7075 aluminum
alloy by combining SSP and UNSM. The experiment followed two steps, SSP followed
by UNSM and UNSM followed by SSP. The surface roughness reduction associated with
UNSM was much more pronounced than SSP. UNSM, followed by SSP, was efficient in
upgrading the frictional properties.

6. Applications of UNSM

UNSM is a promising and potential surface modification technique based on the
mechanical impact that can significantly enhance the surface properties. Furthermore, the
beneficial nature of UNSM led scholars to adopt UNSM in diverse fields of application to
enhance the performance and longevity of engineering components. The application of
UNSM is not limited to any particular area. Considered in a broader sense, the application of
UNSM means the enhancement of the surface properties of the already available materials
or the performance as a post-processing technique in improving the properties achieved by
other manufacturing techniques.

One of the main areas of UNSM application is in the post-processing of AM’ed
components. The unique properties of 3D-printed metals find potential applications in the
aerospace and biomedical industries. However, the poor surface finish, high tensile residual
strength, and high surface porosity of these materials lead to inferior mechanical properties.
The capabilities of UNSM to improve surface properties and induce RCS on the surface
of materials promoted UNSM as an effective post-processing technique in enhancing the
capabilities of AM components.

Zhang et al. [90] studied the effect of UNSM on the fatigue properties of 3D-printed
titanium alloys. They observed that the UNSM treatment improved the surface finish,
induced a high RCS, and reduced subsurface porosity, substantially enhancing the rotation
bending fatigue properties. Similarly, Ma et al. [61] explored the use of UNSM as a post-
processing technique on AM’ed Ni-Ti alloys. Owing to the shape memory properties
and superelastic behavior, the AM’ed components of Ni-Ti alloys are finding potential
applications in the biomedical industry. Still, there is some concern regarding the release of
toxic Ni ions due to the poor surface finish and high surface porosity of the AM’ed Ni-Ti
alloys. This drawback is significantly reduced by the simultaneous ultrasonic striking and
burnishing of the UNSM process on the AM’ed components. The resulting component has a
better surface finish, lower subsurface porosity, and higher resistance to wear and corrosion.
Amanov [105] investigated the effect of UNSM as a post-processing technique on AM’ed
Co-Cr-Mo and studied the tribological and tribocorrosion properties. Co-Cr-Mo alloy finds
application as a bearing surface for manufacturing the femoral head in metal-on-metal
bearings. The UNSM process on the alloy was carried out at RT and HT. The UNSM-treated
sample at HT showed better tribological and tribocorrosion properties than the AT-treated
and as-printed alloy samples. The enhancement of the tribocorrosion resistance (TCR) of
the AM’ed Co-Cr-Mo alloy, which is post-processed by UNSM, has several biomedical
applications. The improvement of the surface properties of the UNSM-treated AM’ed
aluminum alloy is examined by Ma et al. [74]. The UNSM process reduced the surface
roughness (Ra) of the studied Al alloy from 18 µm to 3.5 µm, showing the potential of
UNSM as a post-processing technique of AM’ed components.

The aerospace and automotive industry is another area where the capabilities of UNSM
can be effectively implemented. Kattoura et al. [124] investigated the use of UNSM in
improving the fatigue life of ATI 718 plus. 718 plus is a Ni-based superalloy having a maxi-
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mum usage temperature of 650 ◦C. Due to the superior mechanical properties of ATI 718
plus alloys over other conventional Ni-based superalloys, the 718 Plus alloys are starting to
find wide applications in the aerospace industry. The UNSM processing on the 718 plus
alloys showed improved fatigue life through the near-surface microstructural changes,
high RCS, and surface hardening induced by UNSM. The effect of UNSM treatment prior
to nitriding on the surface of 300 M steel is investigated by Zhao et al. [77]. The 300 M
steel is a low-alloy, high-strength steel containing tempered martensitic phase. The high
strength of this material often finds application as landing gear in aircraft. However, the
inferior pitting corrosion resistance of 300 M steel in the chloride environment is a concern.
To enhance the pitting resistance, the authors performed nitriding on UNSM-treated and
untreated specimens. The researchers found significant improvement in surface hardness,
wear resistance, and enhanced corrosion resistance in the UNSM-treated specimen than in
the untreated specimen. Zou et al. [98] employed the UNSM treatment on DZ2 axle steel
to improve the wear resistance and surface integrity. This steel is used for several struc-
tural applications and specifically for high-speed trains. The multiple UNSM treatments
resulted in grain refinement in the near-surface of the DZ2 steel. There is an appreciable
improvement in the RCS and surface microhardness for the UNSM-treated steel compared
to untreated steel. This resulted in a significant improvement in wear resistance under
sliding conditions.

High bio-corrosion resistance and biocompatibility are the fundamental characteristics
required for alloys in implant applications. Recently, a novel Ti alloy, TNTZ (Ti-29, Nb-13,
Ta-4.6, Zr) was introduced as a potential candidate for implant applications. Kheradmand-
fard et al. [48] applied UNSM treatment to the TNTZ to investigate the wear properties and
bio-functionalities improvement. The UNSM-treated TNTZ showed almost seven times
higher wear resistance than the untreated one. Furthermore, based on the cell culture test,
there was a significant increase in the cell adhesion, spread, and proliferation of cells on
the UNSM-treated samples, which indicated improved biocompatibility due to the UNSM
treatment. Aranov et al. [125] performed UNSM on SS 316L for biomedical application as
a coronary artery stent (CAS). CAS is a small metal tube, capable of expanding, which is
implanted in the human body to keep the lumen open by which normal blood flow can
be provided. This is being used extensively to open up occluded coronary arteries. Be-
cause of several advantageous properties (including biocompatibility and good mechanical
properties), SS 316L is widely used for CAS applications in biomedical industries.

In summary, UNSM is a novel and promising SPD technique that can provide superior
surface mechanical properties and surface integrity. The remarkable enhancement in
surface properties is due to UNSM potentially enhancing the longevity of engineering
materials used in the diverse field of application.

7. Conclusions

This review article elucidated a comprehensive discussion on the mechanical impact-
based surface modification technique, namely UNSM. UNSM is a promising SPD method
that remarkably enhances surface integrity and surface mechanical properties. This review
exclusively focuses on the current state-of-the-art usage of UNSM on various engineering
materials that are specifically used for diverse applications. Furthermore, this review
explores the nanostructuring and formation of gradient nanostructured surface (GNS)
layers during UNSM. The formation of GNS layers and the introduction of high-density
dislocations, twinning, high-angle grain boundaries, subgrains, and grain-refinement
mechanisms were explained. In addition, recent advancements of UNSM, such as EP-
UNSM and a combination of UNSM with other surface modifications, were summarized.
Finally, different applications of UNSM, such as the automotive, aerospace, nuclear, and
chemical industries, were elucidated. UNSM has superior control over plastic deformation
and surface roughness; hence, it can potentially prevent fatigue, corrosion, and wear failure.
UNSM is a potential technique, compared to other SPD techniques, that can significantly
impact materials used to manufacture mechanical components expected to operate in
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extreme and dynamic conditions. These advantages make UNSM an ideal candidate
for industries compared to other SPD techniques. UNSM is highly recommended for
obtaining remarkable surface mechanical properties and surface integrity on components
for industrial applications and among scholars working in the surface modification of
engineering materials. In the near future, a transition from other SPD techniques to USNM
can be expected. Overall, this review can provide a deeper understanding of the effect of
the UNSM technique on the mechanical properties and microstructural features of various
engineering materials.
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