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Genome-wide association study of cognitive functions and
educational attainment in UK Biobank (N=112151)

G Davies'*"", RE Marioni'**"", DC Liewald'?, WD Hill'?, SP Hagenaars'*>, SE Harris'>, SJ Ritchie'?, M Luciano'?, C Fawns-Ritchie'?,
D Lyall®, B Cullen®, SR Cox'?, C Hayward’, DJ Porteous'?, J Evans®, AM Mcintosh'>, J Gallacher®, N Craddock®, JP Pell®, DJ Smith®,

CR Gale'*'° and IJ Deary'?

People’s differences in cognitive functions are partly heritable and are associated with important life outcomes. Previous genome-
wide association (GWA) studies of cognitive functions have found evidence for polygenic effects yet, to date, there are few
replicated genetic associations. Here we use data from the UK Biobank sample to investigate the genetic contributions to variation
in tests of three cognitive functions and in educational attainment. GWA analyses were performed for verbal-numerical reasoning
(N=36 035), memory (N=112 067), reaction time (N=111 483) and for the attainment of a college or a university degree
(N=111 114). We report genome-wide significant single-nucleotide polymorphism (SNP)-based associations in 20 genomic regions,
and significant gene-based findings in 46 regions. These include findings in the ATXN2, CYP2DG, APBAT and CADM2 genes. We
report replication of these hits in published GWA studies of cognitive function, educational attainment and childhood intelligence.
There is also replication, in UK Biobank, of SNP hits reported previously in GWA studies of educational attainment and cognitive
function. GCTA-GREML analyses, using common SNPs (minor allele frequency >0.01), indicated significant SNP-based heritabilities
of 31% (s.e.m.=1.8%) for verbal-numerical reasoning, 5% (s.e.m.=0.6%) for memory, 11% (s.e.m.=0.6%) for reaction time and
21% (s.e.m.=0.6%) for educational attainment. Polygenic score analyses indicate that up to 5% of the variance in cognitive test
scores can be predicted in an independent cohort. The genomic regions identified include several novel loci, some of which have

been associated with intracranial volume, neurodegeneration, Alzheimer’s disease and schizophrenia.
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INTRODUCTION

Cognitive functions have important roles in human mental and
physical well-being. Better cognitive function in youth is
associated with lower risk of some psychiatric disorders and
physical illness later in the life course, and with reduced mortality
risk. The reverse is also true; some mental and physical illnesses
are associated with a lowering of cognitive capabilities in youth
and over the life course>* Higher cognitive ability in youth is
associated also with higher educational attainment and adult
social position.> Domains of cognitive functioning differ in their
associations with ageing; some have trajectories of decline
(for example, processing speed and some types of memory),
whereas others (for example, knowledge-based tests) hold their
levels better over the adult life course.®” Therefore, it is important
to understand the causes of people’s differences in cognitive
functions.

One source of cognitive differences is genetic variation.
Cognitive functions have a substantial heritability. This has been
found by using twin and family studies,®'? and by molecular
genetic methods, such as Genome-wide Complex Trait Analysis

(GCTA-GREML),"*™ which estimates heritability based on com-
mon single-nucleotide polymorphisms (SNPs).

Some explanation is required regarding cognitive phenotypes.
All tests of cognitive ability correlate positively, though not
perfectly; that is, people who do well on one type of cognitive test
tend to do well on the others."” It is this regularity that is the basis
for the construct of general cognitive ability, which is usually
abbreviated to g. There are also separable domains of cognitive
functioning.'®"> Differences in individual cognitive test score
performances may be due to: (1) differences in general cognitive
function described by the variance shared by all cognitive
domains, g; (2) differences in test performance specific to a
cognitive domain; and (3) differences specific to a particular
test.'® Twin and SNP-based GCTA-GREML studies have found
that there is substantial heritability for general cognitive function,
and also some heritability for cognitive domains and specific
cognitive skills.'”'® They also find that there are significant genetic
correlations among tests of different cognitive domains, and
between cognitive abilities and education, which also shows
substantial heritability.'®'?

"Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; 2Department of Psychology, University of Edinburgh, Edinburgh, UK; *Medical
Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK; *Queensland
Brain Institute, The University of Queensland, Brisbane, QLD, Australia; “Division of Psychiatry, University of Edinburgh, Edinburgh, UK; ®Institute of Health and Wellbeing,
University of Glasgow, Glasgow, UK; “MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; ®Department of
Psychiatry, University of Oxford, Oxford, UK; °Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff
University, Cardiff, UK and '°MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK. Correspondence: Professor IJ Deary, Centre for Cognitive Ageing
and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK.

E-mail: i.deary@ed.ac.uk
"These authors contributed equally to this work.

Received 24 August 2015; revised 14 January 2016; accepted 11 February 2016; published online 5 April 2016


http://dx.doi.org/10.1038/mp.2016.45
mailto:i.deary@ed.ac.uk
http://www.nature.com/mp

Genome-wide association studies (GWAS) of cognitive functions
have been successful in estimating SNP-based heritability, and in
using summary GWAS data to make predictions of cognitive
phenotypes in independent samples.'* However, they have been
less successful in identifying the specific genetic variants that
cause cognitive differences. The largest studies to date have been
the CHARGE-Cognitive Working Group’s studies'®**?" and those
on educational phenotypes by the Social Science Genetics
Association Consortium.>>* In a study of 53 949 individuals with
data on general cognitive function, there were three genome-
wide significant hits in three genomic regions, with the closest
genes being APOE/TOMM40, AKAP6 and MIR2113."% In a study of
32070 individuals with data on processing speed (mostly digit-
symbol substitution-type tests) there was one genome-wide
significant hit, near CADM2.2" In a study of 29076 individuals
with data on verbal declarative memory there were three
genome-wide significant hits, near APOE and genes associated
with immune response.?°

Given the large phenotypic and genetic correlations between
general cognitive ability and educational attainment,'®>>2¢ others
have used the latter as a proxy phenotype for cognitive ability.>®
This has led to finding three independent genome-wide
significant variants, with the nearest genes being LOC700129185,
LRRN2 and LOC150577.332* The latter two hits were with the
phenotype of having attained a college or university degree,
which is the educational phenotype used in the present study.
Genome-wide SNPs from GWAS analyses of education phenotypes
identified variants related to cognitive performance phenotypes,
implicating the genes KNCMAT, NRXN1, POU2F3 and SCRT.> There
has been replication of a SNP (rs1906252) that influences both
education and general cognitive function.">?”

GWAS meta-analytic studies of cognitive functions have been
relatively unsuccessful in finding specific genetic variants that
influence cognitive phenotypes, principally because the numbers
of subjects are too small. The study of other complex phenotypes
such as height suggests that many variants will be found as
participant numbers increase to and beyond six figures.”® Second,
the cognitive GWAS consortia studies to date have used several
different assessments to represent each cognitive construct across
different samples, and this may have led to phenotypic
heterogeneity in the derived measures.'>?%?"?” Third, studies to
date have used samples whose genotyping has been carried out
in different centres with different arrays and different quality
control (QC) procedures.'®?>2"?7 Fourth, studies have tended to
examine one cognitive phenotype or domain in isolation.'®2%212

The present study directly addresses the limitations of previous
molecular genetic studies of cognitive functions. It presents
genome-wide association analyses of reasoning, processing
speed, declarative memory, and educational attainment in the
UK Biobank sample. The number of subjects is over 100 000 for
most analyses. All participants took the same cognitive tests with
the same instructions. All participants included in the current
analysis were of white British ancestry. Genotyping was also
standardised across the same arrays and QC procedures. The
study addresses three important cognitive domains and educa-
tional attainment in a single report. These advantages are likely
contributors to the relative success in finding many new genetic
variants associated with cognitive functions.

MATERIALS AND METHODS

This study includes baseline data from the UK Biobank Study
(http://www.ukbiobank.ac.uk).?® UK Biobank received ethical
approval from the Research Ethics Committee. The REC reference
for UK Biobank is 11/NW/0382. The present analyses were
conducted under UK Biobank data application numbers 10279
and 7898.

© 2016 Macmillan Publishers Limited

GWAS of cognitive functions
G Davies et al

Participants

The UK Biobank is a health research resource that aims to improve
the prevention, diagnosis and treatment of a wide range of
ilinesses. Between the years 2006 and 2010, about 500 000 people
aged from middle age to older age were recruited from across
Great Britain. Data were collected on cognitive functions, physical
and mental health, lifestyle, socio-demographic information, food
intake and family medical history. For the present study, 112 151
community-dwelling individuals (58 914 females, 53 237 males)
aged 40-73 years (mean=>56.91 years, s.d.=7.93) with genome-
wide genotyping were available.

Cognitive assessment

Verbal-numerical reasoning. Verbal-numerical reasoning was
measured using a 13-item test presented on a touchscreen
computer. The test included six verbal and seven numerical
questions, all with multiple-choice answers, and had a time limit of
two minutes in total. An example verbal item is: ‘If Truda's
mother’s brother is Tim's sister’s father, what relation is Truda to
Tim? (possible answers: ‘aunt/sister/niece/cousin/no relation/do
not know/prefer not to answer’). An example numerical item is: ‘If
60 is more than half of 75, multiply 23 by 3. If not subtract 15 from
85’ (possible answers: '68/69/70/71/72/do not know/prefer not to
answer’). The verbal-numerical reasoning score was the total
score out of 13. The Cronbach a-coefficient for the 13 items
was 0.62.

Reaction time. Reaction time (RT) was measured using a
computerized ‘Snap’ game. Participants were shown cards with
symbols on a computer screen, and were directed to push a
button on a nearby button box as quickly as possible with their
dominant hand if the two cards had matching symbols. There
were four practice trials to begin, followed by eight experimental
trials, of which four had matching symbols. Each participant’s RT
score was their mean time (in milliseconds) to press the button for
these four matching trials. The reliability (internal consistency) of
these trials, using Cronbach’s a, was 0.85. Before analysis, one
participant with an outlying score was removed, and the data
were log-transformed.

Memory. Memory was measured using a ‘pairs matching’ task on
a touchscreen computer. Participants observed a randomly
arranged grid of 12 ‘cards’ with six pairs of matching symbols
for 5s. The symbols were then hidden, and the participant was
instructed to select, from memory, the pairs that matched, in the
fewest possible number of attempts. Responses were made by
touching consecutive pairs on the screen. No time limit was
imposed; participants were free to make as many attempts as
necessary for them to correctly match all the pairs. The memory
score was the total number of errors made during this task. The
test was preceded by a simpler, three-pair practice version. A log
+1 transformation was applied to the memory variable before
analysis.

For all three cognitive tests, repeated measurements were
available on a subset of participants (Table 1). The mean time
difference between baseline and the repeat testing was 4.3 years
(s.d. 0.9), with a range of 2.1-7.0 years. The test-retest correlations
were 0.65 for verbal-numerical reasoning (n=4 696), 0.54 for RT
(n=20 188) and 0.15 for memory (n=19 872).

Educational attainment. To measure educational attainment,
participants were asked, 'which of the following qualifications do
you have? (You can select more than one)'. Possible answers were:
‘college or university degree/A levels or AS levels or equivalent/O
levels or GCSE or equivalent/CSEs or equivalent/NVQ or HND or
HNC or equivalent/Other professional qualifications, for example,
nursing, teaching/none of the above/prefer not to answer’. We
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educational attainment in UK Biobank

Table 1. The proportion of the phenotypic variance explained by common SNPs (h?) and test-retest correlations for the three cognitive tests and

Phenotype N n S.e.m. Test-retest N Test-retest Pearson correlation
Reaction time 94 857 0.11 0.006 20188 0.54

Memory 95 332 0.05 0.006 19872 0.15
Verbal-numerical reasoning 30 801 0.31 0.018 4 696 0.65

Educational attainment 94 548 0.21 0.006

Abbreviation: SNP, single-nucleotide polymorphism.

created a binary education variable indexing whether or not each
participant had attained a college or university-level degree. This
follows previous studies that have used similar binary variables in
GWAS studies as a successful proxy for cognitive function.?®

Genotyping and quality control

152729 UK Biobank samples were genotyped using either the
UK Bileve (N =49 979) or the UK Biobank axiom array (N= 102 750).
Genotyping was performed on 33 batches of ~4700 samples by
Affymetrix (High Wycombe, UK). Initial QC of the genotyping data
was also performed by Affymetrix. Further details are available of
the sample processing specific to the UK Biobank project (http://
biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id = 155583) and the Axiom
array (http://media.affymetrix.com/support/downloads/manuals/
axiom_2_assay_auto_workflow_user_guide.pdf). Before the release
of the UK Biobank genetic data a stringent QC protocol was
applied, which was performed at the Wellcome Trust Centre for
Human Genetics. Details of this process can be found here (http://
biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id = 155580).

Before the analyses described below, further QC measures were
applied. Individuals were removed sequentially based on non-
British ancestry (within those who self-identified as being British,
principal component analysis was used to remove outliers,
n=32484), high missingness (n=0), relatedness (n=7,948), QC
failure in UK Bileve (n=187), and gender mismatch (n=0).
A sample of 112 151 individuals remained for further analyses.

Imputation. An imputed data set was made available in which
the UK Biobank interim release was imputed to a reference set
combining the UK10K haplotype and 1000 Genomes Phase 3
reference panels. Further details can be found at the following
URL: http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id = 157020. The
association analyses were restricted to autosomal variants with a
minor allele frequency >0.1% and an imputation quality score of
0.1 or greater (N~17.3 m SNPs).

Statistical analyses

All phenotypes were adjusted for age, gender, assessment centre,
genotyping batch, genotyping array and 10 principal components
to correct for population stratification before all analyses. For RT,
111 483 individuals remained for further analyses. For memory,
112067 individuals remained for further analyses. The verbal-
numerical reasoning test was added to the cognitive battery part-
way through the study and was performed on a subset of 36 035
individuals who also had genotyping. For Educational Attainment,
111 114 individuals were available for further analyses.

Association analyses. Genotype-phenotype association analyses
were performed on the imputed data set using SNPTest v2.5.1.3°
SNPTEST v.2.5.1 can be found at the following URL: https:/
mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html#in
troduction). An additive model was specified using the ‘frequentist
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1" option. To account for genotype uncertainty, we analysed the
genotype dosage scores.

To determine the number of independent signals from the
genotype—phenotype analyses, LD clumping was used.?'>? The
method was applied to the GWAS output for each phenotype
separately, using the 1000 genomes to provide a measure of LD
between the SNPs.>® SNPs were selected for the analysis if they
attained a genome-wide significant (P < 5 x 10~%) association with
the respective phenotype. Next, SNPs in LD of > 0.1 and within
500 kb of the index SNP were included in the clump. SNPs from
within this region were assigned to the clump if they had a
P-value < 1x107°>.

Gene-based association analyses were performed using
MAGMA.>* The gene-based statistics were derived using the
results of the GWA analyses conducted on each phenotype.
Genetic variants were assigned to genes based on their position
according to the NCBI 37.3 build with no additional boundary
placed around the genes; this resulted in a total of 18 062 genes
being analysed. The European panel of the 1000 Genomes data
(phase 1, release 3) was used as a reference panel to account for
linkage disequilibrium.** A genome-wide significance threshold
for gene-based associations was calculated using the Bonferroni
method (a=0.05/18 062; P < 2.8x107°).

Lookups were performed of the genome-wide significant SNP-
based findings for the four UK Biobank traits in already-published
GWAS of general cognitive function'®, educational attainment*
(years of education and college degree) and childhood intelli-
gence.® For general cognitive function' only a subset of the
published data was available due to individual cohort restrictions
on data usage (N =36 840; see Supplementary Methods). We also
investigated replication of published genome-wide signifi-
cant findings in the present study, by comparing the SNP and
gene-based association results to published findings for educa-
tional attainment (SSGAC),>>** general cognitive function
(CHARGE-cognitive),” memory (CHARGE-cognitive),® processing
speed/executive function (CHARGE-cognitive),”'  Alzheimer’s

disease (I-GAP),® intracranial volume (representing brain size)®’
and childhood intelligence >
Estimation of SNP-based heritability and genetic correlations. Uni-

variate GCTA-GREML®® analyses were used to estimate the
proportion of variance explained by all common SNPs for each of
the cognitive phenotypes and educational attainment. A related-
ness cutoff of 0.025 was used in the generation of the genetic
relationship matrix. LD score regression analyses were used to
derive genetic correlations among the cognitive phenotypes, and
between them and educational attainment. We followed the data
processing pipeline devised by Bulik-Sullivan et al.*

Polygenic prediction. Polygenic profile scores were created
using PRSice®™ for the UK Biobank cognitive phenotypes and
educational attainment in genotyped participants of Generation
Scotland’s Scottish Family Health Study (GS, n=19 994);'841 and
the Lothian Birth Cohort of 1936 (LBC1936, n=1005)."**

© 2016 Macmillan Publishers Limited
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Individuals were removed if they had contributed to both GS and
UK Biobank. Polygenic profiles are the summation of an
individual’'s genotype across many genetic loci, weighted by the
effect size estimated from a GWAS on the trait of interest. SNPs
with a minor allele frequency < 0.01 were removed before
creating polygenic profile scores. Genotypes were LD pruned
using clumping to obtain SNPs in linkage equilibrium with an
r* <0.25 within a 200 bp window. Five polygenic profile scores
were created for all four phenotypes containing SNPs according to
the significance of their association with the phenotype, at P-value
cutoffs of 0.01, 0.05, 0.1, 0.5 and all SNPs from the original GWAS.
Linear regression models were used to examine the associations
between the polygenic profiles for the UK Biobank cognitive
variables and the target phenotypes in GS and LBC1936, which
included multiple measures of cognitive ability, adjusted for age at
measurement, sex and the first five (GS) or four (LBC1936) genetic
principal components for population stratification. All models
were corrected for multiple testing across all polygenic profile
scores at all five thresholds in each cohort using the false
discovery rate method.**

Pathway and functional genomic analyses. Pathway and func-
tional genomic analyses were performed using the GWA results
for each of the cognitive phenotypes. These included DEPICT
analyses** and reference to Regulome DB** (http://www.regulo
medb.org/) and the Genotype-Tissue Expression Portal (http://
www.gtexportal.org). Further details of these methods can be
found in Supplementary Methods.

RESULTS

A description of the UK Biobank cohort is presented in
Supplementary Table S1. Just under one-third of the sample
(n=33 852, 30.5%) had a college or university degree. When
scored such that higher scores represented better performance,
the phenotypic correlations between the cognitive tests were all
positive (Table 2). Verbal-numerical reasoning correlated with RT
and memory at r=0.16 and 0.18, respectively. RT correlated with
memory at r=0.12. The point-biserial correlations of educational
attainment with verbal-numerical reasoning, RT, and memory
were r=0.34, 0.10 and 0.05, respectively.

The results of the GWAS analyses are presented below;
Manhattan and QQ Plots for each trait are shown in Figure 1.

Verbal-numerical reasoning

A total of 149 SNPs from three genomic regions were significantly
associated with verbal-numerical reasoning scores (Supplemen-
tary Table S2). Three independent signals were identified. The
strongest signal was on chromosome 22 in a region that includes:
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the cytochrome P450 gene CYP2D6, which is linked to
drug metabolism; NADH dehydrogenase (ubiquinone) 1 alpha
subcomplex, 6, 14kDa (NDUFA6), which is involved in mito-
chondrial function;*® and septin 3 (SEPT3), which is associated
with Alzheimer’s disease.*” The two other regions included: SNPs
in phosphodiesterase 1C, calmodulin-dependent 70 kDa (PDETC),
a calmodulin-dependent PDE that is stimulated by a calcium-
calmodulin complex;*® and a single SNP in Fucosyltransferase 8
(alpha (1,6) fucosyltransferase (FUTS8), which catalyses the transfer
of fucose from GDP-fucose to N-linked type complex glyco-
peptides.*® These were on chromosomes 7 and 14, respectively.

The gene-based analysis of verbal-numerical reasoning identi-
fied 17 significant genes from across seven regions, including
multiple hits on chromosome 22, such as SEPT3, CYP2D6 and
NDUFA6 (Supplementary Table S3). Other gene-based hits linked
to neurobiological pathways include: Ataxin2-like (ATXN2L) on
chromosome 16 (@ member of the spinocerebellar ataxia family
which is associated with neurodegenerative disorders); amyloid
beta (A4) Precursor Protein-Binding, Family A, Member 1(APBAT)
on chromosome 9, which interacts with the Alzheimer's disease
amyloid precursor protein;*® and SH2B Adaptor Protein 1 (SH2B1)
on chromosome 16, previously associated with type 2 diabetes.®'

The proportion of variance in verbal-numerical reasoning that
was explained by all common genetic variants was 31% (GCTA-
GREML estimate 0.31, s.e.m.=0.018) (Table 1).

Reaction time

For RT there were 36 SNP hits at the genome-wide significance
threshold spanning two regions, one on chromosome 2 and the
other on chromosome 12 (Supplementary Table S2). Two
independent signals were identified from these top hits, including:
a variant in the SH2B Adaptor Protein 3 (SH2B3) gene on
chromosome 12, which is involved in signalling activities by
growth factor and cytokine receptors; and a variant in sperma-
togenesis-associated, serine-rich 2-like (SPATS2L) (on chromosome
2). The chromosome 12 locus has previously been linked to a wide
spectrum of disease susceptibilities affecting multiple organs,
including neurodegenerative conditions and longevity.>

In the gene-based analysis, 23 genes from across nine regions
were identified as having significant associations with RT
(Supplementary Table S3). These included: SH2B3 and Ataxin2
(ATXN2), associated with spinocerebellar ataxia 2°* on chromo-
some 12; autophagy/beclin-1 regulator 1 (AMBRAT), important in
autophagy and the development of the nervous system>* on
chromosome 11; diacylglycerol kinase, zeta (DGKZ), involved
in intracellular signalling,> on chromosome 5; and neuron
navigator 1 (NAVT), expressed in the nervous system and thought
to have a role in neuronal development and regeneration,”® on
chromosome 1.

Table 2.
educational variables in all genotyped participants

Descriptive statistics and phenotypic (below diagonal) and genetic (above diagonal) correlations for the UK Biobank cognitive and

Variable Mean (s.d.) Genetic (above)/phenotypic (below)/correlations

Reaction time Memory Verbal-numerical Educational

reasoning attainment

Reaction time (ms) 555.08 (112.69) — 0.179 (0.06)* 0.206 (0.05)* 0.066 (0.04)
Memory (errors) 4,06 (3.23) 0.116 (0.003)* — 0.437 (0.06)* 0.126 (0.05)"
Verbal-numerical reasoning 6.16 (2.10) 0.156 (0.005)* 0.176 (0.005)* — 0.729 (0.04)*
(maximum score 13)
Educational attainment 30.5% With degree 0.099 (0.003)* 0.052 (0.003)* 0.338 (0.005)* —

P-value < 0.05. This table has been published previously.®?

Genetic correlations are based on the results of genome-wide association studies of the UK Biobank variables. S.e.m. for the correlations are shown in
parentheses. For the phenotypic variables, Pearson correlations were used for continuous—continuous correlations and point-biserial correlations for
continuous-categorical correlations. All variables are coded such that higher scores indicate better performance. *indicates P-value < 0.0001; findicates
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Figure 1. (@) Manhattan and (b) Q-Q plots of P-values of the SNP-based association analyses for each of the cognitive phenotypes: educational
attainment, verbal-numerical reasoning, reaction time and memory. The red line indicates the threshold for genome-wide significance
(P < 5% 1078); the grey line indicates the threshold for suggestive significance (P < 1x 10~°). SNP, single-nucleotide polymorphism.
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The GCTA-GREML estimate showed that 11% of the variance in
RT can be explained by common genetic variants (estimate 0.11,
s.e.m.=0.006) (Table 1).

Memory
There were no genome-wide significant SNP-based findings for
memory scores, despite the sample size being as large as for both
RT and educational attainment and three times larger than that
available for verbal-numerical reasoning. Two gene-based results
from separate regions were identified for memory (Supplementary
Table S3). These were: the exocyst complex component 4 (EXOC4),
a component of the exocyst complex which is required for
targeting exocytic vesicles to specific docking sites on the plasma
membrane and has been associated with rate of cognitive decline
in Alzheimer's disease;”” and exostosin glycosyltransferase 1
(EXTT1), associated with type | multiple exostoses,”® on chromo-
somes 7 and 8 respectively.

The SNP-based GCTA-GREML estimate was 0.05 (s.e.m.=0.006),
that is, 5% of the variance in memory test scores can be explained
by common genetic variants (Table 1).

Educational attainment

There were 1 115 SNPs that were associated with educational
attainment at the genome-wide significance threshold
(P<5x10"8 (Supplementary Table S2). The most significant
was on chromosome 3 in a gene-dense region with more than 30
different genes. The top hit, in the Ras homologue family member
A (RHOA) gene is an insertion/deletion and therefore was not
included in the LD clumping analysis. After LD clumping, there
were 15 independent signals, including: four on chromosome 3,
two of which were in the cell adhesion molecule 2 (CADM2) gene,
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which is involved in synapse organization;*® and one in the CaM
kinase-like vesicle-associated (CAMKV) gene.

A gene-based analysis identified 95 genes from across 28
regions that were significantly associated with Educational
Attainment (Supplementary Table S3). The top hit from the
gene-based analysis was MONT1 secretory trafficking family
member A (MON1A), involved in membrane trafficking,°® which
is on chromosome 3. The CADM2 gene was also significant.
ATXN2L and SH2B1, which were significant in the verbal-numerical
reasoning gene-based analysis, were also significantly associated
with educational attainment.

The common genetic variants from the genotyped SNPs
explained 21% of the variance in educational attainment (GCTA-
GREML estimate 0.21, s.e.m.=0.006) (Table 1).

Polygenic profile scoring

The GWAS results for the three cognitive tests and the educational
attainment measure were used to build polygenic profile scores in
two independent cohorts, the Lothian Birth Cohort 1936
(LBC1936) and GS. Significant predictions were observed across
almost all thresholds for all of the predictors for the cognitive
phenotypes measured in LBC1936 and GS (Figure 2 and Supple-
mentary Table S4). The largest proportion of variance explained
in LBC1936 was 5.4% for a vocabulary-based test (the National
Adult Reading Test)®' using the Educational Attainment polygenic
score with a SNP inclusion threshold of all SNPs from the GWAS.
In GS the best prediction was also for the vocabulary measure;
2.8% of the variance was explained, again by the educational
attainment polygenic score, and with a SNP inclusion threshold of
P < 0.50.
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Genetic correlations

LD score regression was used to estimate the genetic correlations
between the three cognitive traits and educational attainment.
When scored such that higher scores represented better
performance, the genetic correlations were all positive (Table 2).
The largest genetic correlations were observed between verbal-
numerical reasoning and educational attainment (ry=0.73,
s.em.=0.04), memory (ry=0.44, s.em.=0.06) and RT (ry 0.21
s.em.=0.05). These correlations have been published
previously.®?

Replication of SNP- and gene-based hits

We sought replication of the top SNP-based findings in published
GWAS of general cognitive function,'® educational attainment®*
(years of education and college degree), and childhood cognitive
function® (Supplementary Table S5). We also compared SNP- and
gene-based hits (where available) from the previous literature with
the corresponding results from the present UK Biobank analysis
(Supplementary Tables S6 and S7).

We first describe the SNP-based lookup in the already-published
GWAS (Supplementary Table S5). We present lookups for all
available SNPs, as not all SNPs from the current study were
available due to differences in imputation reference panels. We
find that, of the 1115 genome-wide significant SNPs associated
with educational attainment, 327 (general cognitive function), 326
(years of education), 326 (college degree) and 267 (childhood
intelligence) were available in the published GWAS. Of these 158,
240, 211 and 47, respectively, showed replication at P < 0.05, for
general cognitive function, years of education, college degree and
childhood cognitive function. For verbal-numerical reasoning we
report 149 SNPs reaching genome-wide significance; 37 were
available for general cognitive function, years of education and
college degree, and 29 for childhood intelligence. Thirty-six SNPs
in the chromosome 22 region replicate for general cognitive
function, one SNP on chromosome 7 demonstrated replication
with childhood intelligence, and no replication was observed
with either years of education or college degree. None of the 36
SNPs associated with RT replicated in any of the above-listed
published GWAS.

The SNP-based lookups, within this new UK Biobank sample, of
previously reported genome-wide significant findings are detailed
in Supplementary Table S6. Replication is reported where P < 0.05
in the UK Biobank GWASs. For the 13 genome-wide significant
SNPs in the 2015 GWAS of general cognitive function,’® 11 SNPs in
the chromosome 6 region were replicated for educational
attainment, and verbal-numerical reasoning. A single SNP on
chromosome 14 (rs17522122 in the AKAP6 gene) was replicated in
verbal-numerical reasoning, RT, and memory. Of the three
memory hits reported by Debette et al.’® one SNP (rs4420638
in the APOCT gene) replicated in the UK Biobank memory GWAS.

Of the three educational attainment SNP hits (two for college
degree, rs11584700, rs4851266; one for years of education,
rs9320913) reported by Rietveld et al,?* all three replicated in
UK Biobank for educational attainment, and two SNPs, rs4851266
and rs9320913, also replicated for verbal-numerical reasoning. Of
the three SNPs associated with educational attainment and
cognitive function (rs1487441, rs7923609 and rs2721173) in
Rietveld et al,”® all demonstrated replication with educational
attainment in UK Biobank, rs1487441 and rs2721173 with verbal-
numerical reasoning, and rs2721173 with RT.

Of the 21 genome-wide significant hits reported in the most
recent Alzheimer's disease GWAS, one SNP, rs983392, showed
replication with memory in UK Biobank.

One SNP, rs17689882, in the CRHRT gene that was asso-
ciated with intracranial volume® was replicated in UK Biobank
with  both educational attainment and verbal-numerical
reasoning.
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For the gene-based lookups, the HMGNT gene reported in the
general cognitive function paper'® did not replicate for any of the
traits (Supplementary Table S7). The FNBP1L gene, which has been
associated with childhood cognitive ability,®> was replicated in the
educational attainment analysis (P=0.004). Of the seven gene-
based hits for educational attainment*® (college versus no
college), two (PIK3C2B and TET2) were replicated in UK Biobank
for the educational attainment variable. None of the genes was
replicated for the other three traits. For the years of education
variable examined by Rietveld et al,** 12 out of the 16 significant
genes were replicated in the UK Biobank educational attainment
analysis. Five of these genes also replicated for verbal-numerical
reasoning. There was no overlap for the RT or memory traits. Of
the genes linked to educational attainment and cognitive function
in Rietveld et al,”®> NRXNT was associated with verbal-numerical
reasoning and POU3F2 with memory in UK Biobank.

DEPICT results

For the educational attainment phenotype, gene prioritization as
implemented in DEPICT indicated a role for 28 genes at false
discovery rate < 0.05 (Supplementary Table S8). No genes showed
statistically significant links to verbal-numerical reasoning, RT or
memory. In the gene-set analyses, two gene sets were significantly
enriched for verbal-numerical reasoning; these were ‘regulation
of cell morphogenesis’ (GO:0022604), false discovery rate <0.01,
and ‘CLTC PPI subnetwork’ (ENSG00000141367), false discovery
rate <0.05. No significant results were found with educational
attainment, RT or memory.

The tissue enrichment analyses yielded no significant findings
for any of the cognitive function phenotypes. However, nominally
significant results for the educational attainment, memory, and RT
phenotypes showed enrichment of central nervous system
tissue types.

Functional analysis and gene expression

Using the GTEx database (http://www.broadinstitute.org/gtex/),
three cis-eQTL associations were identified for the 18 independent
genome-wide significant SNPs found in the present report that
were also included in this database (Supplementary Table S9).
These were rs13086611, rs11130222 (an intronic SNP in CAMKYV),
and rs2142694 and they potentially regulate FAM212A, RBM6 and
CYP2D6/SMDT1/NAGA, respectively. For this study, data mining of
regulatory elements was restricted to normal cell lines/tissues.
There was evidence of regulatory elements associated with
all 12 of the independent genome-wide significant SNPs included
in the Regulome DB database. (http://www.regulomedb.org/)
(Supplementary Table S9).

DISCUSSION

The results of the present study make novel contributions to three
scientific aims of GWAS: helping towards identifying specific
mechanisms of genomic variation; describing the genetic
architecture of complex traits; and predicting phenotypic variation
in independent samples. The most important novel contribution
of the present study is the discovery of many new genome-wide
significant genetic variants associated with reasoning ability,
cognitive processing speed and the attainment of a college or
university degree. The study provided robust estimates of the
SNP-based heritability of the four cognitive variables and their
genetic correlations. The study makes important steps toward
genetic consilience, because several of the genomic regions
identified by the present analyses have previously been associated
in GWASs of general cognitive function, executive function,
educational attainment, intracranial volume, neurodegenerative
disorders and Alzheimer’s disease. The study was successful in
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using the GWAS results from UK Biobank to predict cognitive
variation in new samples.

The present study identified some novel genes/loci associated
with individual differences in cognitive functions. These include,
for RT, a locus on chromosome 12g24 containing the growth
repressor SH2B3, and the RNA processing factor ATXN2, previously
associated with a large number of disease susceptibilities
including: type 1 diabetes, multiple sclerosis, spinocerebellar
ataxia type 2, Parkinson’s disease, longevity and many more.>?
Phenotypically, processing speed and longevity are associated.®®
Therefore, it is possible that this locus is influencing RT through its
influence on a number of health traits. The most significant
finding for verbal-numerical reasoning was for a gene-dense
region on chromosome 22, and replication of this region was
observed with general cognitive function. This region contains the
cytochrome P450 gene (CYP2D6), which uses hydroxytryptamines
(such as serotonin) and neurosteroids as endogenous substrates®*
and may explain some of the links between cognitive functions
and mental illnesses. Given the associations of this region with
drug metabolism, it would be interesting to investigate this
finding further with specific reference to medication use and
psychiatric disease history. Brain size and cognitive ability are
correlated phenotypically,®® and the significant hit in the GWAS of
intracranial volume?” was also significant in SNP- and gene-based
analyses in the present study.

Previously published associations between a number of
genes and cognitive function and educational attainment have
been replicated. CADM2 (chromosome 3), which was previously
associated with executive functioning and processing speed®' and
showed suggestive association with general cognitive function,'?
was associated with educational attainment in this study. CADM2
encodes a synaptic cell adhesion molecule and is important in
maintaining synaptic circuitry of the central nervous system.®® The
two genes linked previously to educational attainment and
cognitive function®®> and that were associated with verbal-
numerical reasoning and memory in UK Biobank are associated
with the regulation of post-synaptic N-methyl bp-aspartate
receptors (NRXNT) and neuronal differentiation (POU3F2). Genetic
variation in the N-methyl p-aspartate receptor complex has been
previousl;/ shown to have an enriched association with cognitive
abilities.®” Several specific SNPs previously associated with general
cognitive function'® were associated with educational attainment
and verbal-numerical reasoning, with single hits associated with
RT and memory phenotypes in UK Biobank. This suggests that
educational attainment can be used to some extent as a proxy for
cognitive function (particularly verbal-numerical reasoning) in this
sample. The genes ATXN2L and SH2BT1 (both on chromosome 16),
previously linked to duration of education,®* were associated with
both educational attainment and verbal-numerical reasoning in
UK Biobank, as were three SNPs identified by Rietveld et al.*® as
being associated with education and cognitive function.

Evidence of regulatory elements associated with all 12 of the
genome-wide significant independent SNPs included in the
Regulome DB database was identified within normal tissues and
cell lines. The regulatory elements identified include position
weight matrix, transcription factor binding sites, histone modifica-
tions, DNase hypersensitive sites and FAIRE sites. This evidence
suggests that the associated SNPs are in sites of active
transcription and could have a regulatory role on transcription.
Three of the SNPs are potentially eQTLs.

The SNP-based estimate of heritability for verbal-numerical
reasoning (31%) was highly consistent with previous estimates
based on a general cognitive ability phenotype that had been
composed using three or more diverse cognitive tests.'®'*'®
Using the summary GWAS data from the present study to predict
cognitive variation in independent samples (Supplementary Table
S4) produced the largest R? values in this field to date, with
sometimes over 5% of variance explained, especially in the more
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crystallized cognitive functions such as vocabulary. Previously,
values of 1 to 2% have been typical.”®

The present study has several strengths. It has the largest
sample size to date for a GWAS of any cognitive phenotype. It has
the added advantage of being a single sample rather than a
patchwork of small GWASs requiring meta-analysis. The tests
offered were the same for all UK Biobank participants, so the
phenotypic heterogeneity of previous cognitive GWASs has been
overcome. It has phenotypes covering three important cognitive
domains and a measure of educational attainment that could be
used as a proxy for cognitive function. All individuals were of
white British ethnicity, which minimized population stratification.
The genotyping and its QC were performed in a consistent way.

The pattern of the present study’s results, whereby the
educational attainment and verbal-numerical reasoning variables
had higher heritability and more genome-wide significant hits
than RT or memory, can be understood with reference to some
regularities in the relevant literature and, of course, on time
constraints placed on data collection in a study that has a wide-
ranging health remit. First, general cognitive ability, or strong
indicators of it, tend to be more heritable than specific cognitive
functions such as processing speed and memory.®'%2%8 Second,
tests of verbal ability and reasoning are among those tests that
have higher loadings on the latent trait of general cognitive
ability, and tests of memory and processing speed have lower
loadings.'®*®~”" Third, the RT and memory tests in UK Biobank
were handicapped further by being very brief. The RT test
included a far smaller number of trials than is typical for large
surveys in the UK, which have used 40 trials in choice RT
procedures.”?”* The memory test was based on the recall of a
single 12-item matrix with six pairs of stimuli. This is both a brief
and unusual type of test in the field of declarative memory; more
is known about the psychometric characteristics and genetic
foundations of declarative memory tests such as word list and
paragraph recall?® The test-retest correlation of the memory
variable was particularly low (r=0.15). When compared with
phenotypic correlations of similar tests in the Lothian Birth Cohort
1936, correlations for the UK Biobank tests are about or more than
0.1 lower (Supplementary Table S10). Fourth, recent evidence from
previous large studies make the strong evidence of a genetic
contribution to educational attainment in the UK Biobank sample
unsurprising. Despite their often being used as social background/
environmental variables,%® educational attainments are substan-
tially heritable,”* with many of the same genes affecting different
academic subjects,”> and they have high phenotypic and genetic
correlations with cognitive ability test scores, especially general
cognitive ability.>®7® Moreover, it has already been demon-
strated that educational attainment is useful as a proxy variable for
cognitive ability in GWAS analyses.?®

This accumulating evidence is consistent with the interpretation
that, to some extent, educational attainments are a product of
genetic contributions to cognitive ability, but with two emphatic
qualifications. First, it is obvious that there are other—especially
social—determinants of whether or not people achieve certain
educational outcomes.®® Second, there is evidence that the
variation in educational attainments that is caused by genetic
differences is shared with traits other than intelligence, such as
personality dimensions.”>”” Therefore, we predict that not all of
the genome-wide significant hits associated with the attainment
of a college or university degree in the present study will be
associated with cognitive differences; some might be associated
with personality and other heritable, educational relevant traits.

The present study has limitations. Although the sample size is
large for its field, GWASs of other complex traits such as height
demonstrate that even larger sample sizes are required, and that
these will reveal many more significant genetic variants. Another
limitation concerns the cognitive tests. The three measures used
were non-standard, bespoke tests. They did show the expected

Molecular Psychiatry (2016), 758 -767

765



GWAS of cognitive functions
G Davies et al

766

positive correlations with one another (and with education), but
these correlations were lower than is typically found in studies
of cognitive batteries which have tests with more items. The
limitations of the RT and memory tests were discussed above.
The verbal-numerical reasoning test had only 13 items, some of
which had floor effects, and it had modest internal consistency.
With more in-depth, albeit time-demanding tests, we expect to
find even more genetic variants linked to differences in cognitive
ability.”® Indeed, the educational variable heralds this. The
participants in the sample were all white British, which restricts
the generalizability of the results, which require extending to
other groups. We also note that there are likely to be other types
of genetic variation contributing to cognitive differences in
addition into the common SNP variations studied here.

When genetic data on the full ~500 000 UK Biobank sample
becomes available it is certain that more genetic variants will be
found that are relevant for cognitive variation. This would enable
robust replication of our current results in addition to other useful
analyses. For example, sex- and age-moderation of genetic
determinants could be studied with high power. It is possible, for
example, that, as we have found for APOE variation,'® some genetic
variants will have stronger effects at some ages than others, or even
no effects whatsoever at some ages. There are also plans to
enhance the cognitive testing in UK Biobank, which will afford the
genetic study of additional and more detailed cognitive tests.

CONCLUSION

The present results make advances in, and encourage much
further work on the genetic foundations of cognitive differences.
Until recently, GWASs of cognitive functions had provided
converging information about their polygenic architecture—
especially via SNP-based heritability estimates—and modest
power to predict cognitive phenotypes in independent studies.
However, they were near-bereft of significant, replicable genetic
variants that could be followed-up to understand why some
people have more efficient cognitive functioning than others. This
drought is ending; work can begin on the genetically driven
biological mechanisms of cognitive differences and the biological
foundations of the many associations between cognitive abilities
and bio-medical, health and social variables.
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