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Abstract: Dimerization free energies are fundamental quantities that describe the strength of in-
teraction of different molecules. Obtaining accurate experimental values for small molecules and
disentangling the conformations that contribute most to the binding can be extremely difficult, due
to the size of the systems and the small energy differences. In many cases, one has to resort to
computational methods to calculate such properties. In this work, we used molecular dynamics
simulations in conjunction with metadynamics to calculate the free energy of dimerization of small
aromatic rings, and compared three models from popular online servers for atomistic force fields,
namely G54a7, CHARMM36 and OPLS. We show that, regardless of the force field, the profiles for
the dimerization free energy of these compounds are very similar. However, significant care needs to
be taken when studying larger molecules, since the deviations from the trends increase with the size
of the molecules, resulting in force field dependent preferred stacking modes; for example, in the
cases of pyrene and tetracene. Our results provide a useful background study for using topology
builders to model systems which rely on stacking of aromatic moieties, and are relevant in areas
ranging from drug design to supramolecular assembly.

Keywords: dimerization free energy; force field comparison; small aromatic molecules

1. Introduction

Determining the binding energies between molecules is of major importance in dif-
ferent scientific fields, such as drug design or nanotechnology [1,2]. The strength and
dynamics of the interactions will determine whether a specific binding will take place or
not, how long it will last and how it affects its surroundings. Experimental techniques,
such as nuclear magnetic resonance [3–5] or isothermal titration calorimetry [6,7], can
be used to calculate binding energies between macromolecules, but they are limited by
the nature and the size of the molecules, since small energy differences are extremely
difficult to be captured. Additionally, experimental techniques measure ensemble averages
without detailed knowledge of the contributions of the different accessible conformations
that they are averaged over. As a result, detailed experimental data are scarce and are
usually available for large systems, such as large aromatic compounds or proteins, where
the differences in energy can be measured with better accuracy and confidence [3,8].

Computational approaches comprise a powerful tool to measure the interaction
strength and binding modes between small molecules, and are usually employed to sup-
port experimental measurements or deal with experimental pitfalls [9]. Their level of detail
and computational complexity vary, and many different methods have been developed
that are more or less suitable for different applications. Specifically, while quantum me-
chanical (QM) calculations in vacuum provide an accurate description for the favorable
binding modes, the size of the systems and the need for treating the solvent explicitly
render the use of QM methods prohibitively expensive in systems aiming to represent
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realistic environments [10,11]. On the other hand, docking simulations are a fast option to
study the interactions between two molecules, but the simplifications in scoring functions
and the limited information on the dynamics of the interactions restrict their use to mod-
eling protein-ligand binding [12–14]. In molecular dynamics (MD), Newton’s equations
of motion are solved to obtain trajectories of atomistic systems and study their physical
and chemical properties. MD simulations can provide high resolution atomistic descrip-
tions and capture the dynamic behavior of the systems under study. They are an ideal
option to study binding energies and modes, since they combine high level of accuracy
and reasonable computational costs [15–18].

In MD simulations, the combination of the mathematical models and the parameters
that are used to describe the interactions among all the atoms of each system is called
force field. A simple functional form of a force field includes two terms that describe
the interactions between atoms that are covalently bonded (bond lengths, angles, and
dihedral terms) and the interactions between non-bonded atoms (van der Waals forces and
electrostatics), Equation (1).

E =

Ebonded + Enon−bonded =

Ebonds + Eangles + Edihedrals + ELJ + ECoulomb

(1)

bonds and angles are treated as harmonic oscillators, whereas dihedral angles are rep-
resented either as harmonic oscillators or periodic functions. Interatomic interactions
(attractive dispersion and Pauli repulsion) are modeled with Lennard–Jones (LJ) potentials
and electrostatic forces with Coulomb potentials.

Several force fields have been developed over the past decades, AMBER [19],
CHARMM [20], GROMOS [21], OPLS [22], etc. Their functional forms are very simi-
lar, but there are some variations depending on the simulation program [23]. Furthermore,
each force field was parametrized with a different strategy regarding amongst others, the
order in which parameters were defined, fixed, and refined, the combination rules, the
number of atom types and modularity, as well as the choice of specific experimental or QM
results for calibration, and it was optimized to reproduce properties of specific systems,
e.g., proteins, lipids, etc. Despite their differences, most force fields are sufficiently accurate
and can be used in different applications [24,25]. It should also be kept in mind that the
force fields used in this study are intended to be used without extensive reparametrization
in a wide range of biomolecular systems, and are evolving as more pertinent experimental
data become available; in particular free energy partitioning data were not used in the first
parametrization, but have been incorporated in the last two decades. For some force fields,
these aspects have been addressed in the literature [26,27].

A common issue that is encountered in MD simulations is finding and optimizing
parameters for different systems, in order to make sure that the model represents an
accurate description of the actual system and reproduces its physical properties. Nowadays,
there are several web servers that generate parameters for MD simulations on demand
for different types of molecules [28–30], broadening the accessibility of computational
methods to novice users and making simulations of exotic or novel molecules plain sailing.
Even if parameters for MD simulations can be easily obtained, there are two important
limitations of MD simulations that affect every system under study. First, reactivity of
molecules is not described in classical MD simulations, since covalent bonds cannot break
or form. This means that the protonation state of the molecules remains the same and
catalysis cannot be studied with conventional simulations. Second, there is no treatment
for the electronic polarization, since atoms have fixed partial charges. In reality, the partial
charges of atoms are dynamic and the electron density of the molecules changes based on
its surroundings. Potential solutions to these limitations are the use of polarizable force
fields [31] and combined QM/MD approaches [32], respectively, but both options come
at the expense of computational cost. Other issues are related to the size of systems and
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the attainable simulation time scales. However, recent developments in coarse-grained
methods showed that even though the atomistic resolution is reduced, the important
structural and dynamical features of different molecules can be recollected, thus pushing
the limits of molecular simulations and their applications [33–35].

In this study, we compared the dimerization free energy surface (FES) and bind-
ing modes for a series of small aromatic molecules (Figure 1) between three commonly
used MD force fields: CHARMM36 [36], G54a7 [37] and OPLS [22]. These molecules are
usually encountered as solvents (e.g., benzene or cyclohexane) or as building blocks of
biomolecules and nanomaterials. Previous MD studies showed that different force fields
produce consistent results in terms of structural and energetic properties, and they are
usually compatible with QM or experimental studies, when available [10,38,39]. Our study
focuses on small aromatic molecules and shows that, regardless of the force field, the free
energy of binding and the binding modes are roughly the same. However, applications
involving larger aromatic molecules should be considered with care. Increasing the size of
the molecules leads to significant deviations in the FES profiles.

Figure 1. List of the molecules with their chemical structure considered in this work. The black line
connects the center of geometry (COG) of the molecules and together with the black vectors represent
the dihedral angle for the relative orientation of the dimers. The red vector denotes the normal of the
plane for each molecule. The dihedral between the two black vectors and the angle between the red
vectors, together with the COG distance, were used as collective variables (CV) for the calculation
and presentation of the FES profiles.
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2. Results
2.1. Comparison of Parameter Setups

Benzene, the simplest aromatic compound, was used as a reference system for com-
paring the results between different force fields and studying the effect of using the default
cut-off parameters or the general setup in the FES of dimerization. The results for the FES
as a function of the distance between the center of geometry (COG) of two benzenes and
the dihedral angle describing the relative orientation are presented in Figure 2. In Figure 3,
the FES as a function of the distance between the COG and the angle between the normal
of each benzene ring is presented. Figures 2 and 3 show that the FES for the dimerization
of benzene is roughly the same in all simulations. The average error of all points of the FES
as a function of the block size is presented in Figure 4. The average error does not change
as a function of the block size, indicating that the simulations were converged.

Figure 2. FES for the dimerization of benzene as a function of the distance and the torsional angle.
The results for each force field are presented in each row. The plots on the left correspond to the FES
based on the general setup and the plots on the right to the default parameters of each force field
(see Methods).
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Figure 3. FES for the dimerization of benzene as a function of the distance and the angle between the
normal of benzene planes. The results for each force field are presented in each row. The plots on
the left correspond to the FES based on the general setup and the plots on the right to the default
parameters of each force field.

Regardless of the simulation setup, the binding energy and modes in the first inter-
action shell (∼0.4–0.7 nm) are almost identical. The only noticeable difference is seen in
the G54a7 case, where the well in the second interaction shell (∼0.8–1.1 nm) is deeper
∼1–2 kJ/mol in the general setup compared to the simulation with the default parame-
ters. Such differences might be proven important in some applications, but, as discussed
later, we are mostly interested in the strength of binding and the orientation in the first
interaction shell.
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Figure 4. Statistical error of the FES calculations as a function of the block size. The solid lines corre-
spond to the error analysis of the original biased simulation, whereas the dashed lines correspond to
the reweighted profiles.

2.2. Comparison of FES Profiles

Next, we compare the binding modes of different aromatic molecules among different
force fields. Starting with benzene, there is no preference in its orientation with respect to
the dihedral angle, since benzene is symmetrical. However, conformations with angles
∼90◦ (T-shaped) are more favorable than stacked conformations. When the FES is projected
on the distance and the dihedral angle, the energy minimum in the first interaction shell
is ∼3 kJ/mol, whereas the depth of the well is ∼5 kJ/mol, when the angle between the
normal of the planes is used. In the first case, conformations with low and high energy
minimum are grouped together, resulting in a lower value for the energy, whereas in
the second case, the main variable that discriminates between the two conformations is
effectively dissociated. This effect is only visible when the proper collective variables (CV)
are used for projecting the FES. Nevertheless, our results for the FES of benzene are close
to the reported values from previous Monte Carlo [40] and MD simulations [40], where the
depth of the well was ∼6 kJ/mol and ∼1.5 kJ/mol, respectively, and the minimum of the
FES was located at distance ∼0.55 nm in both studies.

Regardless of the force field, similar results are obtained for most of the aromatic rings
regarding the depth of the minimum energy in the first interaction shell, Figure 5. The
energy differences among them are in the order of thermal fluctuations (<kbT), suggesting
that their energy states are almost indistinguishable.

The FES profiles for each molecule and the standard errors are included in the Supple-
mentary Material Figures S1–S7. T-shaped conformations are mainly preferred by most of
the aromatic rings. At the same time, conformations close to the stacked arrangement are
more populated in some molecules, e.g., chlorobenzene, as shown in Figure S2. Surpris-
ingly, molecules with polar groups do not show significant differences in the orientation
of the binding modes with respect to the dihedral angle that could be attributed to the
presence of the charged groups. For example, phenol has a polar hydroxyl group that, in
principle, should favor conformations where the oxygens would be diametrically opposed.
However, this polar effect of the hydroxyl group was not observed in any FES, Figure S3.
Such behavior might have been captured by using a polarizable force field. Effects in the
orientation of the molecules with respect to the dihedral angle become slightly visible in
para-cresol, Figure S5, and get more evident as the size of the ring increases.

Even though the results for the small aromatic molecules are roughly the same, as
the size of the aromatic moiety increases, so do the deviations between each force field,
Figure 5. The most extreme differences are observed in the FES of pyrene and tetracene,
Figures 6 and 7. For pyrene, the estimated energy of binding is ∼5 kJ/mol higher in the
G54a7 simulation and the position of the minimum is located at ∼0.4 nm, suggesting that
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a sandwich conformation is preferred. On the other hand, there is no preference in the
orientation of the molecules when they are at close proximity and minor differences in the
orientation are only seen in the OPLS simulation. For tetracene, G54a7 predicts that parallel
and close arrangements are more favorable, whereas according to CHARMM36, parallel
arrangements and conformations with angle ∼0–60◦ are similar in terms of energy. The
difference in the energy of binding between G54a7 and CHARMM36 is ∼5 kJ/mol in the
sandwich conformation. Finally, OPLS predicts that conformations with angle ∼30–90◦ are
the most favorable and the energy of binding is similar to CHARMM36. Deviations at the
distance at which the minimum energy is found are present in both pyrene and tetracene
FES profiles. The error estimation for these calculations are included in the Supplementary
Material Figure S8.

Figure 5. Binding energy at the lowest point of each molecule’s dimerization FES for different force
fields. All simulations were performed with the general setup. The error bars correspond to the
average error calculated from block analysis.
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Figure 6. FES for the dimerization of pyrene as a function of the distance and the torsional angle
(left) and the distance and the angle between the normal of aromatic planes (right).

Figure 7. FES for the dimerization of tetracene as a function of the distance and the torsional angle
(left) and the distance and the angle between the normal of aromatic planes (right).
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3. Discussion

Obtaining accurate experimental results for binding energies of small molecules is
usually difficult, and calculating such properties in realistic environments with high degree
of accuracy using computational methods is quite expensive. Most computational studies
for the interactions of aromatic rings are, therefore, obtained in the gas phase, or by
investigating binding within a limited amount of degrees of freedom. A quick evaluation
of the reported values in the literature shows that computational results are dependent
on the method of use [10,41,42], and present deviations ∼2–4 kJ/mol for small aromatic
molecules. Consequently, we consider that comparisons are mostly meaningful within
specific methods, e.g., QM or MD, where the setups are controlled, the complexity and
degrees of freedom are similar and deviations from the trends can be easily monitored.
Taking this point into account, we only focused on the position and the depth of the well in
the first interaction shell.

Our measurements for the dimerization free energy of small aromatic molecules
suggest that different force fields produce similar results in terms of binding energies and
modes. The presence of deviations in larger aromatic molecules could be attributed to
different causes. First, most servers generate parameters based on similarity of atoms or
molecules to specific databases of existing optimized molecules. Thus, the decrease in
accuracy is inevitable, when the size and complexity of the target molecule increases. Even
when the parameters are generated on the fly, the size and complexity of the molecules
are important factors, and the models should be used with extra caution. The method
for obtaining the parameters in each force field could be another reason for the small
differences in the position and strength of binding. Such systematic differences are likely
to accumulate when the size of the molecules increases. For example, the method for
obtaining partial charges is reported to have significant effects on different thermodynamic
properties, such as the free energy of hydration [43]. Additionally, these values might differ
slightly or considerably among different force fields [44]. Despite the small differences in
the FES profiles, the parameters seem to converge, at least for the small aromatic rings of
this study.

To summarize, we performed MD simulations of small aromatic molecules to study
the FES of their dimerization. Different force fields were used to compare the obtained
FES and examine their convergence. The scarce experimental and computational results
in similar environments make comparisons between experiments and theory, or different
theories, extremely difficult. Thus, performance can be only assessed within the boundaries
of MD simulations. Our results show that, regardless of the force field, we obtained free
energy profiles with similar binding modes and strength of interactions. This enhances our
confidence in using MD simulations to calculate the binding affinity of small compounds.
On the other hand, deviations from the general trends were observed in large aromatic
molecules, such as pyrene and tetracene, indicating that further optimization of the force
fields is needed, before using such computational methods to make accurate quantitative
predictions for large systems. This task is demanding and requires many iterations to
guarantee that the target data from either QM calculations (e.g., vibrational spectra, dipole
moments, etc.) or experimental measurements (e.g., thermodynamic properties, crystallo-
graphic data, etc.) have been effectively translated to MD parameters and the models are
accurate descriptions of the underlying systems. In the future, machine learning methods
could be the answer to the complex task of force field parameter refinement [45].

4. Methods
4.1. Molecule Parameters

We conducted MD simulations to study the FES for the dimerization of small aromatic
molecules and compare the obtained FES from different force fields. The parameters for all
the simulated molecules were obtained from different online servers that generate topology
and parameter files for each force field. Specifically, the automated topology builder (ATB)
server [28] (https://atb.uq.edu.au/, accessed on 1–15 November 2018) was used for the

https://atb.uq.edu.au/
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GROMOS based G54a7 [37] simulations. ATB includes a large database of topologies for
different molecules. In the cases in which optimized parameters for the molecules of
interest were available, those parameters were chosen. The ATB entries are reported in the
Supplementary Material, Table S1. The CGenFF server (https://cgenff.umaryland.edu/,
accessed on 1–15 November 2018) was used to generate the CHARMM36/CGenFF [29]
parameters, whereas for the OPLS [22] parameters, the LigParGen server [30,46,47] (http:
//zarbi.chem.yale.edu/ligpargen/, accessed on 1–15 November 2018) and the 1.14*CM1A-
LBCC charge model were used [47].

4.2. MD Simulations

All simulations and analysis were performed with Gromacs.2016-2018 [48,49] pack-
ages patched with PLUMED 2.4 [50]. Each simulation was performed in a cubic box with
dimensions of approximately 5 × 5 × 5 nm, containing two of the selected molecules. The
temperature was kept constant at 300 K with the v-rescale algorithm and a time constant
of 0.1 ps [51]. For the pressure coupling, the Berendsen barostat [52] was used to main-
tain the pressure constant at 1 bar in an isotropic pressure bath with a time constant of
1 ps and compressibility of 4.5 × 10−5 bar−1. The cut-off for electrostatic and van der
Waals interactions was set to 1.4 nm and the Verlet scheme was used for the short range
non-bonded interactions with the default buffer tolerance of 0.005 kJ mol−1 ps−1. Long
range interactions were calculated with the reaction field method [53] and εr set to 54. The
LINCS algorithm was employed for constraining the bond lengths [54]. All systems were
minimized for 103 steps by using the steepest descent algorithm and equilibrated in the
NVT and NPT conditions, each for 10 ps with a 2 fs time step. The production phase lasted
100–150 ns depending on the system, until the average errors in the free energy calculations
from the block analysis converged. System details are included in the Supplementary
Material Table S1.

Modeling water is not trivial and each force field was optimized with specific water
model parameters to reproduce experimental and theoretical results. In order to be con-
sistent with the original work and obtain the same accuracy, the appropriate water model
should be used with each force field. Consequently, G54a7 systems were solvated with
explicit SPC water molecules [55], whereas CHARMM36 and OPLS systems were solvated
in TIP3P water model [56].

Apart from the water models, there are additional parameters that guarantee optimal
performance when using each force field. In our case, we used the same cut-offs and
parameters regardless of the force field to maintain simplicity and be consistent in the
way the simulations were performed. This setup is referred to as general parameters.
At the same time, we performed test simulations with setups as close as possible to the
default parameters of each force field to evaluate the sensitivity of the results between
the two setups. In the default G54a7 parameters, the group cut-off scheme was used
with a twin range cut-off for the non-bonded interactions, where the short-range neighbor
cut-off distance was set to 0.8 nm and the long range cut-off to 1.4 nm. In the CHARMM36
simulations, the LINCS algorithm was applied only to hydrogen atoms, the Verlet scheme
was used with 1.2 nm distance cut-off and the long range electrostatic interactions were
calculated with the particle mesh Ewald (PME) method [57]. As for the OPLS systems, the
Verlet scheme was used with 1.0 nm distance cut-off and the PME method was used for the
long range electrostatic interaction.

Finally, to stay updated with the latest halogen parametrization and compare potential
effects in the FES, the chlorobenzene for the CHARMM36 force field was modeled with
a Drude oscillator around the chlorine to model the effect of the “sigma hole” [58,59], a
small area opposite to the bond that has positive electrostatic potential. The charge of the
Drude particle was set 0.05 e and its mass to 0.1 u. The bond length between the Drude
particle and the chlorine was 0.164 nm and the force constant 2508 kJ mol−1 nm−2. The
equilibrium value for the angle formed by the carbon of the benzene ring, the chlorine and
the Drude particle was set to 180◦ and the force constant to 836 kJ mol−1 rad−2.

https://cgenff.umaryland.edu/
http://zarbi.chem.yale. edu/ligpargen/
http://zarbi.chem.yale. edu/ligpargen/
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4.3. Metadynamics

The FES profiles for the dimerization of each molecule were obtained by metadynam-
ics simulations [60,61] with the well-tempered [62] adaptation. In metadynamics, also
known as local elevation [63] or conformational flooding [64], positive Gaussian potentials
are added on the system as a memory dependent factor that drives the system towards
unexplored regions of the available conformational space. After the simulation, the de-
posited Gaussians are summed and they are used to calculate the unbiased free energy
landscape as a function of the CVs of interest. In the well-tempered adaptation, the height
of the deposited Gaussian is smoothly decreased leading to converged FES profiles. The
CVs on which the bias was added were the distance between the COG of the aromatic rings
and the torsional angle between atoms of the rings and their COGs, Figure 1. The angle
between the normal of the ring planes was used as a third CV to project the FES by using a
reweighting algorithm [65]. The height of the deposited Gaussians was set to 1.0 kJ/mol
and the width to 0.05 nm and 0.2 rad for the distance and torsion, respectively. Gaussians
were deposited every 500 steps and the bias factor was set to 5. A wall, in the form of a
harmonic potential with force constant 200 kJ/mol, was added at distance beyond 2 nm
to prevent the molecules from exploring conformations at distances beyond the second
interaction shell. All profiles were translated in order to be zero at distances where the
profiles were almost flat (∼1.7 nm). Block analysis was used to estimate the error from the
free energy calculations.

4.4. Entropic Component of Free Energy

Since we are dealing with molecules in a multi-dimensional space, the FES profiles
should be corrected for the entropic component of the free energy. Imagine an object in
a three dimensional space and another object that can be placed around the first one on
a sphere of specific radius. In this case, the probability of finding the second object in a
specific distance increases with the surface of the sphere. Because the probability of finding
an object increases at larger distances, the free energy of interaction should be modified
as a function of distance. The contribution of the entropic term in the FES has been taken
into account when calculating and presenting the profiles by adding an additional energy
component to the FES. The formula for the entropic component is shown in Equation (2).

∆VFES(r) = (n − 1) R T ln(r) (2)

where ∆VFES(r) is the entropic free energy as a function of distance (r), n is the number of
dimensions, R is the gas constant and T is the temperature of the system.

Supplementary Materials: The following are available, Table S1: ATB entries for the topologies
used. Most of the parameters have been optimised to reproduce experimental solvation free energies,
Figure S1: FES for the dimerization of toluene (top) and statistical error of the FES calculations as a
function of the block size (bottom), Figure S2: FES for the dimerization of chlorobenzene (top) and
statistical error of the FES calculations as a function of the block size (bottom), Figure S3: FES for the
dimerization of phenol (top) and statistical error of the FES calculations as a function of the block
size (bottom), Figure S4: FES for the dimerization of styrene (top) and statistical error of the FES
calculations as a function of the block size (bottom), Figure S5: FES for the dimerization of para-cresol
(top) and statistical error of the FES calculations as a function of the block size (bottom), Figure S6:
FES for the dimerization of cyclohexane (top) and statistical error of the FES calculations as a function
of the block size (bottom), Figure S7: FES for the dimerization of naphthalene (top) and statistical
error of the FES calculations as a function of the block size (bottom), Figure S8: Statistical error of the
FES calculations as a function of the block size for pyrene and anthracene, respectively.
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