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A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd3+ : LuF
3
)

thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser
deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180,
225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd3+ : LuF

3
crystal. Moreover,

application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance
enhancement of the lamp operating in the VUV region.

1. Introduction

Vacuum ultraviolet (VUV) light has been used in numerous
fields, such as cleaning, surface modification, and steriliza-
tion, because short wavelength light with high photon energy
is capable of breaking strong chemical bonds [1–3].Therefore,
performance improvements of VUV lamps contribute to the
progress of these applications. The VUV gas lamp has widely
been used [4–6] but presents limited stability, lifetime, and
size. VUV lamps using a solid-state phosphor have attracted
considerable attention as alternate light sources because they
exhibit less deterioration, less fluctuation, and higher density
than gas lamps [7, 8]. These lamps require wide band gap
materials but few solid-state phosphors have substantial band
gaps. Group III nitrides are suitable because they present a
direct transition type band structure with a wide band gap

[9, 10]. However, even when using AlN, which emits light at
a relatively short wavelength, the operating wavelength was
limited to deep UV region [9, 11–13]. The wide band gap
of diamond can be applied to UV but not to VUV lamps
[14]. On the other hand, some fluorides have band gaps that
are sufficiently wide to enable light emission in the VUV
region [15, 16]. Fluoride compositematerials have beenwidely
studied as laser materials, scintillation materials, and optical
materials because of their extremely wide band gap [17–
24]. Specifically, a KMgF

3
thin film acting as a solid-state

phosphor and carbon nanofiber (CNF) field electron emitter
has previously been incorporated into a VUV lamp [25].
The emission spectra from the lamp showed two emission
peaks at 155 and 180 nm in the 140–200 nmwavelength range,
showing that solid-state phosphors can be exploited in VUV
lamps.
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Figure 1: Schematic diagram of VUV field emission lamp. SEM image of CNFs is shown in the insert.

Neodymium ion doped lutetium fluoride (Nd3+ : LuF
3
),

whose cathodoluminescence (CL) efficiency is almost equiv-
alent to KMgF

3
, was selected as a phosphor to develop a

new VUV lamp. This lamp also consisted of CNFs field
electron emitters. Among Nd3+ ion doped fluoride materi-
als that emit VUV light, such as Nd3+ : LuF

3
, Nd3+ : LaF

3
,

and Nd3+ : LuLiF
4
[26–28], Nd3+ : LuF

3
single crystals have

reported the highest X-ray excited luminescence conversion
efficiency [26]. However, large Nd3+ : LuF

3
single crystals

have proven difficult to grow because of the occurrence of
a hexagonal to orthorhombic phase transition (ca. 950∘C)
during the crystal growth process [26]. The stress caused
by this structural reconfiguration results in crack formation
in Nd3+ : LuF

3
single crystals. In contrast, growth of thin

film suppresses these cracks owing to reducing stress by
depositing small particles. For this reason, we fabricated
Nd3+ : LuF

3
thin film by pulsed laser deposition (PLD) to

deposit small particles. In addition, PLD has produced fewer
chemical composition discrepancies between source targets
and deposited thin films. Consequently, the fabrication of
fluoride thin films by PLD does not require the utilization of
the toxic fluorine gas [29].

2. Experimental Methods

2.1. Thin Film Fabrication. The target was prepared by press-
ing a 1 : 9 NdF

3
-LuF
3
powdermixture. A (001)-orientedMgF

2

crystal (20mm × 20mm × 0.5mm) mounted on a rotating
holder was used as a substrate and was maintained at 400∘C
during PLD. This substrate temperature was chosen because
previous experiments on the growth of Nd3+ : LaF

3
thin films

showed that substrate heating improved crystalline quality
and VUV luminescence quantum efficiency and resulted
in optimal performance at 400∘C [27]. The thin film was
deposited by irradiating the Nd3+ : LuF

3
target with the third

harmonics of a Nd : YAG laser (355 nm in wavelength). The
2mm diameter laser spot was focused on the target at a
fluence of 2.5 J/cm2 and a repetition rate of 10Hz. The
deposition was carried out for 8 h at an average pressure of
3 × 10−4 Pa without atmosphere control.

2.2. Field Emission Lamp Construction. CNFs were grown
by bombarding a grassy carbon substrate with Ar+ at room
temperature [30–32]. The ion beam, which had a diameter
of 6 cm, was set at an incident angle of 45∘ and energy of
1 keV, respectively. The length and diameter of CNFs were
0.3–2 and 20mm, respectively, with an approximate density
of 5 × 108 cm−2. Figure 1 shows the schematic of the lamp. In
addition to the CNFs and the thin film, the lamp contained
two copper mesh electrodes with a mesh width of 0.1mm.
Two teflon spacer plates were used to prevent short circuits
and provide space for electron acceleration. A 200𝜇m thick
spacer was placed between CNFs and a copper electrode and
a 5mm thick spacer was placed between the two copper
electrodes. In this lamp, electrons were emitted from CNFs
using the extraction voltage and accelerated toward the
thin film using the acceleration voltage. VUV CL from the
Nd3+ : LuF

3
thin film was emitted through the substrate. A

substrate with high transmittance in the VUV region was
needed to output light efficiently and MgF

2
, which exhibited

94% transmittance at 180 nm, satisfied this condition. The
lamp benefited from a low power consumption and reduced
thermal effects when the field electron emitters were used as
cold cathodes [33, 34]. The lamp was operated in the vacuum
chamber at an average pressure of 8 × 10−5 Pa.

3. Results and Discussion

Thethickness and surfacemorphology of theNd3+ : LuF
3
thin

film was investigated by using scanning electron microscopy
(SEM). The thin film contained some droplets with cracks
that originate from structural phase transitions. In contrast,
the uniform layer was about 15 nm thick without any cracks.
The crystallographic properties were also evaluated by using
X-ray diffraction. The high and sharp diffraction patterns
indicated the well crystallization of the thin film.The detailed
data of these evaluations are described in [29].

Figure 2 shows the CL spectra of the Nd3+ : LuF
3
thin

film at different acceleration voltages ranging from 1 to 20 kV.
The electron beam current was kept at 600 pA during the CL
measurements. The spectra showed a dominant peak in the
VUV region at 179 nm and two additional emission peaks at
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Figure 2: CL spectra of the Nd3+ : LuF
3
thin film at acceleration

voltages ranging from 1 to 20 kV.
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Figure 3: Output CL intensity of the Nd3+ : LuF
3
thin film at 179 nm

for acceleration voltages ranging from 1 to 25 kV.

223 and 255 nm,which are consistent with the emission peaks
observed for Nd3+ : LuF

3
single crystals [17]. These results

show that although the PLD target was obtained by pressing
NdF
3
and LuF

3
powders together (undoped material), Nd3+

acted as a dopant for LuF
3
and a luminescent center in the

thin film.
The influence of the acceleration voltage on the CL

intensity of the Nd3+ : LuF
3
thin film at 180 nm was also

investigated as shown in Figure 3.The CL intensity increased
with increasing acceleration voltage before saturation at
25 kV. This result suggests that incident electrons passed
through the thin film before giving all their energy to the thin
film at 25 kV.

0

200

400

600

800

1000

1200

Acceleration
Voltage

CL
 in

te
ns

ity
 (a

.u
.)

Wavelength (nm)
150 200 250 300

1000V
1500V

2000V
2500V

Figure 4: Emission spectra of the lamp at acceleration voltages
ranging from 1 to 2.5 kV.
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Figure 5: Output CL intensity of the lamp at 180 nm for acceleration
voltages ranging from 1 to 2.5 kV.

The emission spectra of the lamp were measured at
different acceleration voltages ranging from 1 to 2.5 kV. The
extraction voltage was kept at 600V during the measure-
ments.The emission spectra (Figure 4) presented a dominant
peak in theVUV region at 180 nmand two additional peaks at
225 and 255 nm. These spectra closely matched the emission
spectra obtained for the Nd3+ : LuF

3
thin film.

The influence of the acceleration voltage on the CL
intensity of the lamp at 180 nm was evaluated. The CL
intensity (Figure 5) showed a nonlinear dependence on the
acceleration voltage, which was attributed to an increase of
the electron diffusion region in the thin film. The output
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power of this lampmay amount to severalmicrowatts because
Nd3+ : LuF

3
and KMgF

3
show quasiequivalent conversion

efficiencies [16]. An increase in acceleration voltage may
therefore efficiently enhance the output power of this lamp.

The luminescence area of this VUV lamp can easily
generate a large area with little thermal effect and low power
consumption by employing a CNF field electron emitter. In
addition a solid-state phosphor brings many benefits in the
VUV lamp such as safety, longevity, stability, and downsizing.

4. Conclusions

In summary, a VUV field emission lamp consisting of a
Nd3+ : LuF

3
thin film as a solid-state phosphor and CNF

field electron emitter was fabricated. The CL spectra of
the lamp showed multiple emission peaks at 180, 225, and
255 nm, whichwere in good agreement with emission spectra
previously reported for the Nd3+ : LuF

3
crystal. This result

suggested that Nd3+ ion acted as a luminescent center and
doped LuF

3
in the synthesized thin film although the target

used during PLD was obtained by pressing NdF
3
and LuF

3

powders into a pellet. Furthermore, the output emission
intensity showed a nonlinear response to the acceleration
voltage, indicating that an increase in acceleration voltage
may significantly enhance this output emission intensity.
Although recent gas lamps are improving their performances,
this lamp may soon become one of the candidates of VUV
light sources. These techniques are essential to numerous
applications, such as sterilization, surface cleaning, and syn-
thesis and degradation of chemical material.
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