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Abstract: Lung cancer has the highest global mortality rate of any cancer. Although targeted therapeu-
tic drugs are commercially available, the common drug resistance and insensitivity to cisplatin-based
chemotherapy, a common clinical treatment for lung cancer, have prompted active research on
alternative lung cancer therapies and methods for mitigating cisplatin-related complications. In
this study, we investigated the effect of WSG, a glucose-rich, water soluble polysaccharide derived
from Ganoderma lucidum, on cisplatin-based treatment for lung cancer. Murine Lewis lung carcinoma
(LLC1) cells were injected into C57BL/6 mice subcutaneously and through the tail vein. The com-
bined administration of WSG and cisplatin effectively inhibited tumor growth and the formation
of metastatic nodules in the lung tissue of the mice. Moreover, WSG increased the survival rate of
mice receiving cisplatin. Co-treatment with WSG and cisplatin induced a synergistic inhibitory effect
on the growth of lung cancer cells, enhancing the apoptotic responses mediated by cisplatin. WSG
also reduced the cytotoxic effect of cisplatin in both macrophages and normal lung fibroblasts. Our
findings suggest that WSG can increase the therapeutic effectiveness of cisplatin. In clinical settings,
WSG may be used as an adjuvant or supplementary agent.

Keywords: Ganoderma lucidum; polysaccharides; cisplatin; synergistic effect; anti-lung cancer

1. Introduction

Ganoderma lucidum is a well-known ingredient in traditional Chinese medicine.
G. lucidum has long been used in Asian countries, in particular in China, where it is
regarded as an elixir that promotes health and longevity [1–3]. Modern pharmaceutical
studies have reported various biological properties of G. lucidum (e.g., anticancer, antiox-
idant, antimicrobial, immunomodulatory, and anti-inflammatory) [4–8]. The three main
components of G. lucidum, polysaccharides, triterpenoids, and proteins, have been exten-
sively examined [9,10]. Notably, G. lucidum polysaccharides (GLPs) have been commercially
tested as clinical drugs and supplements for the treatment of several inflammatory diseases
because of the anti-inflammatory, antioxidant, and immunomodulatory activities [11,12].
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In addition, one study effectively used GLPs as a material for nanoparticle conjugation
because they mediated immunocyte activation and increased radio-sensitivity in the tumor
microenvironment [13].

In the past several decades, numerous studies have demonstrated that GLPs play
a pivotal role in immunomodulatory and anticancer activities. For example, in one
study, GLPs-RF3, a kind of GLP, activates toll-like receptor 4 (TLR4)-mediated extra-
cellular signal-regulated kinase (ERK), c-Jun N-terminal kinase, and p38, leading to induce
interleukin-1 expression in mouse spleen cells [14]. GLPs induce various types of cytokine
expression to activate macrophages and lymphocytes [6] and accelerate the recovery of
cyclophosphamide-disrupted immune functions [15]. In a mouse model, β-D-glucan from
GLPs effectively inhibit sarcoma-180 solid tumors [16]. GLPs-RF3 attenuates breast cancer
tumorigenesis by enhancing the ubiquitination-dependent degradation of transforming
growth factor beta (TGF-β) receptors [17]. Other investigations of GLPs have focused
on the association between their immunocyte-activating and anticancer activities. For
example, GLPs exhibit antitumor activities through the TLR4-dependent activation of B
cells and macrophages in a BALB/c mouse model [18]. FMS, a fucose-enriched polysac-
charide purified from GLPs-RF3, suppresses lung tumorigenesis through the induction
of anti-GloboH-series epitopes antibodies [5]. Taken together, these studies indicate that
treatment with GLPs can effectively suppress tumor growth by enhancing the activities of
tumor-associated immune effector cells, suggesting that GLPs may constitute an efficacious
immunopotentiating adjuvant to anticancer drugs.

Cisplatin, a platinum-based agent, is a well-known anticancer drug that has long been
used as an effective clinical chemotherapeutic agent [19]. Its interference with DNA repair
mechanisms leads to DNA damage and subsequently triggers apoptotic responses [20].
Clinically, cisplatin has advantages in survival and symptom control in lung cancer therapy
because many patients are usually diagnosed with locally advanced or metastatic disease
when they are diagnosed with lung cancer. Therefore, cisplatin and its derivatives constitute
the first-line drugs for clinical chemotherapy of lung cancer. However, patients undergoing
cisplatin-based therapy often experience side effects, such as immunosuppression [21,22].
Studies have reported that combination treatments of cisplatin and herbal medicines
exhibited greater efficacy than cisplatin alone did [23,24]. These studies suggest that herbal
extracts combined with cisplatin may be a novel cancer treatment strategy. Currently,
increasing studies have indicated that GLPs could be considered for use as supplements for
patients with cancer [25]. However, the efficacy of combination treatment with GLPs and
chemotherapy for lung cancer has yet to be established. Therefore, the synergistic effects of
GLPs and cisplatin in lung cancer therapy must be explored.

We previously identified the chemical characterization of WSG, a water soluble
glucose-rich polysaccharide derived from GLPs-RF3, and demonstrated it presents anti-
lung cancer activity via downregulation of EGFR and TGFβR [26]. In this study, we aimed
to investigate whether WSG in combination with cisplatin could overcome lung cancer
progression in vitro and in vivo. Furthermore, we assessed the benefits of co-treatment with
WSG and cisplatin on cell viability of macrophages and lung fibroblast in vitro.

2. Materials and Methods
2.1. Materials and Antibodies

WSG, a water soluble glucose-rich polysaccharide with an average molecular mass of ap-
proximately 1000 kDa, was isolated from GLPs-RF3 (Wynlife Healthcare, Inc., San Diego, CA,
USA. Cat: 500T; Lot: WT20010703) as described previously [26]. Cisplatin (P4394) was pur-
chased from Sigma-Aldrich (Saint Louis, MO, USA). An Annexin V/PI apoptosis kit was pur-
chased from Life Technologies (Carlsbad, CA, USA). Anti-β-actin and anti-EGFR antibodies
were acquired from GeneTex (Hsinchu, Taiwan). Anti-phosphorylated AKT (S473) antibody
was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA), anti-phosphorylated
ERK1/2 antibody was purchased from Sigma-Aldrich (Steinheim, Germany).
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2.2. Mouse Allogeneic Tumor Model

Six-week-old C57BL/6 male mice were purchased from the National Laboratory Ani-
mal Center (Taipei, Taiwan) and kept in specific pathogen-free conditions in the Laboratory
Animal Center of National Yang Ming Chao Tung University. The experimental procedures
and study design were approved by the Institutional Animal Care and Use Committee
(approval No: 1090215). After one week of adaptation, the mice were randomly assigned
to one of four groups, with five individuals in each group. In the control group, the mice
were intraperitoneally injected with phosphate-buffered saline (PBS). In the WSG group,
the mice were intraperitoneally injected with 75 mg/kg WSG every 2 days [5,26]. In the
cisplatin group, the mice daily received intraperitoneal injections of 2.3 mg/kg cisplatin
from day 1 to day 5. In the combination treatment group, the mice were co-treated with
WSG and cisplatin.

To create a tumor growth mouse model, LLC1 cells (2 × 105 cells in 100 µL of serum-
free medium) were subcutaneously injected into the right flank. Tumors were calculated at
2-day intervals with digital vernier calipers, and tumor volume was calculated as follows:
V = (L ×W2)/2, where V is volume in cubic millimeters, L is tumor length in millimeters,
and W is tumor width in millimeters [27]. The mice were sacrificed using carbon dioxide
(CO2) on day 21. To create a tumor homing mouse model, LLC1 cells (2× 105 cells in 100 µL
of serum-free medium) were injected into the lateral tail vein. The mice were sacrificed
using CO2 after 28 days. The lung tissue of each mouse was harvested and fixed in
paraformaldehyde (10%) for the examination of tumor homing and growth. Hematoxylin
and eosin (H&E) staining was applied to the tumor colonies, and the number and tumor
volume of the colonies were determined through microscopy.

2.3. Cell Lines and Cell Culture

Human lung adenocarcinoma A549 cells, murine LLC1 cells, human lung fibroblast
MRC-5, and murine macrophages Raw264.7 were acquired from the Bioresource Collection
and Research Center (BCRC; Hsinchu, Taiwan). Human lung adenocarcinoma CL1-5 cells
were obtained from Dr. P.-C. Yang of National Taiwan University. The lung cancer cell lines
were cultured as previously described [28,29]. The MRC-5 cells were cultured in minimum
essential medium supplemented with 10% heat-inactivated fetal bovine serum (FBS; VWR
Life Science Seradigm, Radnor, PA, USA), 2 mM L-glutamine, 0.1 mM nonessential amino
acids, 1.5 g/L sodium bicarbonate, and 1.0 mM sodium pyruvate at 37 ◦C in an environment
of 95% air and 5% CO2. The RAW 264.7 cells were kept in Dulbecco’s modified Eagle
medium (GIBCO-Life Technologies) that was supplemented with 3.7 g/L NaHCO3, 5%
heat-inactivated FBS, and 100 units/mL each of penicillin and streptomycin (Biological
Industries, Cromwell, CT, USA).

2.4. Cell Viability and Synergistic Analysis

Cell viability was evaluated using a crystal violet assay. For each experiment, 5 × 104 cells
were seeded into each well of 12-well plates. After incubation overnight to allow for cell
attachment, the cells were subjected to treatment with various concentrations of WSG or
cisplatin or a combination of the two for 24 or 48 h. Subsequently, the cells were rinsed with
PBS and stained with 1% crystal violet solution for 1 h. The specifics of the procedure were
described previously [23]. The percentages of cell viability were normalized for comparison
with the control group. Next, as conducted in our previous study [23], the synergistic
effects of the combination treatment, as indicated by Chou-Talalay combination indexes
(CIs), were analyzed using the CompuSyn program (Paramus, NJ, USA) [30]. The CI was
<1, confirming the synergistic effects between the tested drugs.

2.5. Cell Protein Extraction for Western Blotting

The cancer cells were rinsed two times with 1 mL of cold PBS supplemented with 1%
Na3VO4 and then scraped into a lysis buffer containing a mixture of proteinase (Sigma-
Aldrich, Saint Louis, MO, USA) and phosphatase inhibitors (MedChem Express, Mon-
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mouth Junction, NJ, USA) [31]. Next, the cell lysates were centrifuged at 4 ◦C and 13,000× g
for 10 min to obtain the supernatant as the cellular proteins or extracts. Protein concen-
trations were determined using a Bradford assay (Bio-Rad, Hercules, CA, USA). For
Western blotting, 30 µg cell extracts were separated through 10% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluo-
ride (PVDF) membranes to detect the indicated molecules, with β-actin used as the loading
control. The Western blotting assay was performed as described previously [32].

2.6. Sample Preparation for Apoptosis Analysis

The cancer cells were seeded in 6-cm plates at a density of 2 × 105 cells/plate. After
overnight incubation, the cells were treated with WSG (120 µg/mL) and/or cisplatin
(10 µM) for 48 h and subsequently washed with PBS and harvested after trypsinization.
The cell pellets were washed with cold PBS, centrifuged, and then collected. Next, the cell
pellets were re-suspended in annexin-binding buffer and stained with propidium iodide
(PI) and annexin V–fluorescein isothiocyanate (FITC) using an apoptosis detection kit (BD
Pharmingen, USA) in accordance with the manufacturer’s instructions. The samples were
examined using a flow cytometer (BD FACSCalibur, Franklin lakes, NJ, USA), and the raw
data were analyzed for apoptosis by using FlowJo software (National Institute of Mental
Health, Bethesda, MD, USA).

2.7. Statistical Analysis

All presented results are representative of three independent experiments unless
otherwise indicated. All data are expressed as means± standard deviations of the indicated
number of experiments. Between-group differences were analyzed through a t test using
GraphPad Prism8 software (San Diego, CA, USA). Differences were considered significant
at p < 0.05.

3. Results and Discussion
3.1. WSG Synergistically Enhances Cisplatin-Induced Cytotoxicity in Lung Cancer Cells

Previously, we have demonstrated that WSG effectively inhibited the viability of A549
and LLC1 cells [26]. Herein, we investigated the impact of WSG combined with cisplatin
treatment on the viability of lung cancer cells in vitro. A crystal violet assay was performed
to examine the efficacy of the combination treatment in suppressing lung cancer A549 and
LLC1 cells. The cells were co-treated with cisplatin (0–20 µM) and low-dose WSG (60 or
120 µg/mL) for 24 h. The combination treatment exhibited stronger inhibitory effects than
WSG or cisplatin treatment alone (Figure 1A). The interactions between WSG and cisplatin
were evaluated with Chou-Talalay CIs [33]. The CIs for all concentrations were less than
1 (Figure 1B), suggesting that the combination treatment exerted a reliable, synergistic,
cytotoxic effect on the A549 and LLC1 cells. Regarding the dose-reduction indexes (DRIs) of
the combination treatment [33], the DRIs exceeded 1 for both WSG and cisplatin (Figure 1C).
Moreover, the IC50 of cisplatin in combination with WSG were calculated. As shown in
Figure 1D, WSG dramatically decreased the IC50 values of cisplatin in A549 and LLC1 cells
in a concentration-dependent manner, with WSG of 120 µg/mL reducing significantly the
IC50 of cisplatin from 10 to 1 µM and 0.5 µM, respectively. These results indicate that the
combination of WSG and cisplatin may promote anticancer activity and attenuate the side
effects of the individual treatments, supporting a previous finding that GLPs may reduce
the occurrence of chemotherapy side effects in patients with cancer [34]. In short, WSG and
cisplatin exhibited synergistic cytotoxic effects in the lung cancer cells.
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determined by using the crystal violet assay. Each sample in the combination treatment group was normalized against 
each untreated control. Error bars indicated SD. 
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WSG, followed by cisplatin incubation (Figure 1E; WSG→Cisplatin). By contrast, in the 
treatment of type two (type 2), cells were treated with cisplatin, followed by WSG 
incubation (Figure 1F; Cisplatin→WSG). As expected, we found that no matter whether 
WSG or cisplatin was given first, the sequential treatment presented a more effective 
inhibition rate of the cell viability (Figures 1E,F). Together, we demonstrated that WSG 
could enhance the cisplatin-inhibited viability of lung cancer cells in vitro. 

3.2. WSG Enhances Cisplatin-induced Apoptotic Response in Lung Cancer Cells 
To further examine these synergistic cytotoxic effects, we used an annexin V–FITC/PI 

staining kit to test whether WSG enhanced cisplatin-induced cell death. As shown in 
Figure 2, apoptosis occurred in 32.7–45.7% of the A549 cells co-treated with cisplatin (10 
μM) and WSG (120 μg/mL). The corresponding rate among the LLC1 cells ranged from 
27.6% to 51.8%. These results suggest that the combination of cisplatin and WSG was 

Figure 1. WSG enhances the cytotoxic effects of cisplatin on A549 and LLC1 cells. (A) A549 and LLC1 cells were subjected
to 24 h combination treatment using different concentrations of WSG and cisplatin. A crystal violet staining assay was
conducted for cell viability examination. Each sample in the combination treatment group was normalized against each
untreated control. (B,C) CI and DRI of the combination treatment in the A549 and LLC1 cells, determined using CompuSyn
software. (D) WSG reduced the IC50 of cisplatin in A549 and LLC1 cells. The IC50 values of cisplatin were measured
using CompuSyn Software. Significant differences between the treatment and control groups are presented (*** p < 0.001).
(E) Left: the schematic design for the in vitro cell viability assay of WSG (0–360 µg/mL)→cisplatin (5 µM) sequential
treatment. Right: The viability of the cells was determined by using the crystal violet assay. (F) Left: the schematic design
for the in vitro cell viability assay of cisplatin (5 µM)→WSG (0–360 µg/mL) sequential treatment. Right: The viability of the
cells was determined by using the crystal violet assay. Each sample in the combination treatment group was normalized
against each untreated control. Error bars indicated SD.

To mimic the potential clinical complementary strategy, we further examined the
effect of a sequential treatment of WSG and cisplatin on lung cancer A549 cells. Two types
of sequential treatments were performed. Type one (type 1): cancer cells were treated
with WSG, followed by cisplatin incubation (Figure 1E; WSG→Cisplatin). By contrast,
in the treatment of type two (type 2), cells were treated with cisplatin, followed by WSG
incubation (Figure 1F; Cisplatin→WSG). As expected, we found that no matter whether
WSG or cisplatin was given first, the sequential treatment presented a more effective
inhibition rate of the cell viability (Figure 1E,F). Together, we demonstrated that WSG could
enhance the cisplatin-inhibited viability of lung cancer cells in vitro.

3.2. WSG Enhances Cisplatin-Induced Apoptotic Response in Lung Cancer Cells

To further examine these synergistic cytotoxic effects, we used an annexin V–FITC/PI
staining kit to test whether WSG enhanced cisplatin-induced cell death. As shown in
Figure 2, apoptosis occurred in 32.7–45.7% of the A549 cells co-treated with cisplatin
(10 µM) and WSG (120 µg/mL). The corresponding rate among the LLC1 cells ranged
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from 27.6% to 51.8%. These results suggest that the combination of cisplatin and WSG was
much more effective in inducing cell death than cisplatin alone. In essence, the in vitro
experiments demonstrated that the combination of cisplatin and WSG exerted reliable,
synergistic, and cytotoxic effects, inducing cell death in the lung cancer cells.
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Figure 2. WSG enhances cisplatin-induced apoptotic responses. (A) After 48 h exposure to WSG (120 µg/mL) and/or
cisplatin (10 µM), the cells were subjected to co-staining with the annexin V–FITC/PI kit. Flow cytometry was performed
for apoptosis analysis. The percentages of apoptotic cells in early and late apoptosis were determined using FlowJo software.
(B) The data, representative of three separate experiments, are presented as means ± standard deviations; error bars reflect
standard deviations. Significant differences between the treatment and control groups are presented (** p < 0.01).

3.3. WSG Retains Viability in RAW 264.7 and MRC-5 Cells Treated with Cisplatin

Patients receiving cisplatin-based therapy often experience complications, including
low blood cell counts, irreversible hearing loss (ototoxicity), and permanent neuronal and
renal damage [21,22]. According to cisplatin manufacturers, the medication reduces the syn-
thesis of blood cells, specifically white blood cells, leaving patients susceptible to infection.
Therefore, we examined the effects of WSG on cisplatin-treated RAW 264.7 macrophages.
Low concentrations of WSG (20–150 µg/mL) did not affect viability, but a high concentra-
tion (300 µg/mL) increased viability by approximately 30% (Figure 3A). We also examined
the cytotoxic effect of cisplatin on RAW264.7 cells. As expected, cisplatin substantially
and dose-dependently reduced the viability of the RAW 264.7 cells (Figure 3B), consis-
tent with results of a previous study [35]. Notably, WSG increased the viability of RAW
264.7 cells upon cisplatin treatment (Figure 3C). Previous study shows that polysaccha-
rides from Cudrania tricuspidata fruit mediated with a reduction in reactive oxygen species
(ROS) production and mitochondrial transmembrane potential loss contributes to cyto-
protective action in cisplatin-treated RAW264.7 cells [36]. Whether WSG could mediate
cisplatin-induced ROS production and mitochondria damage needs to be dissected in the
future. In addition, cisplatin exerted cytotoxic effects on the MRC-5 cells, in line with
previous results [37]. We found that WSG did not exhibit cytotoxic effects on the MCR-5
cells (Figure 3D) but increased cell viability of the MRC-5 cells upon cisplatin treatment
(Figure 3E). Increasing evidence shows that GLPs might attenuate the cytotoxicity induced
by cisplatin to improve chemotherapy-induced fatigue [38]. Herein, we demonstrated
that WSG protects white blood cells and lung fibroblasts from the adverse side effects of
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cisplatin. The results collectively indicate that WSG may be a safe anticancer agent for
inhibiting the survival of lung cancer cells.
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macrophages were subjected to 24 h treatment with various concentrations (0–300 µg/mL) of WSG. (B) RAW 264.7 cells
were subjected to treatment with various concentrations (0–20 µM) of cisplatin for 24 h. (C) RAW 264.7 cells were subjected
to 24 h treatment with both WSG (40 and 80 µg/mL) and cisplatin (1 and 5 µM). (D) MCR-5 cells were subjected to 48 h
treatment with various concentrations (0–800 µg/mL) of WSG, and their viability was assessed through crystal violet
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groups are presented (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.4. Co-Treatment with WSG and Cisplatin Effectively Suppresses Lung Tumor Growth in
LLC1-Bearing Mice

As the above results show, co-treatment with WSG and cisplatin effectively inhibits
lung cancer cells in vitro. We further explored the impact of WSG co-treatment with
cisplatin on lung tumor growth in vivo. Initially, LLC1 cells were hypodermically injected
into the hypodermic dorsum of mice that were randomly divided into four groups: control
(PBS), WSG, cisplatin, and WSG combined with cisplatin. The tumor growth rates were
monitored over 21 days (Figure 4A). As expected, compared with the control group, both
WSG and cisplatin effectively inhibited tumor growth and reduced tumor weight in the
LLC1-bearing mice (Figure 4B,C), and stronger anticancer activity was achieved with WSG
than with cisplatin. The tumor-suppressive effects of co-treatment with cisplatin and WSG
in the LLC1-bearing mice were significantly stronger than those of WSG or cisplatin alone
(Figure 4B,C). In addition, the combination treatment did not affect the body weight of the
mice, indicating the nontoxicity of this therapeutic strategy (data not shown). These results
suggest that WSG may function both as an antitumor agent and as a chemotherapeutic
adjuvant enhancing the anticancer effects of cisplatin.
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3.5. Combination of WSG and Cisplatin Effectively Suppresses Tumor Growth in Lung Tissues of
LLC1 Cells-Bearing Mice

We further investigated the antitumor effects of the combination treatment on the
lung tissue of the mice (Figure 5A). To mimic tumor progression in the lung tissue, we
injected LLC1 cells into the mice through the lateral tail vein to trap them and allow
them to develop into tumor lesions [39]. We initially counted the tumor nodules in the
lung tissue of mice receiving the combination treatment. As shown in Figure 5B,C, WSG
significantly suppressed lung cancer homing and growth, a result observed in our previous
study [26]. Specifically, the combination treatment reduced the number of tumor nodules
considerably more than cisplatin treatment alone (Figure 5B,C). H&E staining of the tumor
nodules revealed fewer instances of tumor homing (nodules) in the lung tissue of the
mice receiving the combination treatment than in the tissue of the mice receiving WSG or
cisplatin alone (Figure 5B). However, it did not exert stronger tumor-suppressive effects
than WSG treatment did alone (Figure 5C). Notably, the combination treatment reduced
tumor volume substantially more than WSG or cisplatin alone (Figure 5D), suggesting that
the combination strategy not only inhibited tumor nodules formation but also suppressed
tumor growth in lung tissues. In addition, the survival rate of the mice receiving the
combination treatment was significantly higher than that of the mice receiving the control
treatment or cisplatin alone (Figure 5E). However, the mice treated with WSG alone had the
highest overall survival rate. Our results indicate that WSG has potential as a therapeutic
intervention for controlling disease progression and extending life in lung cancer.

In this study, our results showed that the combination with WSG potentiated the cell-
killing efficacy (apoptosis) of cisplatin in lung cancer cells in vitro. More remarkably, we
found that the antitumor effect of cisplatin was significantly enhanced with the combination
with WSG in the lung cancer-bearing mouse model. Notably, the combination of WSG with
cisplatin showed selectivity in enhancing the efficacy of cisplatin between cancer cells and
normal cells, suggesting that WSG may play different roles for contributing to the cellular
responses in cisplatin-treated lung cancer and normal cells. Increasing evidence shows that
multiple intracellular regulators may contribute to cisplatin resistance [40]. For instance,
the excision repair cross-complementation group 1 (ERCC1) enzyme plays a pivotal role in
cisplatin-induced DNA damage and recombination. Clinically, patients with lung cancer
and ERCC1-positive tumors appear to worsen from adjuvant cisplatin-based chemother-
apy [41]. Expression of copper-transporting P-type adenosine triphosphatase A (ATP7A)
is associated with cisplatin resistance in lung cancer cells [42]. However, WSG did not
modulate the expression of ERCC1 and ATP7A (data not shown), suggesting that WSG may
not be involved in the cisplatin-associated DNA repair system and copper-transporting.



Polymers 2021, 13, 4353 9 of 12

Notably, ERK signaling contributes to cisplatin resistance [43]. We previously found WSG
significantly reduced phosphorylation of ERK1/2 [26], suggesting that WSG improved the
activity of cisplatin against lung cancer cells via the targeting of ERK signaling.
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Figure 5. Co-treatment with WSG and cisplatin suppresses tumorigenesis in the lung tissues of mice injected with LLC1 cells.
(A) Experimental schematic. LLC1 cells were injected through the lateral tail veins of the mice (n = 5). The LLC1-bearing
mice were intraperitoneally injected with cisplatin and WSG. (B) At the end of the treatment, lung tissue was collected.
One of five tissue samples is presented. As indicated by the blue arrows, tumor lesions were observed on the surface of
the lung tissues. Lower panels of the lung sections under H&E staining (20×magnification). Bar scale: 2 mm. (C) Tumors
(nodules) in the lung lesions. (D) Tumor volume (mm3) of the lung lesions. Each bar represents the mean ± standard
deviation. Significant differences between the treatment and control groups are presented (* p < 0.05, ** p < 0.01, *** p < 0.001).
(E) Combination treatment increased the survival rate of LLC1-bearing mice (n = 8).

4. Conclusions

WSG is a novel glucose-rich polysaccharide isolated from commercially available
GLPs-RF3. We previously identified the potential anticancer mechanism of WSG [26].
Cisplatin-based chemotherapy is one of the most common and effective treatments for lung
cancer [44]. To investigate the clinical applications of WSG, we conducted a preclinical
study of WSG on tumor-bearing mice receiving chemotherapy. WSG enhanced the tumor-
suppressive effects of cisplatin in vivo as well as in vitro. In addition, WSG enhanced the
cytotoxic and tumor-suppressive effects of cisplatin and increased the survival rates of
LLC1-bearing mice. Furthermore, in macrophages and lung fibroblasts, WSG attenuated the
cytotoxic effects of cisplatin. Thus, WSG may be considered for use as an adjuvant or dietary
supplement to improve outcomes in patients receiving cisplatin-based chemotherapy.
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