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Abstract
Multiple datasets of two consecutive vintages of replicated grape and wines from six differ-

ent deficit irrigation regimes are characterized and compared. The process consists of four

temporal-ordered signature phases: harvest field data, juice composition, wine composition

before bottling and bottled wine. A new computing paradigm and an integrative inferential

platform are developed for discovering phase-to-phase pattern geometries for such charac-

terization and comparison purposes. Each phase is manifested by a distinct set of features,

which are measurable upon phase-specific entities subject to the common set of irrigation

regimes. Throughout the four phases, this compilation of data from irrigation regimes with

subsamples is termed a space of media-nodes, on which measurements of phase-specific

features were recoded. All of these collectively constitute a bipartite network of data, which

is then normalized and binary coded. For these serial bipartite networks, we first quantify

patterns that characterize individual phases by means of a new computing paradigm called

“Data Mechanics”. This computational technique extracts a coupling geometry which cap-

tures and reveals interacting dependence among and between media-nodes and feature-

nodes in forms of hierarchical block sub-matrices. As one of the principal discoveries, the

holistic year-factor persistently surfaces as the most inferential factor in classifying all

media-nodes throughout all phases. This could be deemed either surprising in its over-arch-

ing dominance or obvious based on popular belief. We formulate and test pattern-based

hypotheses that confirm such fundamental patterns. We also attempt to elucidate the driv-

ing force underlying the phase-evolution in winemaking via a newly developed partial cou-

pling geometry, which is designed to integrate two coupling geometries. Such partial

coupling geometries are confirmed to bear causal and predictive implications. All pattern

inferences are performed with respect to a profile of energy distributions sampled from net-

work bootstrapping ensembles conforming to block-structures specified by corresponding

hypotheses.
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Introduction
Winemaking can be traced back many thousands of years of human history as a complex pro-
cess that is intricately intertwined with agriculture and civilizations around the world [1, 2].
The number of mythologies and pseudo-scientific discoveries are manifold and supplemented
by a multitude of reports and analyses of specific wines. However, remarkably few systemic
and interdisciplinary studies are directed towards the elucidation of definitive global findings.
As winemaking continuously evolves alongside human culture, it is perpetually desirable to
add new insights based on state-of-the-art technologies. Data-computing and -mining are sig-
nature techniques in our current era of Information Technology. In this interdisciplinary
study, we attempt to elucidate new perspectives into the winemaking based on new integrative
pattern computations and inferences.

These integrative pattern computations and inferences are designed and developed to be
applicable on any systemic process, such as winemaking discussed here. Systemic processes are
defined as systems comprising large numbers of dynamic subjects observed over extended time
periods. The dynamic subject of our choosing are wines, which are specifically defined by the
processes of different growing regimes and their standardized processing into wine [3, 4]. Typi-
cally, such processes are observed over serial discrete phases consisting of designated temporal
periods, for which phase-specific data sets are collected. As such, we study a systemic process
involving the simultaneous production of different wines. Our salient interest focuses on dis-
covering and visualizing patterns which characterize constituents of individual phases as well
as their respective evolution. Research objectives also focus on identifying possible emerging
categorical groups of these dynamic subjects and emerging patterns of their collective features.
Our integrative approach is bound to compute pattern geometries and to evaluate whether
computed patterns are real (as opposed to mere artifacts.) A computed and confirmed emerg-
ing category could offer new insight into winemaking, and the emerging patterns of features
might present new knowledge.

From the data structure aspect, one signature phase of a systemic process is characterized by
a phase-specific set of features. Hence, individual subject’s data consists of measurements on
different sets of features that characterize the individual phases. Such a collection of all involv-
ing dynamic subjects is termed a space of media-nodes, while each set of features at each phase
is termed a space of feature-nodes. If media-nodes are arranged by rows and feature-nodes by
columns of a matrix, then each phase-specific data set can be represented by a matrix of feature
measurements. This matrix is usually called a contingency table in statistics literature. How-
ever, since the arrangements of media-nodes on row axes and feature-nodes on column axes
can be arbitrary, such data sets are invariant with respect to permutations of rows and columns
within the contingency table. It is better to precisely refer to such data as a bipartite network.
This simple invariance property of a bipartite network turns out to be rather essential in pat-
tern computations. As such, there is a series of phase-specific bipartite networks observed
along a target systemic process.

By recognizing the data structure as serial bipartite networks, several conceptual and
computational advantages arise. We discuss several such advantages brought forth by bipartite
networks not only to differentiate our pattern-based computations and inferences from classic
ones based on statistical modeling, but also to highlight why pattern-based approaches are
indeed needed. A first conceptual advantage is the ability to disregard the issue of high
dimensionality. As a measurable feature at any phase represents one dimension belonging to a
media-node, there might be very high dimensionality involving the phase-specific data set.
This high dimensionality certainly causes modeling difficulties. One primary source is the lack
of suitable knowledge to sustain a coherent modeling platform in order to accommodate
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multiple dimensional covariate variables in one phase, as well as multiple dimensional response
variables in another phase. The limited number of media-nodes relative to the dimensionality
of feature-nodes of either covariate or response makes statistical modeling difficult because of
missing suitable distributional or manifold constructs. Another source of difficulty is the
absence of an effective protocol accommodating unknown structural dependence among
involving feature-nodes in modeling. In contrast, there is no need for modeling under the net-
work framework, since our goal is to extract pattern geometry. In order to extract patterns
from a bipartite network, a reasonable empirical measure of “similarity” or “distance” among
media-nodes is needed. Subject matter knowledge ranks secondary for purposes of mere pat-
tern exploration.

Explicit authenticity of computable pattern formation presents another advantage. The
aforementioned unknown structural dependences exist among feature-nodes of each phase,
and accordingly among media-nodes as well. This effect is real because all media-nodes are
bound together by sharing environmental conditions of the systemic process. Therefore,
authentic patterns embedded within a bipartite network are in fact interacting dependence
structures among and between media-nodes and feature-nodes. This realization is essential for
pattern computations. Furthermore, real-life systemic processes usually contain multiple-scale
manifestations. That is, the configuration of such interacting dependences should take a hierar-
chical format. Such multi-scale structural information appears highly data-dependent, which
inhibits a-priori elucidation. Therefore, a data-driven computational approach promises a
higher potential for authentic patterns in bipartite networks.

A third advantage lies in the fact the pattern-based information content of a bipartite net-
work is quantifiable and attainable in a non-parametric fashion. It is recently postulated that a
bipartite network is better treated as a thermodynamic system in which the minimum energy
ground state tentatively embraces the pattern-information content [5]. Therefore, the task of
pattern extraction is transformed into an exploration for a discrete combinatorial optimization.
Network computations not only realistically resolve this optimization problem, but also repre-
sent the pattern-information content in hierarchical block sub-matrices. In this regard, statisti-
cal modeling and probability-based inferences become irrelevant.

The potential for computation of causal and predictive patterns adds a fourth advantage.
This indeed is the primary goal of this study. Not only do we seek to obtain characteristic infor-
mation from each individual bipartite network, but also intrinsic understanding on how serial
bipartite networks evolve along the temporal axis. With respect to two temporal-ordered
phases, a bipartite network derived from the latter phase is termed a network of response,
accordingly the one derived from the former phase is termed a network of covariates. Hence
one chief goal of this study is to compute what patterns of response are caused by which pat-
terns of covariates. Vice-versa, which patterns of covariates may predict patterns of response?
Accordingly, we develop a coherent computational approach to probe into the dynamics
underlying systemic processes.

The significance of computing causal and predictive pattern is seen through the following
methodological perspectives: For one, computations for causal patterns lay a technical founda-
tion for solving problems that regression-tree or decision-tree leave unsolved. On the other
hand, computations for predictive patterns lay a foundation for solving problems that partial
least square (PLS) analysis [6] does not resolve. Our underlying premise proposes that integra-
tive pattern computing and inference make effective use of interacting dependence between
media-nodes and feature-nodes. The essential nature of multi-scale interacting dependence
between media-nodes and feature-nodes elegantly intertwine through pattern-to-pattern infer-
ences, as will be demonstrated below. Although the classic decision-tree gives rise to a hierar-
chical tree, it fails to reveal the multi-scale structures between media-nodes and dependence
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structures among covariate features. While the PLS analysis seemingly matches linear depen-
dences of covariate features to response, it completely misses nonlinear geometry structures.
These two reflections together illustrate that feature-dimension reduction should be avoided
when exploring for global systemic patterns. Because such global patterns are consisting of
media-nodes× feature-nodes interacting-relationships, any reduction of feature dimension
implies distorting or destructive effects. This seems somewhat counter-intuitive at first glance,
when indeed it is not.

This paper is organized as follows. In the Material and Method section, we present brief
background information, experimental design and data collecting methods for the serial
bipartite networks derived from four phases of winemaking process: harvest grape data, juice
composition, wine composition at bottling and bottled wine. All computational and inferen-
tial developments, which are primarily focused on the binary version of bipartite networks,
are exclusively illustrated through this evolving process of phases. We detail the computing
paradigm, Data Mechanics, from theoretical to operational aspects, and the construction of a
platform for pattern inference based on energy distribution profiles. In the Results section,
we present emerging geometries identified on phase-wise pattern inferences, and results of
causal and predictive patterns inferences. All computed pattern geometries on original
weighted version of bipartite networks are also presented alongside with their binary ones.
They are purely for contrasting and visual confirmation purposes. It is noted that the pattern
inferences on weighted bipartite networks rely on key bootstrapping techniques for weighted
matrices. Such developments are not mature yet. More research endeavors on this topic are
needed.

As a final remark, few tangible causal or predictive patterns have been envisioned or pro-
posed in the literature on serial bipartite networks so far. This may be understood in light of
recent technological developments enabling the quantitative techniques for bipartite networks,
which were still by-and-large missing over the past two decades. Currently, advances in Infor-
mation Technology allow researchers to collect data at unprecedentedly small sampling rates.
Many real-world events can now legitimately be modeled as evolving systemic processes. As a
result, several keystone phases along the process can be identified and studied in a serial man-
ner. Hence our interdisciplinary developments here become not only desirable, but increas-
ingly demanded in science and business alike.

Materials and Methods

Data and Systemic process of Winemaking
We begin with a very brief background of three stages of grape berry growth [7].

A. “Stage I” berry growth is marked by cell division and differentiation, with the concurrent
accumulation of certain metabolites such as tartaric acid or pyrazines, all of which are
thought to be feeding-deterrents.

B. “Stage II” is observed as no growth, but the induction of various metabolic pathways inside
berries, along with the early phase of sugar accumulation.

C. Transition from “Stage II” to “Stage III” is called veraison and observed as berry softening as
well as color accumulation.

D. Stage 3: any subsequent berry growth during ripening is thought to be exclusively caused by
the expansion growth of already existing cells. A plethora of metabolites accumulates in the
different tissues either by local metabolism or phloem-import. Sugar, malic acid and poly-
phenolic compounds are regarded as the most important and most abundant solutes.
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Therefore, in classic literature in Viticulture, berry growth is termed to follow a double sig-
moid pattern: Stage-I and Stage-III represent the two growth and expansions phases, separated
by a lag phase(Stage II) [7, 8]. And the transition from Stage-II to Stage-III at the veraison is
considered critical. This time point of veraison is the onset of ripening, during which not only
sugar accumulation and polyphenol biosynthesis commence, but also anthocyanins, proantho-
cyanidins, and flavonols are synthesized via the flavonoid pathway. These flavonoids com-
pounds (anthocyanins, proanthocyanidins, and flavonols) are regarded as one of the most
important determinants of quality in red grapes and wines. Color and taste of red wines are
strongly related to the amount of flavonoids compounds.

Accordingly, it is desirable to regulate the concentration of flavonoid compounds both in
grape-growing and winemaking. So far it is known that vine water status could critically affect
the accumulation of flavonoids [3, 9]. Thus, regulating vine water status by means of deficit
irrigation becomes a tool for increasing flavonoid content and improving quality in red wine-
grapes [3, 10]. Timing effect of water deficits on winegrape maturation and the accumulation
of flavonoids compounds are reported in [11], and continue to be under inter-disciplinary
scrutiny.

Our illustrative winemaking system is derived from an experiment revolving around the fol-
lowing six deficit irrigation regimes, as shown in Fig 1: CTL, RHP, ED, ED+, ED- and LD, in
their effects on grape composition and winemaking during the 2012 and 2013 vintages. In
sequence, the contrasting roles and hypotheses behind each treatment are listed below:

CTL: a well-watered control will establish composition at increased yield (leaf-water potential
target: -10 bars all season)

RHP: the grower control will serve for comparison of practices and targets (leaf-water potential
target: -13-14 bars all season)

LD: the late deficit will provide context for the early season treatments (leaf-water potential tar-
get: -10-11 bars pre-veraison, -14-15 bars post-veraison)

ED-: a severe, continued deficit will illustrate grapevine adaptation (leaf-water potential target:
-14-15 bars all season)

ED: the regular early deficit will juxtapose late season effects (leaf-water potential target: -14-
15 bars pre-veraison, -11 bars post-veraison)

ED+: will higher yields benefit from ED-induced compositional changes? (leaf-water potential
target: -14-15 bars pre-veraison, ¿-10 bars post-veraison)

Fig 1. Six water regimes. The slash sign “/” in last column indicates the transition “veraison”, which is typically
right at the middle summer.

doi:10.1371/journal.pone.0160621.g001
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These treatments were established by the direct plant measurement of stem-water potential
(SWP), which were converted into leaf-water potential (LWP) according to [12] for communi-
cation with the grower. It is important to emphasize that these experiments used a direct mea-
surement by design to avoid the uncertainties presented by meteorological models such as
Evapotranspiration (ET). While ET may be prevalent in traditional, schedule-reliant agricul-
ture, it is also reliant on multiple assumptions. In contrast, direct plant measurements supply a
real-time assessment as well as a measure of variability in the field. These measurements lay
the foundation for an array of future precision-viticulture applications. While row-crops work
reasonably well with ET models, precision viticulture ideally uses direct measurements. It is
not possible to convert such direct measurements into equivalents of the theoretical ET model.
The use of leaf-water potential measurements for plant water status is recently prevalent
among quality (wine)grape-growers.

The experiment site is a Cabernet Sauvignon vineyard located in Esparto, CA. After harvest-
ing grape, the rest of winemaking process was performed in the Pilot Winery of UC Davis.
Data sets consist of a series of bipartite networks: from grape composition at harvest through
juice analyses, wine composition at bottling and bottled wine data. We analyze the information
contents of the four bipartite networks pertaining to these four phases of winemaking. Causal
patterns are extracted from the last phase and inferred backward into the second phase, as are
predictive patterns from the second phase through the final phase. Though sensory data of
trained judges was also collected in the same experiment, the greatly varying nature of human
judgments persists as very distinct from the physiological ones analyzed here. As a conse-
quence, sensory data will be analyzed and reported in a separate study.

Below we give a brief description of each bipartite network data.

Grape composition at harvest (48 × 14): 14-dimensional measurements of grape chemistry:
Acetic, Brix, Citric, Lactic, Malic, pH, Pyrazines, TA, tartaric, A.H-ACY (Anthocyanins by
Harbertson-Adams assay), Iland-Acy (Anthocyanins by Iland assay), A.H. IRP (iron-reac-
tive phenolics by Harbertson-Adams assay), A.H.Tannin (tannin by Harbertson-Adams
assay), A.H.NTP (non-tannin pigment by Harbertson-Adams assay), at time of harvest,
resulting from the respective irrigation treatments with four subsamples. These 14 chemical
impact compounds range from ppt-levels (nanograms/kilogram) to the macro-scale of
grams/kilogram.

Juice composition (36 × 6): the harvested grapes within each treatment were “homogenized”
at the winery and split into 3 fermentation batches for each of the six irrigation regimes.
The six bio-chemical measurements are: Ammonia, Brix, Malic, NOPA, pH, YAN.

Wine composition at bottling (36 × 6): 6 fermentation management features: Acetic, Malic,
NOPA, pH, Residual-sugar, Tartaric, were measured for 36 wines resulting from the 36 fer-
mentations of the previous dataset.

Bottled wine chemistry (36 × 13): The 36 bottled wines are correspondingly derived from the
wines of the previous dataset. The 13 impact compounds: Acetic, Alcohol, A420, A520,
FS02, Hue, Intensity, Lactic, Malic, pH, TA, Tartaric, total SO2, were measured.

It is noted that grapes harvested from the same trial blocks were collectively used to make
wines. The four field subsamples are connected via water regimes to any specific replicate in
the phases of juice, wine at bottling or wine in bottle. In contrast, different replicates of juice
are fermented into corresponding replicates of wines. A physical link connects each replicate
from juice through bottled wine. That is, the latter three bipartite networks share a common
media-node space with 36 dynamic subjects. It is due to such a difference that causal and
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predictive patterns are computed among phases of juice, wine at bottling and bottled wine.
Nonetheless, computed patterns from Harvest field network data still bear causal implications,
as will be shown in the Result section.

The original goal of collecting these four bipartite networks of data through four phases of
winemaking is to address the issue of how winemaking outcomes are affected by deficit irriga-
tion treatments in the field. Such applied experimental designs are ubiquitous in the pursuit of
applied research objectives. However, two surprising perspectives on experimental design and
data analytics might alter the way pursuing the practical objective. From the experimental
design perspective, though 6 specific irrigation regimes had been implemented on-site, the
weather throughout the two seasons presents an uncontrolled factor. Potential interactions
between irrigation regimes and weather factors may give rise to complex confounding effects.
Even though individual effects of irrigation regimes might be rather difficult to evaluate due to
uncontrollable weather factors, a single factor bears overall significance: Vintage.

From data-analysis standpoint, statistical modeling, particularly using parametric models, is
expected to meet with prohibitive barriers imposed by high dimensionality. A glimpse of such
barriers is seen as follows. There are 14 dimensions of grape biochemicals at harvest as a covar-
iate, and 6 dimensions of juice’s as a response. It is conceivable that unknown dependence pat-
terns exist among the 14-dimensional covariates as well as among the 6-dimensional
responses. If it is reasonable to postulate that no sensible effect evaluations can afford
completely ignoring dependence structures respectively embedded among both responses and
covariate variables, then classic statistics would not be of any good use at all. For instance, most
parametric models, such as various regression models, will ignore the dependence among
covariates by conditioning arguments, on one hand. One the other hand, hardly any model can
accommodate multiple response variables.

Therefore it is logical to turn to nonparametric approaches to be free from imposing unreal
structural assumptions and limitations. Then another legitimate question arises regarding sam-
ple sizes in such high dimensionality settings: Could only 48 samples constitute a detectable
structure in the space of 14-dimensional chemical components? Unfortunately, the almost sure
reality is that any 14-dim data cloud of 48 samples indeed hardly affords a manifold with any
degree of smoothness. However such smoothness is necessary for building Euclidean geometric
manifolds to facilitate pattern recognition approaches.

Thus winemaking as an example system provides a clear reminder that classic statistical
methodologies are likely of limited uses in analyzing data from any a complex system. Hence
system researchers need to return the origin and fundamental issue: what kind of information
is in the data? What kind of pattern-information contents can these four bipartite networks
afford us? In this paper we address such a question by use of data-driven computing algo-
rithms. We can reveal patterns embedded within each bipartite networks, and subsequently
compute their causal and predictive connections in a global manner. That is, the data-driven
computed pattern information allows us to peek into the evolving phases from grape juice to
wine.

For expositional and computational simplicity, our primary computing developments and
inferencing results are all presented and reported based on binary version of bipartite networks.
The binary coding schemes are performed by thresholding at the median, or at an evident val-
ley of a bimodal histogram of biochemical features measured in the four phases. The four sets
of histograms superimposed with thresholds are shown in Figs A, B, C and D in S1 File of Sup-
porting Information. Computations and algorithms for extracting patterns on weighted bipar-
tite networks are straight forward extensions of binary developments here. But algorithmic
computations for network bootstrapping on weighted bipartite networks are technically much
more involved, as would be reported in a separate study.
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Data Mechanics and coupling geometry on binary and weighted bipartite
networks
In order to discover the aforementioned interacting dependence structures within a binary
bipartite network, we apply the newly developed computing paradigm Data Mechanics. This
computational algorithm was originally developed in [5]. One key benefit of working on a
binary version first, instead of a weighted one, is its capability for easy visualization. This bene-
fit would allow more thorough computational explorations for identifying and confirming
block patterns upon its matrix representation.

A physical system perspective. We first quantify the nonparametric information pat-
terns in a binary bipartite network from a physical system perspective. Let a binary
bipartite network be represented by anm × n data matrix asM0, with one space of row
nodes X ¼ fx1; ::; xi; ::; xmg and another space of column nodes Y ¼ fy1; ::; yj; ::; yng. Let
biGðM0Þ denote the bipartite network. This network is invariant with respect to the product
of row and column permutation groups, denoted as UX ¼ fsjs ¼ ðsð1Þ; sð2Þ; :::; sðmÞÞg
and UY ¼ fpjp ¼ ðpð1Þ; pð2Þ; ::::; pðnÞÞg, respectively. A permuted matrix is denoted as
sM0p. From the physical perspective, such a matrix sM0p can be taken as a state configura-
tion. That is, the bipartite network biGðM0Þ can be seen as the thermodynamic system
defined by the state space of permuted matrices fsM0pjs 2 UX ; p 2 UYg with total-varia-
tion potential. Its Ising ferromagnetic energy level is computed as follows:

E½sM0p� ¼ ð�1Þ
X

ij

X

ði0;j0Þ2Nði;jÞ
J<ij;i0 j0>f2ð½sM0p�i0 j0 � 1Þð2½sM0p�ij � 1Þg ð1Þ

where N(i, j) = {(i0, j0)ji0 = i ± 1, j0 = j ± 1} is the set consisting of the four nearest neighbors
of the (i, j) entry on the matrix lattice. Mirroring extensions are required for entries on the
lattice edges, and the interaction potential J<ij, i0j0> is taken to be constant 1 for simplicity.
The Eq (1) defining the energy EðsM0pÞ implies that aggregations of local similarity on the
field ofm × n lattices tends to give rise to lower energy levels, while local heterogeneity gives
rise to higher energy levels. Therefore, in order to achieve the minimum energy state, this
heuristics requires similar row-nodes and column-nodes to be arranged into clusters on
both axes. The coupling of one cluster to the row axis and anther to the column axis would
form a homogeneous locality in the suitably permuted matrix sM0p. Such a locality is one
way of manifesting interacting dependence structures between spaces X and Y. Ideally we
seek for a thermodynamic system state sM0p that is basically a patchwork of many such
localities.

Such an ideal state configuration achieving the lowest energy level is termed the ground
state, or macrostate, of the system biGðM0Þ. In statistical mechanics, the macrostate of a sys-
tem is supposed to reveal the most intrinsic behaviors and patterns of the system. Hence the
macrostate establishes the platform to manifest the coherent information content embedded
within biGðM0Þ. The computational complexity of finding such a macrostate is to solve for the
minimizer σ�, π� in the product permutation group UX � UY :

U� � argmin
s;p

E½sM0p�:

In resolving the discrete combinatorial optimization for σ�, π�, any direct search algorithm
will encounter computational complexity. Therefore an indirect computing paradigm becomes
necessary. This computing paradigm is discussed below.

Before discussing the algorithmic computing, it is worth mentioning that the above systemic
concept of a bipartite network fits well in many scientific and real-world settings. Upon this
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quantification of the minimum energy macrostate, the interacting patterns should be visualized
as the nonparametric information content of biGðM0Þ. Hence we are confident to reiterate
that a bipartite network biGðM0Þ is popularly used to globally approximate a system. Such sys-
tems are assumedly shaped by selection forces that render dynamic interactions between row-
nodes and column-nodes along an evolving trajectory.

Data mechanics: a new computing paradigm. As an indirect search mechanism, the prin-
ciple of Data Mechanics is to divert the majority of computational complexity into engineering
a data-driven surrogate geometric system onto the product permutation group UX � UY . That
is, this surrogate geometry provides this product group with a simple neighborhood system,
which would not only allow us to avoid the majority of possible high energy state configurations,
but also allow the simple greedy search algorithm to reach the vicinity of the ground state.

This theme can be schematically achieved in a matrix lattice setting as follows: In order to
avoid higher energy on the node scale level, we need to group similar rows and similar columns
to form core clusters on X and Y, respectively. By grouping similar columns, horizontal seg-
ments with homogeneity are created in the correspondingly permuted matrixM0p. Likewise,
grouping similar rows generates vertical segments with homogeneity in sM0. Thus, by group-
ing rows and then columns or vice versa, many small homogeneous blocks are generated on
the lattice of sM0p. Take these small homogeneous blocks to indicate the core cluster scale.

We then re-apply the similarity concept to facilitate the merging of core clusters into con-
glomerate clusters on X and Y, respectively. Consequently, these joint operations are expected
to reduce the total variation-based energy due to emergence of larger blocks on a larger scale.
By successively using the similarity idea on various scales, we expect a multiscale block struc-
ture to emerge and potentially achieve lower energy levels.

Based on above schematic description, it is obvious that the critical step of applying Data
Mechanics on a bipartite network is to build a ultrametric tree on the space of row-nodes and
another ultrametric tree on the space of column nodes. These two trees have to be constructed
in a highly coupled manner in order to achieve the minimum energy state. The reason behind
this is profoundly due to unknown patterns of interacting relationships between the two node-
spaces X and Y. These phenomenal, but hidden interactions in fact indicate that the bipartite
network data come from a coherent part of the target “complex system”, which is governed by
highly structured rules and constraints. These rules and constraints are the target characteris-
tics to be discovered from this network data. Thus, this phenomenal multiscale composition of
big or small blocks envisioned in most bipartite networks answers the issues of how and why
approximating real a complex system of interest is possible. In summary, Data Mechanics is
designed to successfully carry out the discovery of unknown patterns of interacting relation-
ships in a form of mutliscale block patterns embedded within a bipartite network.

The information theory perspective, supplies another reason for the need for two highly
coupled ultrametric trees. An ultrametric is a metric satisfying strong triangular inequality. It is
known that this property ensures any three points to form either an equilateral or isosceles tri-
angle. An essential implication of this property is the need to treat a core cluster of nodes as a
uniform component of point cloud data. Then such a tree could be thought of as a geometric
extension of Kolmogorov’s algorithmic statistics with a multiscale structure. Furthermore, by
coupling two Ultrametric trees together, we are bound to discover a collection of small or large
homogeneous blocks in a matrix representation of a bipartite network. Very importantly, each
block signifies a particular interaction relationship between a cluster of row-nodes and a cluster
of column-nodes. Accordingly, all locations of blocks jointly marked by the two trees manifest
the global structural rules and constraints that we are looking for. This is indeed the essence of
Kolmogorov’s two-part coding scheme for transmission of a matrix through a communication
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channel. Thus, such a data-driven coupling (Ultrametric) geometry would not only constitute
the network information content, but also become a very effective tool for visualizing and cod-
ing data with high dimensionality.

Algorithm of Data Mechanics. Now we propose an iterative algorithm for constructing

the pair of ultrametrics ðT ðKÞ
X ;T ðKÞ

Y Þ on node-spaces X and Y. At the k-th step with k = 0, 1, ..K,

a pair of ultrametrics ðT ðkÞ
X ;T ðkÞ

Y Þ is derived based on a pair of updated empirical distance mea-

sures ðdðkÞ
X ; dðkÞ

Y Þ. And K is determined when the sequence of pair of ultrametrics ðT ðkÞ
X ;T ðkÞ

Y Þ
converges.

[Data Mechanics Algorithm]

DM1. Let dð0ÞX be the Hamming distance in n-dim binary space {0, 1}n. As X � f0; 1gn, com-
pute am ×m distance matrix and apply the Data-Cloud-Geometry(DCG) algorithm in

Fushing et al.(2013) to derive an Ultrametric DCG-tree on X denoted as T ð0Þ
X .

DM2. Any level of the tree T ð0Þ
X corresponds to a clustering composition of X . Suppose Lð1ÞX lev-

els (including the bottom level) of the tree are chosen to form a multiscale collection of clus-

ters on X . Denoted this collection as fCð1Þ
X ðl; hÞjl ¼ 1; ::; Lð1ÞX � 1; h ¼ 1; :::;HðlÞX g with

H(l)X number of cluster Cð1Þ
X ðl; hÞ being on the l-th level. The updated distance dð1ÞY from the

Euclidean distance dð0ÞY on Y � Rm is defined as follows:

dð1Þ
Y ðyi; yjÞ ¼ dð0Þ

Y þ
XL

ð1Þ
Y

i¼1

XHðlÞX

h¼1

½mðyijCð1Þ
X ðl; hÞÞ � mðyjjCð1Þ

X ðl; hÞÞ�2

where mðyijC
ð1Þ
X ðl; hÞÞ is the sum of components of yi(2 Rm) in C

ð1Þ
X ðl; hÞ, so is

mðyjjC
ð1Þ
X ðl; hÞ for yj.

DM3. Take dð1ÞY as the modified Euclidean distance on Rm. As Y � Rm, we then compute a n ×

n distance matrix, with which an Ultrametric DCG-tree, denoted as T ð1Þ
Y , is built on Y.

DM4. Take tree T ð1Þ
Y to update the dð0ÞX into dð1ÞX the same way as in Step-DM2.

DM5. Repeat Step-DM1 through Step-DM4 until the sequence of pair of ultrametrics

ðT ðkÞ
X ; T ðkÞ

Y Þ converges.
The Ultrametric DCG tree computational algorithm used in Step-DM1 is established based

on a physical foundation [13, 14], and has been demonstrated via many applications as a more
coherent data-driven approach for building clustering hierarchy [15–20]. The Step-DM2 is the
heart of the algorithm for Data Mechanics. It prescribes how to operationally couple one tree
structural information from a given different node-space onto a target node-space. This one-
step coupling turns out very essential and critical in developing computations for causal and
predictive patterns. The reason is that it functionally imposes multiscale evaluation criteria
into a similarity measure upon the target node-space. We elaborate this in more detail as fol-
lows because of its importance in later developments.

For instance, when two major clusters found on a level are included in the collection

fCð1Þ
X ðl; hÞjl ¼ 1; ::; Lð1Þ

X � 1; h ¼ 1; :::;HðlÞXg, this selection indicates that there exists a signifi-
cant bifurcation of dependence structure among node-spaceX . The intuition behind it, accord-
ing to the DCG-tree onX , the degree of similarity of two nodes is higher when they both are
within one cluster than the degree of similarity when they are separated in different clusters.
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This similarity statement is then translated into node-based dependence. Therefore, this bifur-
cated structural dependence implies that two distinct characteristics are attaching to these two
clusters of member nodes. They have to be summarized separately. Further this intuition implies
that two summarizing characters pertaining to these two clusters have to be evaluated and
accommodated in the measure of similarity between two feature-nodes. Consequently, the mod-
ified Euclidean distance then equips with differentiating capability based on the “two-dimen-
sional summarizing statistics”. For simplicity, we use the simple average as the summarizing
statistics.

Thus, with respect to the collection fCð1Þ
X ðl; hÞjl ¼ 1; ::; Lð1Þ

X � 1; h ¼ 1; :::;HðlÞXg, the corre-
spondingly modified Euclidean distance is designed to simultaneously perform multiple levels of
multiple dimensional comparisons. Such a functional design would become clearer through its
application on the winemaking example in the next section. When two Euclidean distances are
iteratively modified based on two iteratively coupled trees onX and Y, respectively, the
unknown multiscale dependence structures within the bipartite networks biGðM0Þ are extracted
and revealed in a form of multiscale block patterns. This version of Data Mechanics algorithm is
much more intuitive and computationally simpler than the original version proposed in [5].

Overall, this Data Mechanics Algorithm achieves significant computational advantages in

the following manner. After arriving at the pair of ultrametrics ðT ðKÞ
X ;T ðKÞ

Y Þ, we can directly
search for candidate of σ�, π� among the collection of permuted matrices sM0p with σ being

subject to tree T ðKÞ
X and π being subject to tree T ðKÞ

Y . In fact, this direct search only involves per-
muting large and small blocks within the matrix lattice. Denote the best row- and column-
nodes arrangements as ŝ�; p̂�. Then the permuted matrix ŝ�M0p̂

� would exhibit multiscale
block patterns which are collectively and specifically termed the coupling geometry of the origi-
nal bipartite network biGðM0Þ. Since this coupling geometry reveals mutliscale patterns
embedded within a bipartite network, this Data Mechanics is indeed a computational algo-
rithm for “complexity reduction”. Since the formation of our computed block-patterns has
taken advantage of inherent interacting dependence structure, Data Mechanics is certainly very
distinct from the prevailing concept of dimension reduction in statistics.

Integrative inferential platform on longitudinal binary networks
As a systemic process goes through its phases in a temporal order, it is natural to wonder how
patterns in the earlier phases could possibly cause the computed patterns in the latter phases.
Our simple derivation of causal patterns is given as follows. Consider the two phases in tempo-
ral order: PA before PB. Their media-node space is X and feature-node spaces are YA and YB,

respectively. Let T ðKÞ
XjYB be the Ultrametric tree on X on the coupling geometry of bipartite net-

work of X � YB in phase PB.
The simple, but critical idea of computing potential causal patterns is to embed the DCG-

tree T ðKÞ
X jYB

, which constitutes the coupling geometry on the product node-space X � YB, onto

the product node-space X � YA by going through the Step-DM2 of the Data Mechanics algo-
rithm on phase PA. The resultant of DCG-algorithmic computations is called the partial cou-
pling geometry of X � YAjYB in PA conditioning on phase PB. The reason behind this

proposal is that the modification on Euclidean distance imposed by the DCG-tree T ðKÞ
X jYB

would

force out causality-bearing feature-patterns to popup on X � YA. This reasoning can be intui-

tively seen from the hypothetical case that, if the two final DCG-trees T ðKÞ
X jYA

and T ðKÞ
X jYB

on PA
and PB, respectively, are indeed identical, then the causal relationship between these two phases
becomes obvious: the coupling geometry on phase PB is caused by the coupling geometry
found on phase PA. In reality, these two DCG-trees are usually not identical, but have certain

Pattern Geometry in Winemaking

PLOS ONE | DOI:10.1371/journal.pone.0160621 August 10, 2016 11 / 23



degrees of difference. Hence the partial coupling geometry ofX � YAjYB differs from the origi-
nally computed coupling geometry of X � YA. Therefore, the question arises: how different are
they to confirm or nullify this causal relationship? An answer to this question can be derived
from the following energy-based foundation, which is theoretically and experimentally built on
bipartite network bootstrapping.

[Theoretical and experimental foundation for inferential platform:]

Theoretical foundation: Each scale of a computed mutliscale coupling geometry on X � YA

embraces a structural composition of blocks, and in turns renders a bootstrapping ensem-
ble. The finer scale of coupling geometry contains more structural block information and
less randomness. Hence there are more, but smaller blocks in its corresponding composi-
tion, which then gives rise to a smaller bootstrapping ensemble. On the opposite, the coarser
scale of coupling geometry contains less structural information and a larger amount of ran-
domness. There are less, but larger blocks in its composition, which give rise to a larger
bootstrapping ensemble. In summary, a profile of bootstrapping ensembles exists from
small to large, pertaining to the computed coupling geometry of X � YA.

Experimental foundation: Consider the 2 × 2 checkerboard-switching as a perturbation pro-
cess starting from the originally computed coupling geometry of X � YA. At each time
point of the process, a 2 × 2 checkerboard is constructed by randomly selecting two rows
and two columns, and satisfying all row and column sums being all equal to 1. Then, its two
diagonals are switched. Though keeping the row and column degree sequences unchanged,
such a perturbation procedure on a computed coupling geometry would gradually erode the
multiscale block-pattern structure. Since a coupling geometry achieves a minimum energy
level, this process of eroding can be seen through its energy trajectory starting from its low-
est value, then quickly shooting up in value, and finally leveling-off with volatility. This
energy leveling-off manifestation indicates that the perturbation process has entered the
state in which all perturbed matrices are random matrices in the sense of containing no evi-
dent block structural information, but only being subject to the row-degree and column-
degree sequences of the observed binary matrix representing the bipartite network.

To make use of the theoretical foundation for inferential purposes, we need to be able to
compare two bootstrapping ensembles. Any direct comparison between two such ensembles is
in general not practical. But indirect comparisons based on summarizing characteristics of
ensembles are available. One summarizing characteristic of an ensemble is its size or cardinal-
ity. In theory, the ensemble size can be estimated. However, the knowledge of this estimation is
still not yet mature. Another summarizing characteristic is its energy distribution, which is fea-
sible. We know well how to compare two distributions. Therefore, a profile of bootstrapping
ensembles pertaining to a coupling geometry on X � YA would be manifested by a profile of
energy distributions. Such a profile of energy distributions would serve as the landmarks for
the coupling geometry. And through the shooting-up pattern of the calculated energy, the
Experimental foundation reveals its link to the theoretical foundation. It does so by indicating
that most of its bootstrapping ensembles are too small to attract the perturbation process, espe-
cially when a coupling geometry exhibits evident multiscale block patterns. That is, the level-
ing-off states correspond to bootstrapping ensembles of large scales [5].

Thus, an inferential platform based on theoretical and experimental foundations can be out-
lined as follows: for purposes of confirming or nullifying causal patterns, various energy distri-
butions of several small scales of the partial coupling geometry ofX � YAjYB are superimposed
onto the profile of landmark energy distributions derived from the computed coupling geometry
onX � YA. If energy distributions of partial coupling geometry are well overlapping with those
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of small scales in the profile- in other words, they are nested within the very first shooting-up
energy range, then we can confirm that patterns of features in YA can be causally attributed to

the formation of DCG tree T ðKÞ
X jYB

with feature patterns in YB. One significant advantage of this

inferential platform is that we can calculate the p-values when we investigate different causal
patterns by means of setting up simple-vs-simple hypothesis testing problems.

In a similar manner, potential predictive patterns are computed in a reverse order of the
causal patterns. In this case, we want to elucidate how patterns in the earlier phases could pos-
sibly predict patterns in the latter phases. Again, we consider the two temporal-ordered phases:

PA and PB. Let T
ðKÞ
X jYA

be the Ultrametric tree on media-node space X on the coupling geometry

of bipartite network of X � YA in phase PA. The tree structure T
ðKÞ
X jYA

is used as in the Step-

DM2 of the Data Mechanics algorithm on the bipartite network of X � YB in phase PB. The
resultant of DCG-algorithmic computations is called the partial coupling geometry of X �
YBjYA in PB conditioning on phase PA. Once more, the predictive patterns are those confirmed
by structural hypotheses testing via bootstrapping ensembles based energy distributions, as dis-
cussed previously for causal patterns.

Link to discovery. As the coupling geometry ŝ�M0p̂
� would exhibit multiscale interacting

patterns embedded within a bipartite network biGðM0Þ. The corresponding tree T ðKÞ
X on the

media-node space X could reveal surprising clustering results. Here, the surprising aspect
refers to the phenomenon that one clustering configuration on one certain tree level, say l?,
unexpectedly turns out matching nearly perfectly with categories of a known factor, say F?.
The likely surprising factor F?, which is outside of the feature set Y, is holistic and should be
taken as an emerging insight, so it constitues a new discovery. That is, the clustering configura-

tion fCðKÞ
X ðl?; hÞjh ¼ 1; :::;Hðl?ÞXg on media-node space X marksH(l?)X categories of “the fac-

tor F?”. The surprising knowledge coming out of the identification of F? is embraced by the
categorized collective behaviors, which are characterized by corresponding block patterns of

coupling geometry ŝ�M0p̂
� pertaining to the specific l? level of tree T

ðKÞ
X against all levels of

tree T ðKÞ
Y on Y. That is, collective behaviors of recognized factor F? are quantified as the interac-

tion relational patterns between the l?-level clustering composition of X and multiscale cluster-
ing compositions of Y.

It is worth emphasizing again here that this recognition or identification of “the factor F?” is
not a result of variable selection in statistics literature, because any level clustering configura-

tion in the collection of fCðKÞ
X ðl?; hÞjh ¼ 1; :::;Hðl?ÞXg is a computational result of holistic

nature due to “row-cluster vs column-cluster” interactions. That is to say, the l? level clustering
configuration is a very complex function of feature-nodes of Y. Can it be computationally rec-
ognized and identified? Our conclusion is positive.

We demonstrated this capability via causal and predictive pattern computations through
the real data illustration in the result section below. The utilized foundation is that the multi-
scale characteristic patterns of collective behavior would be specifically quantified and con-
firmed via network bootstrapping techniques. A series of hypothesis with finer vs coarser
structural patterns are formulated intuitively and tested by comparing the energy distributions
derived from bootstrapping ensembles corresponding to null and alternative hypotheses.

Results

Results of phase-wise pattern inferences
In this section, Data Mechanics is applied on each phase of the winemaking. Based on the series
of coupling geometries, we first discover two somehow surprising factors that persistently
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appear on all four computed coupling geometries throughout all phases: one is on the axis of
water regimes, the other one is on the axis of biochemical features. These two factors indeed
collectively constitute a backbone of each computed coupling geometry. We then make use of
network bootstrapping to build energy distribution profiles to confirm which scales of geomet-
ric structures are valid. At the end, from causal and predictive perspectives, we build the partial
coupling geometries to link between phases. The validation of a phase-to-phase linkage is also
performed based on energy distributions.

Four pairs of coupling geometries on binary bipartite networks. In the harvest field
phase, the emergent pattern from the coupling geometry of grape’s bio-chemicals, as shown in
panel (a) of Fig 2, is surprising. The vintage factor is seen as a collective factor that more effec-
tively binds together various irrigation regimes than the categories of irrigation regimes them-
selves. This is somehow surprising because the Year factor is holistic, and slightly mysterious.
The mystery is in part due to the fact that the 14 attributes are grape’s bio-chemical measure-
ments, which are far from meteorological measurements.

Next, an inferential procedure is proposed to quantitatively check whether various visible
computed patterns are real or not. Let the structural pattern of having four blocks be denoted
as hypothesis H2 × 2 to indicate the interacting relationships of binary vintage-factor vs. two-
clusters of 14 features. While hypothesisH2R denotes the marginal structural pattern pertaining
to vintage-factor without separating the 14 chemical attributes into two clusters. Similarly

Fig 2. At harvest field phase. (a) Coupling geometries of binary bipartite network, and (b) its profile of four
energy distributions upon four structural scales.

doi:10.1371/journal.pone.0160621.g002
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hypothesis H2C denotes the marginal structural pattern pertaining to two-clusters of the 14 fea-
tures without vintage-factor. The last one is the hypothesis H0 for without having structural
patterns in the bipartite network.

To test among the four hypotheses {H0,H2C,H2R,H2 × 2}, we correspondingly generate four
bootstrapping ensembles according to their structural information in coupling geometries
based on binary bipartite networks. The bootstrapping principle for a binary bipartite network
is given in [5]: a bootstrapped network is a pitch-up of all simulated blocks that constitute and
bear the structural information. To simulate a binary block subject to row and column sums,
the algorithm proposed in [21] and its modified version in [5] is used.

The final step of our proposed inferential procedure is to derive an energy distribution from
each bootstrapping ensemble, as shown in the panel (b) Fig 2. Each energy distribution is taken
as the corresponding distribution under the hypothesis. Hence for testing among four hypothe-
ses, a set-up of simple vs simple hypothesis testing problem is employed. The p−values and
type-II errors are calculated by simply evaluating the overlapping areas on either sides of the
crossing point of the two corresponding pair of energy distributions. It is seen that energy distri-
butions pertaining to the 4-block and two 2-block patterns are close to each other, while the one
pertaining to without structural pattern is very far away. This phenomenon is primarily due to
various constraints on block-wise row and column sums. This observation means that the p-val-
ues are nearly zeros, so are the type-II errors forH0, against any one of {H2C,H2R,H2 × 2}.

In the Juice phase, the coupling geometries based on the binary bipartite network reveals
clear 4-block pattern. The vintage factor is even more strikingly evident through the coupling
geometry. The 2012 juices from different irrigation regimes are completely separated from
those of 2013. It is surprising that this manifestation is retained in juice data. This is certainly a
somehow mysterious phenomenon because vintage is not easily characterized by any known
function of the 6 chemical features.

One intuitive reason behind this phenomenon is that collective interactions between irrigat-
ing regimes and the 6 features of 2012 juices were drastically different from the interactions in
2013. This difference is clearly expressed through the evident four block patterns in the heat-
map, shown in the panel (a) of Fig 3. This explanation seems very pertinent. If we recognize
vintage 2012 and 2013 as two emergent categories, then their collective behaviors are character-
ized by the block patterns of the coupling geometry.

For quantitatively testing computed patterns on the juice phase, we again consider the four
hypotheses {H0, H2C, H2R,H2 × 2}. Four energy distributions from four bootstrapping ensem-
bles are derived, as shown in the panel (b) of Fig 3. Again {H2C,H2R,H2 × 2} are significantly
against H0. So the computed patterns are realistic. Also it is noted that hypothesis H2 × 2 is
apart fromH2C and even farther away fromH2R. It implies that the 4-block pattern is signifi-
cantly different from the two 2-block patterns, while vintage-factor is more important than the
two clusters of features.

Throughout winemaking, the specific features in juice and wine-at-bottling may be termed
“housekeeping”measurements since they guide fermentation management. For instance, as a
result, YAN was adjusted by addition of nutrients, and pH was lowered by addition of tartaric
acid. Both of these adjustments were necessary to guarantee “clean”, reproducible fermenta-
tions. At the wine-at-bottling phase, as shown in panel (a) Fig 4, the coupling geometry does
not bring out as evident separation between vintages as in the juice phase, but the basic separa-
tion remains visible. Similarly, one feature cluster of {malic, residual−sugar, tartaric} against
the other cluster {acetic, ph, nopa} seems rather clear. For quantitatively testing computed pat-
terns on this phase, we consider the four hypotheses {H0,H3C,H2R,H3 × 2}, that is, a small clus-
ter consisting of two 2012 irrigation regimes is added. Four energy distributions from four
bootstrapping ensembles are derived, as shown in the panel (b) Fig 4. Again {H3C,H2R,H2 × 2}
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are significantly against H0. Here we note that hypothesis H3 × 2 and H2C are rather close, while
being away fromH2R. Hence the 3-block pattern is significantly evident.

In the phase of bottled-wine, as shown in panel (a) of Fig 5, the coupling geometry brings
out visibly interacting patterns between the vintage-factor and a feature-factor. Based on the
four energy distributions derived from its coupling geometry, {H2C,H2R,H2 × 2} are seen being
significantly against H0, as shown in the panel (b) of Fig 5. But the the separation between
H2 × 2 andH2R is somehow clear, but not between H2 × 2 andH2C, nor between H2C and H2R.
Hence, we still retain that vintage-factor is more important than the feature-factor.

The consistent large scale block structure, commonly shown in the above figures, is striking
along the four winemaking phases. Such a pattern can be thought of as summarizing statistics
that successfully bring out key characteristic differences among one collection of wines and
various collections of features by revealing their interacting patterns. Such nearly uniform
manifestations strongly indicate that the effects of water irrigating regimes are completely over-
whelmed by the holistic interaction effects. In sharp contrast, there are no evident and persis-
tent fine scale patterns throughout the entire winemaking system. Replicates of water irrigating
regimes on the rows all heatmaps disperse over the vintage-specific tree branches with different
degrees and distinct formations. Such results echo previous studies on effects of irrigation.
They have been nicely summarized in part of the abstract in [22]:

Fig 3. At Juice phase. (a) Coupling geometries of binary bipartite network, and (b) its profile of four energy
distributions upon four structural scales together with two energy distributions of two partial coupling
geometries constrained by wine-at-bottling (in red) and bottled-wine (in blue).

doi:10.1371/journal.pone.0160621.g003

Pattern Geometry in Winemaking

PLOS ONE | DOI:10.1371/journal.pone.0160621 August 10, 2016 16 / 23



“Berry mass and anthocyanin and tannin contents were affected little and inconsistently by
irrigation and crop load adjustment and varied mostly among years, indicating a dominant
influence of seasonal climate on berry development and composition.”

Though our computational results confirm negative results in [22] on the fine scale aspect,
viticulturists and winemakers can utilize the computed system patterns and biochemical fac-
tors to redesign and refine their field practices for large scale effects. Such positive and negative
aspects of results are potentially essential to system scientists beyond viticulturists or winemak-
ers because of the necessity of recognizing the complexity of conducting experiments in all
open or semi-open systems. The expectation of overwhelming confounding effects on experi-
mental regimes is not only real, but also necessary. This is one of many reasons why system sci-
ences are challenging and interesting.

Results of Causal and predictive pattern inferences
Next we proceeded to compute a series of partial coupling geometries for causal patterns on
bipartite networks of covariates, and then a series of partial coupling geometries for predictive
patterns on bipartite networks of responses. These two series of partial coupling geometries
constitute serial causal and predictive patterns of the winemaking system. Again, energy distri-
butions based on network bootstrapping ensembles were derived to confirm such causal and

Fig 4. At Wine-at-bottling phase. (a) Coupling geometries of binary bipartite network, and (b) its profile of
four energy distributions upon four structural scales together with two energy distributions of two partial
coupling geometries constrained by Juice (in red) and bottled-wine (in blue).

doi:10.1371/journal.pone.0160621.g004
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predictive patterns. Overall, this platform built upon coupling geometry, network bootstrap-
ping and energy distribution is a brand-new inferential paradigm for longitudinal bipartite net-
works. Their potential applicabilities are expected in diverse scientific fields.

Potential causal patterns. The partial coupling geometries for causal patterns of wine-at-
bottling and bottled-wine (as phases PB) with respect to Juice (as phase PA) are computed and
shown in panels (a) and (b) of Fig 6. These two partial coupling geometries still reveal clear
block patterns, which are rather similar with the coupling geometry of Juice in Fig 3. One
might intuitively assume that such block patterns in Juice are causal patterns for patterns
observed in corresponding coupling geometries of the two wine phases. To quantify this state-
ment, energy distributions of the 4-block pattern in partial coupling geometry are derived and
compared with the four original energy distributions under hypotheses {H0, H2C,H2R,H2 × 2}
in Fig 3(the red for wine at bottling, and blue for bottled wine). Both energy distributions are
rather close to the energy distribution under H2R. This empirical fact indicates that the vintage-
factor of juice is a significant causal factor for the coupling geometries of wine.

A further confirmation via integrative pattern inference is demonstrated in panel (c) of Fig
6. The energy trajectory of the 2 × 2 checkerboard switching perturbation process shows not
only the pattern of very steep shotting-up from the minimum energy and then leveling-off, but
also the two energies of the two computed partial coupling geometries being far below the

Fig 5. At Bottled-Wine phase. (a) Coupling geometries of binary bipartite network, and (b) its profile of four
energy distributions upon four structural scales together with two energy distributions of partial coupling
geometries constrained by wine-at-bottling (in red) and juice (in blue).

doi:10.1371/journal.pone.0160621.g005
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leveling-off value. These empirical facts together indicate that Juice’s Year-factor is a significant
causal factor for the coupling geometries of wine-at-bottling and bottled-wine.

The partial coupling geometry for causal patterns of bottled-wine with respect to wine-at-
bottling shows similar clear block patterns as seen in panel (a) of Fig 7. Its corresponding
energy distribution, shown in Fig 4(in blue), is seemingly completely overlapping with that of
H3 × 2. And the calculated energy level is marked near the setting-off level of the energy trajec-
tory of the 2 × 2 checkerboard switching perturbation process, as given in panel (b) of Fig 7.
Such pattern linkages on bottled-wine caused by juice and by Wine-at-bottling are somehow
expected within winemaking. Hence we demonstrate that the partial coupling geometry and
the energy based pattern inference are reasonable and realistic.

Potential predictive patterns. For predictive patterns of bottled-wine constrained by pat-
terns of Juice and Wine-at-bottling, respectively, are shown in panels (a) and (b) of Fig 8. Both
partial coupling geometries reveal 4-block patterns, and their energy distributions are shown in
panel (c) of Fig 5 (the red for Wine-at-bottling, blue for Juice). These two energy distributions
are very close to the distribution under H2R in the bottled-wine phase. Further their energies
are marked upon the energy trajectory of the 2 × 2 checkerboard switching perturbation pro-
cess, as shown in panel (c) of Fig 8. These evidences together confirm 4-block patterns with rel-
ative uniformity within each block. A similar predictive pattern from juice to wine-at-bottling
is also concluded via its partial coupling geometry. Its corresponding energy distribution is
seen being completely overlapping with that of H3 × 2. This linkages from juice to Wine-at-bot-
tling, and then to bottled-wine are logical and natural within winemaking. As such, we

Fig 6. Partial coupling geometries on Juice data matrix constrained by the ultrametric trees of (a) wine-at-
bottling and (b) bottled-wine. (c) The energy trajectory of the 2 × 2 checkerboard switching perturbation
process starting from Juice’s coupling geometry. Marked lines are Juice’s (minimum) energy = -592, Juice by
wine at bottling = -468, Juice by bottled wine = -494.

doi:10.1371/journal.pone.0160621.g006
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demonstrate feasibility for Data Mechanics as a new computing paradigm and the integrative
pattern inference as a pertinent testing approach for structural hypotheses.

The two large scale systemic factors of vintage and of biochemical measurements, and their
interactions are confirmed through our integrative pattern inferences via partial coupling
geometry computations. Hence we conclude that characteristics of grape, Juice and wines-at-
bottling are expected to show up within bottled-wines. Since they are all holistic in nature, the
next issue facing viticulturists and winemaker is: How to make good uses of such persistent pat-
terns in winemakers? This issue in fact would force researchers to go away from typical “tuning
one factor at a time” experimental design protocol. Thus any successful resolution to this issue
is not only new, but also potentially fruitful and influential in many fields.

Discussion
As an evolving system is expected to be embedded with unknown and complicate configura-
tions of interacting dependence patterns, different computing paradigms and inferential tech-
niques are needed to free researchers from constraints of independence. Our Data Mechanics
is demonstrated being capable of successively extracting pattern information from a series of
bipartite networks, and summarizing computed results into a series of coupling geometries.
Then the integrative pattern inference, which is built upon network bootstrapping ensembles
and their energy distributions based on multiscale block patterns contained in coupling

Fig 7. Partial coupling geometries on wine-at-bottling data matrix constrained by ultrametric tree of (a)
bottled-wine. (b) The energy trajectory of the 2 × 2 checkerboard switching perturbation process starting from
Wine-at-bottling’s coupling geometry. Marked lines are: the minimumwine-at-bottling itself = -416, wine-at-
bottling by bottled-wine = -356, Wine-at-bottling by juice = -362.

doi:10.1371/journal.pone.0160621.g007
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geometries, is shown to allow scientists to address issues, such as: What is the geometry of each
phase? How do serial phases evolve in terms of geometric patterns from causal and predictive
perspectives? Discoveries are likely beyond winemaking.

In contrast, these issues are unlikely solvable by classic statistical methodologies, such as
partial least square (PLS) and its variant regression techniques [6, 23]. The essential problem
underlying these techniques is that they all rely on independence, normal distribution and lin-
earity assumptions. However these assumptions hardly hold in any real world system. In other
words, the primarily focus on linearity, such as based on variance-covariance matrices, likely is
over-simplified, even unnaturally twisted.

As a further remark on significant merits of our data-driven inferential approach: our par-
tial coupling geometry apparently resolves the issue of accommodating the high dimensional
features of bipartite networks of covariates and their responses. Our energy distribution con-
cept seems to summarize empirical significance from data. Hence our partial coupling geome-
try is more than an alternative to the popular and widely-used PLS or factor analyses. This new
technique brings out multiscale pattern-to-pattern associations, i.e. the interacting dependence
structures in a purely nonparametric fashion. We expect such nonparametric results being
more reliable.

Finally, we remark why we focus on binary setting, instead of weighted one here. On one
hand, in a binary setting, the data-driven computations are simpler and computed results are
easier to visualize. On the other hand, in a weighted setting, both advantages are lessened. The
primary barrier is caused by the current under-development in network bootstrapping on

Fig 8. Partial coupling geometries on bottled-wine data matrix constrained by the ultrametric tree of (a) Juice
and (b) Wine-at-bottling. The energy trajectory of the 2 × 2 checkerboard switching perturbation process
starting from Bottled-wine’s coupling geometry. Marked lines are:(minimum)bottled-wine itself = -946, bottled-
wine by wine-at-bottling = -822, Bottled-wine by juice = -910.

doi:10.1371/journal.pone.0160621.g008
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weighted bipartite networks. Through many computer experiments and the concept of a
matrix as a coupling metric measure, it has become clear that simulating weighted matrix by
subject to sequences of row and column sums like in a binary setting, as proposed in [24, 25]
and references therein, is not correct. New and different algorithmic developments are needed
for weighted setting.

Supporting Information
S1 File. Feature histograms and their thresholds Information for binary coding. In all four
winemaking phases, a histogram is built for each feature and marked with one or two thresh-
olds used for binary coding.
(PDF)

S2 File. S2_File.xlsx, DOI: 10.6084/m9.figshare.3502373. Four binary data sets are contained
in the File S2, an Excel file, for the four phases of winemaking: Harvest field, Juice, Wine at bot-
tling (Prewine) and bottled Wine.
(XLSX)
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