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ABSTRACT

Post-translational modifications (PTMs) are critical
molecular mechanisms that regulate protein func-
tions temporally and spatially in various organisms.
Since most PTMs are dynamically regulated, quanti-
fying PTM events under different states is crucial for
understanding biological processes and diseases.
With the rapid development of high-throughput pro-
teomics technologies, massive quantitative PTM pro-
teome datasets have been generated. Thus, a com-
prehensive one-stop data resource for surfing big
data will benefit the community. Here, we updated our
previous phosphorylation dynamics database qPhos
to the qPTM (http://qptm.omicsbio.info). In qPTM, 11
482 553 quantification events among six types of
PTMs, including phosphorylation, acetylation, glyco-
sylation, methylation, SUMOylation and ubiquityla-
tion in four different organisms were collected and
integrated, and the matched proteome datasets were
included if available. The raw mass spectrometry
based false discovery rate control and the recur-
rences of identifications among datasets were inte-
grated into a scoring system to assess the reliability
of the PTM sites. Browse and search functions were
improved to facilitate users in swiftly and accurately
acquiring specific information. The results page was
revised with more abundant annotations, and time-
course dynamics data were visualized in trend lines.
We expected the qPTM database to be a much more
powerful and comprehensive data repository for the
PTM research community.

INTRODUCTION

Protein post-translational modification (PTM), a reversible
covalent modification after protein translation, is one of
the most important regulatory mechanisms in physiological
processes and diseases/cancers (1–9). Various PTMs reg-
ulate protein structure and function dynamics by altering
residue hydrophobicity, charge state and protein stability
(1,2). Massive studies have explored PTMs since Swedish
scientist Olof Hammarsten first discovered phosphoryla-
tion in 1883 (10). Over 680 types of PTMs have been
discovered thus far (https://www.uniprot.org/docs/ptmlist),
among which phosphorylation and ubiquitination have
been the most studied due to their high abundance in
cells (3,6). In 1992, Edmond H. Fischer and Edwin G.
Krebs shared the Nobel Prize in Physiology or Medicine
for their discovery of reversible protein phosphorylation as
a biological regulatory mechanism (11), while Irwin Rose,
Aaron Ciechanover and Avram Hershko were rewarded the
prize in 2004 for identifying ubiquitination as a transfer-
able signal for the degradation of proteins by the protea-
some (12). Recently, lysine modifications, such as acetyla-
tion (13), crotonylation (14), succinylation (15) and lacty-
lation (15) were discovered as ubiquitous PTMs. Various
PTMs orchestrate biological processes (1–9). Thus, dissect-
ing PTM dynamics is critical for understanding the cellular
signaling network.

Recently, high-throughput proteomics techniques have
greatly advanced and boosted the identification and quan-
tification of PTM events in cells and organs (16–18). For
example, quantitative phosphoproteome profiling was per-
formed in proteogenomic characterization of patient co-
horts with cancers, such as lung adenocarcinoma (19–21)
and hepatocellular carcinoma (22,23), and dissection of the
aberrances of phosphorylation signaling provided impor-
tant clues of carcinogenesis, cancer development and treat-
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ment. Quantitative N-glycoproteome analyses were per-
formed in breast cancer and high-grade serous ovarian can-
cer studies (24,25). Sun et al. discovered that the ubiquiti-
nation of Ku80 was closely associated with the invasion and
migration of HCC cells through crosstalk analysis between
the proteome and ubiquitylome (26). Acetylome quantifica-
tion by Krug et al. revealed the crucial roles of acetylation in
regulating the DNA damage response and metabolism (27).
Furthermore, Grimes et al. outlined the cell signaling path-
way of lung cancer by coupling analyses of the phosphopro-
teome, methylproteome, and acetylproteome in lung cancer
cell lines (28). Taken together, quantitative PTMomics data
could facilitate the understanding of molecular biological
mechanisms.

With the sharp increase in profiled PTM events, a se-
ries of distinguished studies have contributed to hosting
the massive amount of PTM data. As the most com-
prehensive infrastructure of the protein knowledgebase,
UniProt curated and hosted massive functional annota-
tions, including PTMs (29). Specialized databases, includ-
ing PhosphositePlus (30) and dbPTM (31), were con-
structed and maintained for over 15 years to curate PTM
events, and databases, such as SysPTM (32), HPRD (33)
and PHOSIDA (34), have also contributed significantly,
while iPTMnet (35) and PTMcode (36) have provided in-
tegrated resources for the network regulation and func-
tional associations of PTMs. Several databases have also
been developed to collect PTM-specific data, such as
dbPAF/EPSD (37,38) for phosphorylation, hUbiquitome
(39) for ubiquitination, CarbonylDB (40) for carbonyla-
tion, O-GlycBase/N-GlycositeAtlas/GlycoProtDB (41–43)
for glycosylation, and CPLA/CPLM/PLMD (44–46) for
lysine modifications. Furthermore, the ProteomeXchange
(PX) consortium members (PRIDE, PeptideAtlas, Mas-
sIVE, jPOST, iProX, Panorama Public) (47) hosted the
mass spectrometry proteomics (including PTM proteomics)
data, while ProteomeScout (48), ProteomicsDB (48,49) and
piNET (50) were developed to store proteomics datasets
and provide online analysis tools. However, these data
repositories did not provide easy access to PTM dynamics
among the different conditions/states.

Previously, we developed the qPhos (51) database to
host the phosphorylation dynamics data. Here, we updated
qPhos to qPTM (http://qptm.omicsbio.info), which con-
tains six types of PTMs, including phosphorylation, acety-
lation, glycosylation, methylation, SUMOylation and ubiq-
uitylation in four different organisms, including human,
mouse, rat and yeast. In total, 11 482 553 quantification
events for 660 030 sites on 40 728 proteins were collected
and integrated into qPTM, and the matched proteome
datasets were curated if available. With the limited avail-
able raw mass spectrometry (MS) data, 8 658 490 quantifi-
cation events were confidently identified with 1% site-level
false discovery rate (FDR) control. Furthermore, the newly
designed browse and search pages enable users to quickly re-
trieve interested data from over tens of millions of quantita-
tive events. In addition, we visualized time-course and treat-
ment concentration gradient dynamic data to help users
better understand the trends over time or concentration.
Taken together, the qPTM database provides a comprehen-
sive platform to access quantitative PTMomics data for the

community and is a reliable resource for further computa-
tional or experimental considerations.

DATA COLLECTION AND DATABASE CONSTRUC-
TION

By integrating quantitative PTMomics datasets curated
from published literature and annotations from various
resources, we established a comprehensive platform for
host PTM dynamics data. The scheme for constructing
the qPTM database is shown in Figure 1. The quanti-
fied events were collected from the literature published
before January 2022 in PubMed for PTMs, including
acetylation, glycosylation, methylation, phosphorylation,
SUMOylation and ubiquitylation, which are the most stud-
ied PTMs. Text mining was conducted on the abstracts of
the literature by searching PTM-related words, including
‘phosphoproteome’, ‘acetylproteome’, ‘N-glycoproteome’,
‘O-glycoproteome’, ‘lysine methylome’, ‘arginine methy-
lome’, ‘ubiquitylome’ and ‘SUMO proteome’. To avoid
missing data, additional keywords, such as ‘lysine acety-
lation’, ‘acetylome’ and ‘protein SUMOylation’, were also
applied. To avoid data explosion, nomenclatures from
high-throughput mass spectrometry experiments, including
‘quantitative’, ‘label-free’, ‘SILAC’, ‘enrichment’ and ‘mass
spectrometer’, were employed as qualifier words. Quantita-
tive PTMomics datasets were collected from ProteomeX-
change (47) if not available in the literature.

Based on the coverage of PTMomics studies in model or-
ganisms, quantitative PTM datasets in Homo sapiens, Mus
musculus, Rattus norvegicus and Saccharomyces cerevisiae
were included in the qPTM database. To guarantee data
quality, all matched literature was filtered manually through
a stringent procedure as described previously (51). The de-
tails about PTM quantifications, including labeling meth-
ods, enrichment methods and mass spectrometry, were inte-
grated into the database. In addition, quantitative proteome
datasets simultaneously coupled with PTMomics were also
collected if available. The modified peptides and residues
were remapped to the reference proteome sequence down-
loaded from the UniProt database (Release 2021 01) (52).
Consistent with qPhos, the unmapped raw peptides ac-
counted for 4.19%, 5.87%, 6.16% and 5.93% in human,
mouse, rat and yeast, respectively. Identifiers or names of
PTMomics were uniformly mapped to UniProtKB acces-
sion.

To help users use quantitative PTMs and proteomics data
more conveniently, we annotated the quantitative PTM sites
with various external resources, including UniProt (52), Ex-
PaSy (53), dbPAF (37), PLMD (44), PTMD (54) and Drug-
Bank (Release 2021 05) (55). The addition of PLMD and
dbPAF was a great supplement to UniProt for PTM site in-
formation, and PTMD provided PTM-disease association
annotations (44). The kinase-substrate relationships were
integrated as previously described (51,56,57), while the po-
tential relationship between protein acetyltransferases and
acetylation sites was predicted by Deep-PLA (58).

QUALITY CONTROL

To assess the reliability of the PTM sites, we developed a
five-star scoring system by integrating the raw MS data-
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Figure 1. Workflow for the construction of the qPTM database.

based FDR control and the recurrences of identification
among datasets. The raw mass spectrometry data and the
associated sample information were available for 85% of the
curated studies and retrieved from PRIDE (59), iProX (60),
jPOSdb (51) and MassIVE (61). The final raw data files with
a total capacity exceeding 25T, consisting of 30 055 MS raw
files corresponding to 536 publications, were enrolled in the
subsequent MS search. We performed the MS search fol-
lowing previously published search strategies. For specific
PTMs, all MS raw files were integrated to jointly search
using MaxQuant 1.6.14 (MQ) (62) against the UniProt
database (Release 2021 01) (52). Searches were performed
with the following FASTA files of the corresponding
species from UniProt: UP000005640 9606 (Homo sapiens),
UP000000589 10090 (Mus musculus), UP000002494 10116
(Rattus norvegicus) and UP000002311 559292 (Saccha-
romyces cerevisiae). We used Mono 6.12.0.90 to enable
MaxQuant to run on the Linux operating system (63). The
default values were used for all parameters unless stated
otherwise, including 1% PSM FDR and 1% site-level FDR.
The minimum peptide length was set to seven amino acids,
and peptides were allowed to have a maximum of two
missed cleavages. Cysteine (C) carbamidomethylation was
set as a fixed modification, while methionine (M) oxidation
and protein N-terminal acetylation were used as variable
modifications in all searches, as is the default in MaxQuant.
For the phosphoproteomic data, phosphorylation of serine
(S), threonine (T) and tyrosine (Y) were also set as vari-
able modifications. For the acetylproteomic data, lysine (K)
acetylation was set as an additional variable modification.

For glycosylation data, asparagine (N) and glutamine (Q)
deamidations were set as additional variable modifications.
For methylation data, methylation to lysine (K) or argi-
nine (R), dimethylation to lysine (K) or arginine (R), and
trimethylation to lysine (K) were set as additional variable
modifications. For SUMO data, QQTGG to lysine (K) was
set as an additional variable modification. For ubiquityla-
tion data, GlyGly to lysine (K) was set as an additional vari-
able modification. The identified PTMs and relevant FDRs
were annotated to the curated data as re-identified FDR to
enhance the reliability of qPTM.

For the datasets without raw MS data, the reliability of
the PTM sites could be assessed through the recurrences
of identification among datasets, which were characterized
by three major standards in the five-star scoring system as
follows. (i) The occurrences of the PTM site in the qPTM
database. We counted the identified times of each modified
site in all datasets. Because the sites were filtered through
a cutoff of site-level FDR <1% according to the literature,
the more it was identified, the more it was reliable. Thus,
modified sites were given zero points when identified once,
one point when identified twice, and so on. The identified
score was no >4 for each site. (ii) The data reliability in
the proteomics study. The posterior error probability (PEP)
and localization probability data of each modified site were
curated from the datasets if available. PEP, the probabil-
ity that observed PSM is uncorrected, was under 1%, while
sites with a localization probability higher than 75% were
considered high-confidence sites. The PTM sites that met
the criterion were given a point. (iii) The occurrences of
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Figure 2. Heatmaps for the (A) modified site number and (B) protein number distribution of different PTMs and model organisms. (C) The proteins that
were concurrently modified by the two types of PTMs. Node size and width of the line connecting PTM nodes represent the modified protein number
(Log10) of the corresponding PTM and the number of shared modified proteins, respectively. (D) The concurrently modified proteins between no less than
three PTMs in H. sapiens, while the detailed number is shown at the bottom. Detailed numbers of concurrences are provided in Supplementary Table S2.
Crosstalks and concurrently modified proteins of M. musculus, R. norvegicus and S. cerevisiae are shown in Supplementary Figure S2.

the PTM site in other classical PTM databases. Modified
sites collected in dbPTM or PhosphoSitePlus were also
given a point. Taken together, the five-star scoring system
assigned each PTM site with a reliability of 0–5 bright
star(s) according to its recurrences of identification among
datasets, and red bordered the bright star(s) if it had a site-
level FDR <0.01 according to the raw MS data-based re-
identification.

Previously, Ochoa et al. (64) curated 112 different
datasets of phospho-enriched proteins from 104 different
human cells or tissues and compared the identified phos-
phoproteome against human phosphosites reported by MS
in the PhosphoSitePlus database. Similarly, the frequency
of high-confidence sites supported by MS/MS of all cu-
rated datasets in qPTM showed a similar pattern compared
with PhosphoSitePlus and dbPTM (Supplementary Fig-
ure S1A and B). Additionally, we compared the phospho-
sites curated in PhosphoSitePlus, dbPTM and qPTM, as
shown in Supplementary Figure S1C, 56.4% of phospho-
sites in qPTM overlapped with the other two databases.
These results demonstrate similar patterns for the distri-
bution of multiple integrated datasets and the reliability of
data in qPTM. The occurrences of the PTM site in different
datasets in the qPTM database could help assess its reliabil-
ity. The distribution of reliability scores in the database and
in different species is summarized in Supplementary Figure
S1D. In addition, we found that the higher the star level was,
the more sites that could be identified after re-identification,
and the more sites with site-level FDR <1% (Supplemen-
tary Figure S1E and F). These site-level FDR values were

cross-validated with the five-star scoring system, proving
the reliability of our data.

DATABASE CONTENT

In the current release, qPTM contains 11 482 553 quan-
tification events for 660 030 non-redundant PTM sites on
40 728 proteins under 2596 conditions in four different
organisms collected from over 600 published studies. The
detailed summaries for the datasets and literatures were
provided in the ‘Summary of curated datasets’ and ‘Sum-
mary of curated literature’ sections of the ‘Help’ page on
the qPTM website. The detailed summary for each organ-
ism is listed in Supplementary Table S1. Obviously, phos-
phorylation has the most substrates among PTMs (Fig-
ure 2A and B). Interestingly, methylation has a consider-
able number of substrates in a relatively small amount of
quantitative data. Methylation was previously considered
in nucleoproteins and transcription factors apart from hi-
stones. It was also found in many cytoplasmic proteins re-
cently, and this greatly expanded its functional diversity
(65). Currently, proteome-wide quantification of SUMOy-
lation, methylation and glycosylation are insufficient in rats,
while SUMOylation and methylation data are insufficient in
yeast.

In eukaryotes, proteins undergo a variety of PTMs that
are interrelated and coupled at different stages of biologi-
cal processes (66,67). We analyzed PTMomics crosstalk in
Homo sapiens by constructing a network using the iGragh
R package (Figure 2C). The size of each node repre-
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Figure 3. The BROWSE and SEARCH options of qPTM. (A) Summaries of the selected organisms among PTMs of three browse options. After selection
of species and PTM, three browse approaches were provided, including (B) genes, (C) conditions and (D) samples, which are listed in alphabetical order
below. (E) The advanced search function in the SEARCH page allows users to submit a combination of up to 10 terms for searching.

sents the number of modified proteins, and the width of
the line represents the protein number of cooccurrences
among different PTMs. Indeed, crosstalk between methy-
lation and phosphorylation was most extensive, consistent
with previous studies (68). Additionally, the interaction be-
tween methylation and acetylation might serve as a mech-
anism to control transcriptional activity (69,70). Abundant
crosstalk between methylation, acetylation, ubiquitylation
and SUMOylation was observed because they shared the
modified lysine residues (Figure 2D). Crosstalks and con-
currently modified proteins of M. musculus, R. norvegi-
cus and S. cerevisiae are shown in Supplementary Figure
S2. Although only a few substrates were identified for sev-
eral PTMs, at least one crosstalk was observed. The in-
tense PTM crosstalk suggested that different types of PTMs
could competitively or dynamically regulate a considerable
proportion of modified proteins.

NEW FEATURES

New browse and search function

With the tremendous growth in the quantity of PTMomics
data in qPTM, it is challenging to locate and access a spe-
cific quantitative event from large amounts of data. We im-
proved the browse and search functions to help users find
their interested PTM dynamic data quickly.

On the BROWSE page, users can first select an organ-
ism of interest. Summaries of three browse options, includ-
ing genes, conditions and samples of each PTM in the se-
lected organism, are visualized in the bar plot below. As the

mouse hovers over the bar of each PTM, the quantity of
gene, condition or sample is shown (Figure 3A). By click-
ing an item in the list of one browse option, the results of a
certain gene/sample/condition will be shown on the result
page (Figure 3B and C). This helps users quickly choose the
data of interest from a bulk of items.

The advanced search function was provided on the
SEARCH page, which provided keyword-based queries in
UniProt accession, protein and gene names, protein func-
tions and description of conditions and samples. In addi-
tion, selection of organisms and PTMs was also provided,
which greatly narrowed down the result (Figure 3E). Users
can submit up to ten search terms, which can be specified in
different areas and combined with three operators of ‘and’,
‘or’ and ‘not’ to query PTM data accurately. Thus, wherever
on the BROWSE or SEARCH page, users can always access
interested data swiftly and accurately.

Enhanced result page

The PTM sites can be further filtered on the result page by
conditions, sample names or modification types at the top
of the page. The information for each quantitative event
was organized by tabular format with UniProt accession,
gene name, PTM position within the protein, modification
type, sequence window, sample name, the abbreviation of
condition, log2-transformed ratio and P value. To distin-
guish between different PTM types, modification sites of
the sequence window were labeled in different colors (Fig-
ure 4A). The details of each quantitative PTM event were
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Figure 4. Examples of the enhanced result pages. (A) Overview of a returned result page. Detailed information will be shown by clicking the ‘+’ button.
Detailed information was sorted and restored in the (B) ‘About experiment’, (C) ‘About protein’, (D) ‘Potential kinases and their inhibitors’ and (E)
‘Sequence and Structure’ sections. (F) Example of the visualization of time-course quantitative events. The condition corresponding to the quantitative
events is labeled in the trend line.
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reorganized. Users can view detailed information by click-
ing the plus bottom, including ‘About experiment’, ‘About
protein’, ‘Potential kinases and their inhibitors’ and ‘Se-
quence and structure’. In the ‘About experiment’ section,
source literature reference, detailed description of condi-
tion, sample and type, labeling methods, enrichment meth-
ods, mass spectrometer equipment, and raw peptide are
shown. It is worth noting that log2 transformed fold change
and the P value of the modified protein under the same
circumstances were also shown, if available, which enables
researchers to find connections between proteomics and
PTMomics (Figure 4B). The protein information, such as
database accessions, protein/gene name/alias, fundamen-
tal descriptions, PTMs, and sequences, from the UniProt
database is shown in the ‘About protein’ column. Further-
more, to help researchers better understand the relationship
between the PTM site and certain diseases, we annotated
information from PTMD. ‘Potential kinases and their in-
hibitors’ showed the experimentally identified and predicted
upstream kinases for the PTM sites (Figure 4C). Further-
more, the inhibitors annotated by DrugBank for the kinases
are shown (Figure 4D). As mentioned previously, the se-
quence and structure properties of the protein were visu-
alized in the ‘Sequence and Structure’ section (Figure 4E).

Visualization of time-course dynamics

We noticed that time-course and concentration gradient
conditions accounted for a considerable proportion of
43.4% in all included conditions, while the corresponding
quantitative PTM events accounted for 40.9%. Under these
conditions, researchers focus more on dynamic changes in
trends rather than individual time points or concentrations.
Thus, we visualized quantitative events of time-course and
concentration gradient conditions in trend lines, which were
exhibited in the ‘About Experiment’ column. For example,
as shown in the trend line (Figure 4F), the expression of
HSPB1-S78 in ARPE-19 cells decreased dramatically over
time. The ARPE-19 cell line was exposed to photorecep-
tor outer segments (POSs), and phosphorylated peptides
were quantified at 15, 30, 60, 90 and 120 min. ARPE-19 is
an immortalized retinal pigmented epithelium (RPE) whose
principal function is the clearance of shed POS through
a process resembling phagocytosis (71,72). Dysfunction of
this process contributes to retinal degenerative disorders.
HSPB1, a downstream substrate of the MAPK signaling
pathway (73), functions as a molecular chaperone to main-
tain denatured proteins (74). The trend of HSPB1-S78 over
time might reveal its role in early phagocytosis and thus af-
fect retinal homeostasis.

DISCUSSION

As critical molecular mechanisms in biological processes
and diseases, PTMs greatly expand proteome complexity
and diversity (1,2). Abnormal PTM levels are frequently
observed in response to stimuli, diseases and cancers (3–
8), which has inspired scientists to study quantitative PT-
Momics. High-throughput technologies currently enable
the detection of PTM quantitative changes under differ-
ent conditions (17), thus leading to a deeper understanding

of various physiological processes and intractable diseases.
With the exponential increase in quantitative PTMomics
data, a comprehensive platform is expected to provide a re-
source to integrate PTM quantification event data. qPTM
is the first and unique repository to curate and organize
PTM dynamics data. In addition, various annotations, in-
cluding PTM-corresponding quantitative proteomics data,
protein information, PTM information, potential upstream
kinases and inhibitors, and sequence and structure prop-
erties, were integrated. Furthermore, visualization of time-
course or concentration gradient quantitative data was also
provided for a better view of the trend.

With the development of high-throughput proteomics
techniques, the amounts of PTMomics datasets increased
rapidly. The quality control became more and more impor-
tant especially for the integration of large-scale datasets,
and it was shown that combining multiple datasets could
lead to the aggregation of false-positive hits (75,76). In this
study, we performed the re-identification and FDR control
following the previously published searching strategies (64).
Considering the raw MS data was inaccessible in a large-
proportion of published literatures, the recurrences of iden-
tification among datasets were used as the reliability indi-
cator alternatively. To balance between the unified quality
control and the data abundance reported by the literatures,
we did not perform site-level FDR filtering, but annotated
the quality information to each site and marked significance
by adding the ‘red border’ to the star in the five-star scoring
system if the site-level FDR was <1%. Although this is not
a perfect solution for quality control, it is the practical one
and we will keep up with the progresses in the community.

Meanwhile, there were also limitations in the database.
The quantitative PTM data from the four organisms were
mainly isolated, and it was difficult to perform homology
analysis among species due to the unshared conditions.
Some other essential model organisms or PTMs, such as
C. elegans and D. melanogaster, and palmitoylation were
not included because of insufficient quantitative data. Be-
sides, the crosstalk of PTMs was not curated due to data
limitations. The development of proximity labeling facili-
tated subcellular PTMomics and helped understand pro-
tein functions at the subcellular level (61,77). However, we
only collected a few subcellular quantitative PTMomics
data. Taken together, although improvement is still needed,
the qPTM database could serve as a comprehensive plat-
form for accessing PTM dynamics systematically and con-
veniently. The qPTM database will be regularly updated to
track the progress of quantitative PTM dynamics.
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