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In choosing and refining any crystallographic structural model,

there is tension between the desire to extract the most detailed

information possible and the necessity to describe no more

than what is justified by the observed data. A more complex

model is not necessarily a better model. Thus, it is important

to validate the choice of parameters as well as validating their

refined values. One recurring task is to choose the best model

for describing the displacement of each atom about its mean

position. At atomic resolution one has the option of devoting

six model parameters (a ‘thermal ellipsoid’) to describe the

displacement of each atom. At medium resolution one

typically devotes at most one model parameter per atom to

describe the same thing (a ‘B factor’). At very low resolution

one cannot justify the use of even one parameter per atom.

Furthermore, this aspect of the structure may be described

better by an explicit model of bulk displacements, the most

common of which is the translation/libration/screw (TLS)

formalism, rather than by assigning some number of para-

meters to each atom individually. One can sidestep this choice

between atomic displacement parameters and TLS descrip-

tions by including both treatments in the same model, but this

is not always statistically justifiable. The choice of which

treatment is best for a particular structure refinement at a

particular resolution can be guided by general considerations

of the ratio of model parameters to the number of observations

and by specific statistics such as the Hamilton R-factor ratio

test.
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‘And thus the native hue of

resolution is sicklied o’er with

the pale cast of thought’,

Hamlet, act 3 scene 1.

1. Introduction

Since at least the time of the 14th-century logician William of

Occam, scientific models have been scrutinized for the

possible flaw of being overly complex. A succinct modern

formulation of Occam’s ‘razor’ is the admonition by Albert

Einstein that ‘everything should be made as simple as possible,

but not simpler’. Our confidence in a complicated model with

many adjustable parameters is weakened if it is supported by

only a small number of data points. Conversely, we assign only

weak utility to a simplistic model that fails to explain obvious

patterns in a very rich set of observations. Unfortunately, it is

not always a straightforward task to decide whether a model is

too complex or too simple.

Applying Occam’s razor to structural models in biological

crystallography is rarely straightforward. Although the number

of observations is large, the number of parameters required to

describe a biological macromolecule is also very large. If the
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diffraction measurements are limited to 2 Å resolution then

there are typically about eight intensity measurements avail-

able for each non-H atom in a protein crystal structure. If one

models each atom as having a position [x, y, z] and a thermal

parameter Biso, this corresponds to�2 observations per model

parameter (Fig. 1). As Lyle Jensen observed in earlier days of

macromolecular crystallography, ‘The problem is over-

determined and there is no in principle reason why refinement

should not be possible’ (Jensen, 1974). The number of

observations falls as the cube of the resolution, however, so

that the problem ceases to be overdetermined at lower reso-

lutions. Thus, in practice, model refinement is possible only if

the experimental observations are supplemented with

restraints on the model’s geometric and other properties. In a

typical protein refinement at less than atomic resolution the

number of restraints can be much larger than the number of

observations. Sufficiently strong restraints can force the model

to become numerically well behaved during refinement. The

restraints mitigate, but do not remove, the concern that

inclusion of unjustified parameters in the model being refined

can degrade the model quality through overfitting. A simple

model with fewer restraints may still be better than a more

complex highly restrained model, particularly when low

resolution limits the observation-to-parameter ratio.

How, then, can one decide whether a model has been

sufficiently restrained, whether it has been overfitted and

whether it is too complex? I will first consider some general

approaches and then examine a series of examples in which

there is a choice between a simpler model and a more complex

model. In all of these examples the difference in model

complexity arises from different parameterization of the

description of atomic displacements. The simplest such treat-

ment is to assign only an overall description Uoverall that

applies equally to all atoms. This results in a model that

contains three parameters [x, y, z] for each atom plus one to six

global parameters depending on whether Uoverall is isotropic or

anisotropic. Thus, for an N-atom structure the simplest model

contains (3N + 1) parameters. The most complex model that

we will consider is a treatment that assigns each atom an

individual 3 � 3 symmetric tensor Uij describing a thermal

ellipsoid, which yields a total of 9N model parameters.

Between these two extremes are hybrid models that contain

some combination of individual per-atom isotropic terms Biso

and translation/libration/screw (TLS) group descriptions of

bulk displacement (Schomaker & Trueblood, 1968; Winn et al.,

2001; Painter & Merritt, 2006).

Until recently, the issue of how to model atomic displace-

ment was often reduced to a rough rule of thumb that at very

high resolution one should model anisotropy of individual

atoms using a six-parameter thermal ellipsoid, at very low

resolution one should assign a shared B factor to groups of

atoms and for everything in between one should refine an

isotropic B factor for each atom. Even aside from the

vagueness of where to draw the boundaries for ‘very high’ and

‘very low’ resolution, the introduction of TLS as an alternative

description of atomic displacement has made this rule of

thumb obsolete. Unfortunately, it sometimes seems to have

been replaced by an assumption that the best treatment at all

resolutions is to include both individual isotropic B factors and

some number of TLS groups. I advocate that rather than

following any such rule of thumb, the best treatment of

displacements and anisotropy should be validated for each

structure based on the experimental data and refinement

statistics.

2. Validating a model: has something gone wrong?

In validating an existing structural model we are confirming

that it does not conflict with the experimental data and equally

that it does not conflict with prior knowledge. Validation is

essential to assure confidence in the scientific conclusions

drawn on the basis of the model. Comprehensive overviews of

crystallographic model validation may be found elsewhere

(Kleywegt, 2000, 2009; Chen et al., 2010). Here, we will only

touch briefly upon issues related to validation of B factors or

other descriptions of atomic displacement.

2.1. Agreement of the model with the experimental data

The agreement of the model with the experimental data

is conventionally quantified as a crystallographic residual R,

which may be calculated using intensities (I) or structure

factors (F). Several variants of R are in common use. The

conventional unweighted residual R calculated for F is given

by

R ¼

P
jjFobsj � jFcalcjjP
jFobsj

: ð1Þ

R is closely related to the target function being minimized

during refinement. Therefore, if the same observations con-

tributing to refinement are used to calculate R, its value will

normally decrease as a consequence of refinement. In order to

test for overfitting, a fraction of the reflections may be omitted

from the target function during refinement. Two residuals are

then calculated. The reflections used in refinement are used

to calculate Rwork, and the remaining reflections omitted from
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Figure 1
Number of reflections per atom for all X-ray crystal structural models in
the PDB (February 2011). Note that this number depends on the solvent
fraction of the crystal. A large number of reflections per atom usually
corresponds to a structure refined against very high resolution data, but it
may also indicate a structural model that describes only one copy of a
molecule present in multiple copies related by explicit noncrystallo-
graphic symmetry, e.g. one subunit of an icosahedral virus capsid.



refinement are used to calculate a corresponding residual

Rfree. If Rfree does not decrease in parallel with Rwork as a result

of refinement, this is an indication of overfitting (Brünger,

1992, 1997; Tickle et al., 1998, 2000). It is important to note that

in this context Rfree is being used to validate choices affecting

the progress of a refinement, for example the strength of

restraint weights, rather than to validate the selection of a

model to be refined.

A related quantity, the use of which will be explored below,

is Hamilton’s generalized residual RG,

RG ¼

P
wiðFobs � FcalcÞ

2P
wiF

2
obs

� �1=2

: ð2Þ

The virtue of Hamilton’s residual is that significance tests

involving RG can be directly related to the standard statistical

F test (Hamilton, 1965).

2.2. Agreement of the model with prior knowledge

Most validation tests assess agreement of the model with

prior knowledge. These tests encompass everything from

detecting local problems such as a single poorly modeled

residue to global issues such as implied inconsistency with the

known biological properties of the molecule. For example,

there is much prior knowledge about bond lengths and angles

in organic molecules and about the joint distribution of the

paired torsion angles [’,  ] at each peptide linkage in a

protein. Significant deviation from these expectations for a

particular residue may indicate a local problem, reducing our

confidence in local features of the model, without necessarily

implying that the overall model is poor.

Analogous prior expectations can be applied to detect local

problems in atomic displacement parameters (ADPs). The

tensor Uij describing anisotropic displacement of a particular

atom, whether refined directly or derived from inclusion in a

TLS group, should be positive definite. Bonded atoms are

expected to exhibit similar atomic vibrations; in particular, the

vibrational components along their mutual bond are expected

to be equal (Hirshfeld, 1976; Rosenfield et al., 1978). The

overall distribution of anisotropy for atoms in a protein crystal

structure is expected to be approximately Gaussian, with a

mean axial ratio in the range 0.45–0.55 (Merritt, 1999a; Zucker

et al., 2010). If atomic displacements within a protein chain are

described by segmenting the chain into multiple TLS groups,

then the vibration of atoms at the junction of two adjoining

TLS groups is expected to be described consistently by both

sets of TLS parameters (Zucker et al., 2010). One resource

that provides validation tests based on agreement with prior

expectations for these various properties of displacement para-

meters is the PARVATI server http://www.bmsc.washington.edu/

parvati.

2.3. A caution about the meaning of B factors

There is a possible problem in validating B factors. Before

we can identify prior expectations for their distribution, we

must first establish the physical meaning of individual values.

The IUCr defines both isotropic and anisotropic ADPs as

representing ‘atomic motion and possible static displacive

disorder’ (Trueblood et al., 1996). Under this interpretation

the [x, y, z] coordinates of an atom represent its true mean

position, and the ADP values represent displacement about

this mean position. Because we understand this displacement

as arising from physical vibration, we can establish an expected

distribution of ADP values based on models of physically

reasonable modes of vibration. We expect that vibrational

modes involving multiple atoms will lead to correlated

displacement of those atoms and hence to correlated ADP

values.

However, some programs also use or allow large B values to

represent general uncertainty that a portion of the structure

has been correctly modeled. Under this interpretation the

nominal [x, y, z] coordinates may not be correct at all, and

the ‘B value’ is a measure of relative confidence rather than

displacement about some mean position. Although it could

be argued that being somewhere else entirely is an example

of ‘displacive disorder’ allowed by the IUCr definition, such

interpretation is of little use in establishing prior expectations

or validation criteria. From this perspective, general uncer-

tainty and the known presence of multiple possible locations

of the atom or group in question are both represented better

by occupancy <1 rather than by an arbitrarily large B factor.

This distinction is particularly important if the B values are

used to determine, refine or validate the assignment of TLS

groups.

3. The other half of validation: is this the right model?

While validation of the stereochemistry and other physical

properties of a model after refinement is essential, it is not the

end of the story. It neither asks nor answers the question ‘was

this the best model to refine?’. In particular, it does not

address the question of whether a simpler model would suffice.

I have already noted that a more complex model is expected to

yield a better residual R after refinement, and that a failure to

reduce Rfree in parallel is an indicator for overfitting. However,

even if the more complex model yields both lower R and lower

Rfree, we can still ask whether this improvement is statistically

significant.

3.1. Hamilton R-value ratio test

One approach is to compare the residuals obtained

experimentally for the new structure with either empirical or

theoretical expectations for the conventional R and Rfree

obtained for a model of this size and complexity (Kleywegt &

Brünger, 1996; Tickle et al., 2000). In order to derive a quan-

titative significance level, it is preferable to replace the con-

ventional residuals with variants whose statistical properties

are better defined. If one replaces the conventional residual R

with the generalized residual RG (equation 2), then it is

possible to derive significance by consideration of the ratio of

the R factors for the simple and the complex models

(Hamilton, 1965). Hamilton’s original formulation considered

the case in which a simpler model was related to a more

research papers

470 Merritt � Treatment of atomic displacements Acta Cryst. (2012). D68, 468–477



complex model by the addition of a set of linear constraints.

Furthermore, Hamilton was concerned with the typical

crystallographic problems of the day, for which both the

number of observations and the number of parameters were

small and the weighting factor wi used in refinement was the

same for all reflections.

Bacchi et al. (1996) reformulated this approach for appli-

cation to macromolecular models, where both the number of

observations and the number of parameters are much larger

and both the simple and complex models are refined with

restraints. With a slight change in notation, we may restate the

reformulated significance test as follows.

Let us define the degrees of freedom for model refinement

as

DF ¼ Nreflections � Nparameters þ weffectiveNrestraints: ð3Þ

Now consider two refined models with residuals RG(1) and

RG(2) and degrees of freedom DF(1) and DF(2). Let model 2

be the more complex model; by which we mean that it has

more parameters and/or fewer restraints. By (3) above, the

complex model has fewer degrees of freedom than the simpler

model, so DF(1)/DF(2) is always greater than one. The

simpler model is expected to have a higher R factor than the

more complex model, in which case the ratio RG(1)/RG(2) will

also be greater than one. However, the lower R factor for the

more complex model indicates a significant improvement only

if this ratio also satisfies

RGð1Þ

RGð2Þ
>

DFð1Þ

DFð2Þ

� �1=2

: ð4Þ

Note that the number of degrees of freedom depends on

an effective restraint weight defined such that weffective = 0

corresponds to ignoring the restraints and weffective = 1 corre-

sponds to treating each restraint as a full constraint analogous

to adding one observation or reducing the parameter count

by one parameter. Because we will be considering model pairs

that differ only in their treatment of ADPs, we further sub-

divide the restraints into geometric restraints present in both

models and ADP restraints that may be present in only one of

the two models,

DF ¼ Nreflections � Nparameters þ wgeomNgeom restraints

þ wADPNADP restraints: ð5Þ

3.2. Limitations

A major difficulty in applying the Hamilton R-factor ratio

test is that the value of weffective is in general unknown. In some

cases the analysis can proceed nevertheless by evaluating (4)

across the entire range of possible values for weffective (Bacchi

et al., 1996). If the test for significance yields the same result

when evaluated at both extreme values of weffective then we can

accordingly either accept or reject the more complex model

even though the exact value of [DF(1)/DF(2)]1/2 remains

unknown. One extreme, weffective = 0, corresponds to unrest-

rained refinement. Evaluation of (4) at this extreme is

straightforward. The other extreme is bounded by weffective < 1,

but 1 is a very weak upper bound that could only be reached if

all restraints were independent. In practice, the restraints

applied during macromolecular refinement are far from

independent (there are many more restraints than there are

parameters) and are assigned a fractional weight during

refinement in order to balance their contribution to the overall

residual. As a result, weffective << 1.

It is possible that one could derive a good estimate for

weffective based on the deviation of the restrained parameters

from their target restraint values at the end of refinement,

i.e. the largest deviations are expected when the refinement

is unrestrained (weffective = 0) and the smallest deviations,

possibly zero, are expected when the restraints are so tight

that they act as constraints. However, no quantitative proce-

dure for making such an estimate has yet been developed.

Nevertheless, for the examples presented below we use this

argument to set an upper bound on the possible values of

wgeom and wADP. Since a fully constrained geometric model

would require no more than one constraint per co-

ordinate, we set an upper bound on the limiting condition

max(wgeom) = 3 � Natoms/Ngeom_restraints. Similarly, a fully

constrained set of isotropic ADP values would require at most

one constraint per atom, so we set an upper bound on the

limiting condition max(wADP) = Natoms/NADP_restraints. These

are weak upper bounds, a fact that can be seen empirically by

noting that refinement of the restrained model does not

normally converge to a model in which the parameter values

fully conform to the restraint targets as they would for true

constraints.

The upper bound for wADP is especially weak, because all

of the restraints applied to isotropic ADPs during refinement

contain a multiplicative term of the form [B(atom i) �

B(atom j)], where B is either the individual isotropic Biso or

the residual per-atom contribution to a TLS model Bresid.

Thus, for isotropic ADPs a fully constrained model satisfying

these restraints would have equal B terms for all atoms. The

limiting case of a model refined with max(wADP) as defined

above converges to being identical to a simpler model with a

single Boverall and perhaps one or more TLS groups. Thus, we

know that in practice wADP << max(wADP) both because the R

factors for the simple and complex models are different and

because the refined B values are not, in fact, identical.

4. Worked examples

4.1. Choices at low resolution: overall Uij, individual Biso or
pure TLS

The number of observations available per model parameter

becomes an increasing concern for lower resolution data.

At 3 Å resolution, the number of available observations is

insufficient to support refinement of four parameters per atom

in the absence of additional restraints (Fig. 1). Depending on

the individual structure being modeled, the available data may

or may not justify refinement of separate ADPs for each atom

even in the presence of restraints. Table 1 and Fig. 2 illustrate
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the use of refinement statistics to guide the choice between

refining a conventional model with four parameters per atom

(x, y, z, Biso) or a simpler model containing no per-atom

displacement parameters. We chose PDB entry 3hzr (Merritt

et al., 2011) as a representative 3 Å resolution structure to use

for this example. The 3hzr model contains three dimers in the

asymmetric unit, comprising a total of 2262 protein residues

with no water molecules or other nonprotein atoms.

We first consider the choice between two very simple

models that contain no per-atom displacement parameters.

The simpler of the two models contains six parameters Uij
overall.

The slightly more complex alternative is a pure TLS model

containing one TLS group to describe each protein chain for

a total of 120 ADPs (six protein chains, one TLS group per

chain, 20 parameters per TLS group). The more complex

model yields substantially lower residuals R and Rfree (Table 1).

The corresponding Hamilton R-factor ratio is 0.2827/0.2366 =

1.19. Although we do not know the exact value of wgeom, in

this case the ratio DF(1)/DF(2) is insensitive to this unknown

parameter and is strictly less than 1.19 over the entire range of

possible values for wgeom (Fig. 2a). Therefore, the improve-

ment in residuals for the more complex model is significant

and we choose the pure TLS model over the simpler alter-

native model.

We next compare the pure TLS model in turn to a more

complex model with no TLS but containing one ADP, Biso, for

each atom. The conventional R factor yielded by refinement

is nearly the same for both models, but Rfree is considerably

higher for the more complex model (Table 1). Therefore, in

this case examination of the conventional R factors already

indicates that the more complex model is not justified. Let us

see what the Hamilton R-factor ratio test indicates. For this

test case RG(1)/RG(2) = 1.04 and the criterion in (4) could only

be satisfied for values of wADP very near its limiting value

Natoms/NADP_restraints (Fig. 2b). However, we know that wADP

is not near the limiting case of fully constrained Biso values,

because that would correspond to a model in which all ADP

values are nearly equal. That is, the limiting case of maximal

wADP is equivalent to the model with a single overall

description Uoverall, which we have already considered and

rejected. For values of wgeom and wADP away from their

limiting maxima, the Hamilton test indicates rejection of the

more complex model with individual Biso parameters in favor

of the simpler pure TLS model.

This set of tests does not inevitably yield the same decision

(that one should use a pure TLS model) when applied to other

3 Å resolution structure refinements. Although we selected

3hzr as representative, it has at least two features that are

atypical. Its solvent content is 56%, which is higher than

average and results in a slightly higher number of observations

per atom than most 3 Å resolution structures. This would tend

to increase our expectation that the more complex Biso model

might be statistically justified. Counteracting this tendency,

the structure exhibits atypically extreme overall anisotropy

(Amean = 0.30, �A = 0.15), perhaps owing to loose lattice

packing. The simple TLS model allows description of this

anisotropy, whereas the more complex Biso model does not.

This raises the question whether in this particular case the Biso

model is a failure not because of the larger number of para-

meters, but because it fails to account for anisotropy. We will
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Figure 2
(a) Application of the Hamilton R-factor ratio test to comparison of
Uoverall and pure TLS models. The structure being refined is a
tryptophanyl-tRNA synthetase homolog from Entamoeba histolytica
(PDB entry 3hzr). The simple model 1 contains six ADP parameters
Uij

overall. The more complex model 2 contains six TLS groups for a total of
120 ADP parameters. The effective weight of the geometric restraints
wgeom is unknown, so we calculate the function DF(1)/DF(2) over all
possible values of wgeom and show that it is less than the observed R-factor
ratio RG(1)/RG(2) = 1.19 everywhere in this range. The quantity wADP

is not relevant because neither model contains ADP restraints. (b)
Application of the Hamilton R-factor ratio test to comparison of pure
TLS and Biso models. In this case the pure TLS model 1 with 120 ADP
parameters is the simpler model. The more complex model 2 contains
17 732 Biso parameters, one for each atom. In this comparison both wgeom

and wADP are needed but unknown, so DF(1)/DF(2) becomes a two-
variable function depending on both. According to the Hamilton ratio
test, the more complex model is justifiable only when the R-factor ratio
RG(1)/RG(2) = 1.04 (yellow surface) is greater than DF(1)/DF(2) (purple
surface). This condition holds only along the far-right edge of the plot
corresponding to ADP restraint weights so tight that they approach the
limiting condition of a constraint to equal Biso for all atoms.

Table 1
Alternative ADP treatments of 3hzr at 3.0 Å resolution.

Uoverall TLS only Biso only TLS + Biso

Nreflections (working) 51642 51642 51642 51642
Nreflections (free) 2753 2753 2753 2753
Nparameters 53202 53310 70928 71042
Ngeometric_restraints 176760 176760 176760 176760
NADP_restraints 0 0 116074 116074
R/Rfree 0.2926/0.3097 0.2274/0.2455 0.2280/0.2716 0.2107/0.2399
RG/RGfree 0.2827/0.2864 0.2366/0.2483 0.2283/0.2603 0.2248/0.2435



next test whether a more complex hybrid model that includes

both Biso terms and TLS terms is statistically justified.

4.2. Hybrid models

It has become increasingly common to model the ADPs in a

macromolecular structure using both an individual Biso para-

meter for each atom and some form of TLS model to describe

anisotropic displacement of those same atoms. Let us continue

examination of the 3hzr refinement to evaluate the justifica-

tion for such a hybrid model at the low end of the resolution

range where it might be applicable (Fig. 3a). The simpler

model in this case is the same pure TLS model with one TLS

group per chain used in Fig. 2(b). The more complex model

in this case includes these same TLS groups and in addition

contains individual Biso terms for the protein atoms. The

surfaces in Fig. 3(a) are remarkably similar to that in Fig. 2(b)

and the conclusion is the same. The more complex model is

statistically justified only if we believe that the Biso parameters

are so tightly restrained that they are close to functioning as

constraints.

Fig. 3(b) shows the application of the same significance test

using as a test case the structure of a homolog to 3hzr that was

determined at 2.32 Å resolution (PDB entry 3m5w; Center

for Structural Genomics of Infectious Diseases, unpublished

work). The refinement statistics for 3m5w are given in Table 2.

In contrast to the case of 3hzr, the hybrid model for 3m5w is

superior to the pure TLS model with one TLS group per chain

for all possible restraint weights except the unrealistic set

wADP = wgeom ’ 0 corresponding to unrestrained refinement.

It may seem natural to use an analogous significance test

to determine whether or not it is justified to add a TLS

description to a model that has already been refined with

individual Biso parameters. However, the Hamilton R-factor

ratio is only a weak test for this purpose because the change in

the overall number of parameters is very small. That is, there

are typically already thousands of ADP parameters; adding 20

more for each TLS group is a very small incremental change.

For a structure with thousands of atoms per chain, associating

an additional 20 TLS parameters with each chain will yield a

test criterion [DF(1)/DF(2)]1/2 on the order of 1.001. Thus,

according to the R-factor ratio criterion, the addition of TLS

can be justified by any marginal improvement in the residuals.

In the particular case of 3m5w, the simple TLS model

describing each protein chain by a single TLS group yields

only a slight improvement in the conventional R and Rfree

(Table 2) and the corresponding Hamilton R-factor ratio is

only RG(1)/RG(2) = 1.01. Nevertheless, this is larger than the

test criterion for all possible values of the effective restraint

weights, justifying acceptance of the hybrid model.

4.3. Hybrid models at high resolution

If true atomic resolution data have been measured, it is both

justifiable and informative to refine a structural model con-

taining anisotropic ADPs Uij for each atom (Schneider, 1996;

Howard et al., 2004). As the available resolution falls off from

this extreme, the number of observations eventually becomes

insufficient to support such a complex model and simpler

alternative models should be considered. It is instructive to

see whether the R-factor ratio test is capable of indicating this

resolution-dependent breakdown in the validity of a fully

anisotropic model. One way to explore this is to conduct a set

of parallel refinements that use the same starting model and

differ only in the resolution of the data used. Fig. 4 shows the

result of three such parallel refinements using as a test case

human carbonic anhydrase II. When data to 1.3 Å resolution

are used (Fig. 4a), the Hamilton test clearly indicates that it

is justified to select a fully anisotropic model rather than a

simpler hybrid model. If the data are limited to 1.7 Å reso-
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Figure 3
Application of the Hamilton R-factor ratio test to comparison of a hybrid
model containing both TLS and Biso terms to a model containing only one
or the other. (a) Comparison of a pure TLS model to a hybrid TLS + Biso

model for the 3 Å resolution refinement of 3hzr. The acceptance surface
is only slightly larger than that shown in Fig. 2(b). (b) Comparison of a
pure TLS model to a hybrid TLS + Biso model for the 2.32 Å resolution
refinement of the homologous tryptophanyl-tRNA synthetase from
Campylobacter jejuni (PDB entry 3m5w). In this case the R-factor ratio
(yellow surface) is greater than DF(1)/DF(2) (green surface) everywhere
except the bounding limit wADP = wgeom = 0.

Table 2
Alternative ADP treatments of 3m5w at 2.32 Å resolution.

TLS only Biso only TLS + Biso

Nreflections (working) 27045 27045 27045
Nreflections (free) 1997 1997 1997
Nparameters 16033 21324 21364
Ngeometric_restraints 42540 42540 42540
NADP_restraints 0 25199 25199
R/Rfree 0.2108/0.2723 0.1637/0.2319 0.1616/0.2265
RG/RGfree 0.2532/0.3285 0.1989/0.2794 0.1969/0.2764



lution (Fig. 4c), the same test clearly indicates that the fully

anisotropic model is not justified, and thus the simpler hybrid

model is preferable. Given the weak bounds we are able to

place on wgeom and wADP, it is perhaps not surprising that the

analysis is indecisive at the intermediate resolution of 1.5 Å

(Fig. 4b). Over most of the range of the effective restraint

weights in this intermediate case the R-factor ratio test indi-

cates we should reject use of the fully anisotropic model, but

rejection is not indicated if wADP lies near its upper bound.

One could of course consider choosing a purely isotropic

model even at very high resolution. Continuing with the use of

carbonic anhydrase as a test case, Table 3 lists the outcomes of

refining isotropic, hybrid and anisotropic models against 1.5 Å

resolution data. Comparison of the fully isotropic model to

the fully anisotropic model using the R-factor ratio test at this

resolution yields an inconclusive result similar to that in

Fig. 4(b). However, applying the R-factor ratio test to directly

compare the purely isotropic model with the hybrid model

clearly indicates that the hybrid model is preferred (not

shown).

5. Experimental assessment of anisotropic models at
various resolutions

In cases where application of the Hamilton R-factor ratio test

indicates that a more complex model should be rejected, can

one find empirical evidence of defects in the rejected model?

To address this question, we chose as a test case the well

studied structure of human carbonic anhydrase II. Diffraction

data for this structure are available to better than 0.90 Å

resolution. We had previously refined atomic resolution

models for this structure using several protocols (Behnke et

al., 2010). One of these was a 0.95 Å resolution refinement

using SHELXL (Sheldrick & Schneider, 1997) that included

full-matrix estimation of the final error in both the coordinates

and the anisotropic ADP terms Uij (PDB entry 1lug). The 1lug

model was chosen as a reference gold standard for assessing

the accuracy of model ADPs obtained from refinement using

data truncated to successively lower resolution limits. This is

an idealized test case, as both the data and the starting model

taken into refinement at lower resolutions are unrealistically

good. That is, an atomic resolution data set truncated to, say,

1.8 Å is of better quality than a typical 1.8 Å resolution data

set. Furthermore, the starting model taken into refinement

included features identified in the original atomic resolution

refinement, for example alternate conformations and partial-

occupancy water sites, that would not typically be part of a

model initially determined at lower resolution. For these

reasons it is probable that this idealized test underestimates

the typical degradation in the accuracy of model parameters at

any specific resolution. Nevertheless, the statistical signatures

of increasing model degradation as the data available for

refinement decrease should parallel that expected for less

ideal data.

Fig. 5 shows the conventional crystallographic residuals

R and Rfree resulting from refinement of the same starting

model using the 1lug 0.9 Å resolution data truncated succes-

sively to eight different resolution limits from 1.1 to 1.8 Å. At

each resolution, three different models were refined, differing

in their treatment of ADPs. The simplest, isotropic, model

contained one ADP (Biso) for each atom. The most complex,

fully anisotropic, model contained six ADPs (Uij) for each

atom. The third model was a hybrid in which each atom was

assigned an individual isotropic parameter Biso and in addition

the protein chain was divided into 16 segments each described

by a set of 20 TLS parameters. The net anisotropic displace-

ment of each atom in the hybrid model is thus the sum of
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Figure 4
Application of the Hamilton R-factor ratio test to validate use of a fully anisotropic model for carbonic anhydrase at various resolutions. The simpler
model is a hybrid model that contains 16 TLS groups in addition to Biso terms for each atom. The more complex model contains a full anisotropic
description Uij for each atom. In each panel the condition in (4) is satisfied, indicating that the fully anisotropic model is statistically justified, only where
the yellow surface is above the blue surface. (a) At 1.3 Å resolution the fully anisotropic model is clearly justified. (b) At 1.5 Å resolution the test is not
conclusive, although it indicates that the hybrid model is preferable for most possible values of the effective restraint weights. (c) At 1.7 Å resolution the
fully anisotropic model can be justified only under the very unlikely hypothesis that the effective restraint weights are so strong as to act as constraints.

Table 3
Alternative ADP treatments of 1lug at 1.50 Å resolution.

Biso Biso + 1 TLS Biso + 16 TLS Uij

Nreflections (working) 35493 35493 35493 35493
Nreflections (free) 1861 1861 1861 1861
Nparameters 10064 10084 10384 22644
Ngeometric_restraints 18031 18055 18055 18025
NADP_restraints 10843 10846 10846 27281
R/Rfree 0.1395/0.1655 0.1333/0.1571 0.1333/0.1565 0.1110/0.1442
RG/RGfree 0.2037/0.2430 0.1931/0.2289 0.1931/0.2267 0.1588/0.2082



contributions from the TLS description for the group to which

it belongs and from the individual atomic Biso.

Note that at every resolution both R and Rfree are highest

for the isotropic model and lowest for the anisotropic model.

Thus, if one were using only the existence of a drop in Rfree as

a guide to model selection the fully anisotropic model would

be chosen even at the poorest resolution, 1.8 Å. As we saw in

Fig. 4, this is contradicted by the Hamilton R-factor ratio test,

which indicates that the decrease in R for the fully anisotropic

model is not statistically significant for the lower resolution

refinements and thus should be rejected. Because we have a

gold standard available for comparison, we can directly assess

the validity of ADPs obtained at lower resolutions by com-

paring them atom-by-atom with the gold standard anisotropic

ADPs in the atomic resolution 1lug model. We will use two

statistical measures in this comparison: SUV (Merritt, 1999b)

and the Kullback–Leibler divergence (Kullback & Leibler,

1951).

A symmetric form of the Kullback–Leibler divergence

between the three-dimensional Gaussian density distributions

described by U and V can be calculated using the equation

KLUV = trace(UV�1 + VU�1
� 2I) (Murshudov et al., 2011). In

the present case, U is the tensor of gold-standard ADPs for a

particular atom and V is a lower resolution anisotropic model

for that same atom. The value of KLUV is zero if U = V and

increases without bound as the difference between the two

distributions increases. The lower set of bars in Fig. 6 shows

the median value of KLUV obtained by comparing the ADPs V

for every atom in each resolution-limited refinement with the

gold-standard ADPs U for that same atom in the gold stan-

dard. This test shows that the refined

ADPs in the resolution-limited aniso-

tropic model refinements become

increasingly divergent from the gold

standard as the resolution limit

becomes more severe. Although the

numerical value of the Kullback–

Leibler divergence does not by itself

tell us at what resolution the model has

diverged ‘too far’ from the gold stan-

dard, it does allow us to test at what

point the ADPs obtained by refinement

of a fully anisotropic model become

worse than those obtained by refine-

ment of a hybrid TLS model. As seen in

Fig. 6, the ADPs from the hybrid TLS

model are closer to the gold standard

than the ADPs from the fully aniso-

tropic model starting at 1.5 Å resolu-

tion.

The statistic SUV is based on the real-

space correlation coefficient between

two electron-density distributions

described by the pair of ADP tensors U

and V. A value of SUV > 1 indicates

that the electron-density distribution

described by U correlates better with

the anisotropic distribution described

by V than it does with an isotropic

distribution. A value of SUV < 1 indi-

cates that the anisotropic model V has

worse correlation than an isotropic

model. Values of SUV very near to 1
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Figure 5
Refinement of human carbonic anhydrase II using atomic resolution data
truncated to successively lower resolution. The plot shows the conven-
tional crystallographic residuals R and Rfree after refinement of the same
starting coordinates using either an isotropic ADP Biso for each atom, an
anisotropic ADP tensor Uij for each atom or a hybrid model containing
an isotropic ADP Biso for each atom in addition to 16 TLS groups. All
refinements started from the same set of positional coordinates and
isotropic ADPs.

Figure 6
Experimental assessment of refining a fully anisotropic model at various resolutions. The ADPs
deposited for the 0.95 Å resolution refinement of 1lug are used as a gold standard. The top set of bars
shows the extent to which ADPs obtained from refining an anisotropic model against data truncated
to successively lower resolution are a better approximation to the corresponding ‘true’ ADPs than
would be obtained from a purely isotropic model. This comparison uses the statistic SUV (Merritt,
1999b). The green portion of each bar corresponds to atoms with SUV > 1 + ", indicating that the
electron density described by anisotropic treatment correlates better with that of the reference
model than the density described by isotropic treatment. The red portion of each bar corresponds to
atoms with SUV < 1 � ", indicating that anisotropic treatment yields a worse approximation to the
reference density distribution than isotropic treatment. Values of SUV near 1.0 indicate that the
anisotropic and isotropic models for that atom are equally good (or poor) approximations to the
reference ellipsoid. The yellow portion of the bar is drawn for " = 0.01. The lower set of bars show the
extent to which the anisotropic ADPs obtained from refinement at truncated resolution diverge from
those in the 0.95 Å reference model. If the model ADP U and the reference ADP V are identical,
then the Kullback–Leibler divergence KLUV for that atom is equal to zero. Larger values of KLUV

indicate increasing disparity between the electron-density distributions described by U and V. The
height of each bar indicates the median value of KLUV calculated for all 2120 protein atoms in the
refinement at that resolution. The rightmost bars show the same statistical assessments applied to a
hybrid model containing 16 TLS groups in addition to a single parameter Biso for each atom. The
quality of the refined hybrid model is only weakly sensitive to truncation of the data in this resolution
range; the bars shown are for refinement against data truncated to 1.5 Å resolution.



indicate that the agreement of the isotropic and anisotropic

models with the gold standard is approximately the same. The

fraction of protein atoms in each of these categories is shown

in the upper set of bars in Fig. 6.

As one would expect, full anisotropic refinement against

data minimally truncated from 0.9 to 1.1 Å resolution does not

substantially reduce the agreement of the refined ADP values

with the gold standard. Anisotropic treatment at this resolu-

tion is better than isotropic treatment for about 81% of the

atoms and is no worse for another 17%. The quality of the

refined ADP values degrades as the data are further trun-

cated. By 1.6 Å, only 22% of the atoms are described better by

an anisotropic model than by an isotropic model, and at this

resolution the refined anisotropic ADPs for 32% of the atoms

are actually a worse model for the true atomic resolution

structure than an isotropic model. We can again compare this

with similar analysis of refinement using a hybrid TLS model.

In concordance with the analysis based on Kullback–Leibler

divergence, the agreement of the hybrid model with the gold

standard matches or exceeds that of the fully anisotropic

model starting with the 1.5 Å resolution-limited refinement

(Fig. 6).

Thus, evaluation of the refined models using either of two

measures, SUV or Kullback–Leibler divergence, illustrates that

as the resolution decreases the ADPs yielded by fully aniso-

tropic refinement become invalid even though the refinement

may remain numerically stable and the internal model statis-

tics appear acceptable. This resolution-dependent breakdown

in validity could not be detected by inspection of Rfree, which

is lower for the fully anisotropic model than for either the

isotropic or hybrid TLS models across the entire resolution

range examined (1.1–1.8 Å). In contrast to this, the Hamilton

R-factor ratio test is consistent with both empirical assess-

ments in indicating that for this idealized test case the choice

of a fully anisotropic model ceases to be justified at roughly

1.5 Å resolution.

6. Refinement protocols

The model statistics in Tables 1, 2 and 3 are the result of

refinement using REFMAC v.5.6.0095 (Murshudov et al., 2011).

In all cases the starting point for model comparisons was

generated by subjecting the corresponding PDB entry coor-

dinates to automated refinement in REFMAC with an iso-

tropic B factor for each atom, no TLS treatment and default

settings for all restraint weights. This coordinate set was then

used as input for parallel refinements using alternative treat-

ments for atomic displacements. Each refinement protocol was

run first using a fixed overall geometric weighting term set to

the value used in generating the starting model. If necessary,

the refinement was then re-run using a manually adjusted

value for the overall geometric weighting term chosen to yield

deviations from ideality of the bond lengths and angles of the

final model for that refinement protocol close to those of the

starting model. Refinement of 3hzr used strong NCS restraints

relating the six independent chains. Refinement of 3m5w used

no NCS restraints. The refinements of 1lug in Table 3 were all

conducted against data truncated to 1.5 Å resolution.

The parallel refinements of 1lug shown in Figs. 5 and 6 all

used as a starting point the coordinates and isotropic ADPs

from the 1.5 Å isotropic model shown in Table 3. The hybrid

models additionally included a 16-group TLS model whose

initial parameter values were taken from the 1.5 Å hybrid

model shown in Table 3. In each case refinement consisted of

15 cycles of positional and ADP refinement; for the hybrid

models, this was preceded by 15 cycles of TLS refinement. For

anisotropic refinements, the along-bond ADP restraint RBON

was set to 0.1. REFMAC was allowed to set the overall geo-

metric weighting term automatically. The control settings for

the individual refinements within a protocol (isotropic, hybrid,

anisotropic) differed only in the resolution limit of the data

used in refinement.

7. Concluding remarks: to B or not to B?

Hamlet tempered his initial resolve by thinking about the

significance of the alternatives available to him. My hope is

that the examples presented here will encourage crystallo-

graphers to do likewise. Before final acceptance of a structural

model, even one that has been refined and validated, it is good

to consider whether a simpler alternative model is available.

Although the current discussion focuses on alternative treat-

ments of B factors, this advice also applies to other model

choices such as the treatment of noncrystallographic

symmetry.

I have also taken the opportunity to explore the use of the

largely neglected Hamilton R-factor ratio test as one approach

to judging whether a more complex structural model is

statistically justified. Widespread adoption of this test faces

two hurdles: the key residual RG is not reported by commonly

used refinement programs and the test itself is weakened by

the lack of a precise estimate for the effective restraint

weights. The first hurdle can be easily overcome. For example,

the PDB_REDO project is implementing automated evalua-

tion of the Hamilton R-factor ratio for model selection

(Joosten et al., 2012). It may also be possible to lower the

second hurdle by extending the argument advanced above to

set weak bounds on wADP and wgeom so that it yields tighter

bounds.

The choice ‘to B’ or ‘not to B’ is brought into sharp focus at

both high and low resolution by the availability of TLS as an

alternative description of atomic displacements. At high

resolution the difference in number of parameters between a

full anisotropic model and a hybrid Biso + TLS model is more

than a factor of two. At low resolution the difference in

number of parameters between a model with individual Biso

terms and a pure TLS model is even larger. As we saw for the

case of 3hzr in Figs. 2 and 3, the answer at 3 Å resolution is

sometimes ‘not to B’.

Similarly, two different empirical assessments of ADP model

quality using an atomic resolution structure determination as a

gold standard illustrate that a drop in Rfree is not a sufficient

indication for choosing the more complex full anisotropic
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model at high resolution. The Hamilton R-factor ratio test,

however, correctly indicates for the test case examined that a

fully anisotropic model ceases to be valid at roughly 1.5 Å

resolution. This particular resolution should not be inter-

preted as a new rule-of-thumb! Both the data quality and the

starting model used in the idealized test case were unrealis-

tically good for their nominal resolution. It seems likely that

for a more representative starting model refined against more

typical experimental data, the critical resolution at which a

hybrid Biso + TLS model becomes preferred to a full aniso-

tropic model will lie closer to atomic resolution. In any case,

the analysis summarized in Figs. 4, 5 and 6 reinforces the

recommendation that statistical validation is desirable before

accepting a model with a hugely larger number of parameters,

even if it yields a decrease in Rfree.

This work was supported by NIH award R01GM080232.
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ADPs.
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