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Abstract

Dengue fever (DF) is one of the world’s most disabling mosquito-borne diseases, with a
variety of approaches available to model its spatial and temporal dynamics. This paper
aims to identify and compare the different spatial and spatio-temporal Bayesian modelling
methods that have been applied to DF and examine influential covariates that have been
reportedly associated with the risk of DF. A systematic search was performed in December
2017, using Web of Science, Scopus, ScienceDirect, PubMed, ProQuest and Medline (via
Ebscohost) electronic databases. The search was restricted to refereed journal articles pub-
lished in English from January 2000 to November 2017. Thirty-one articles met the inclusion
criteria. Using a modified quality assessment tool, the median quality score across studies was
14/16. The most popular Bayesian statistical approach to dengue modelling was a generalised
linear mixed model with spatial random effects described by a conditional autoregressive
prior. A limited number of studies included spatio-temporal random effects. Temperature
and precipitation were shown to often influence the risk of dengue. Developing spatio-tem-
poral random-effect models, considering other priors, using a dataset that covers an extended
time period, and investigating other covariates would help to better understand and control
DF transmission.

Introduction

Dengue fever (DF) affects more than 100 million people every year and is one of the most
important mosquito-borne diseases in the world [1]. DF is the main source of human deaths
from vector-borne disease [2]. The dengue virus is transmitted by a female mosquito of the
Aedes aegypti species [3, 4] and consists of four serotypes: DENV-1, DENV-2, DENV-3
and DENV-4 [2, 5, 6]. These serotypes can induce a range of symptoms, including the
most dangerous stage: dengue haemorrhagic fever (DHF) which is characterised by circulatory
collapse and death [4, 7].

In a Bayesian analysis, estimates, predictions and inference are based on posterior distribu-
tions. Bayes’ theorem states that this posterior distribution, which expresses the probability of a
parameter given the data, equals the multiplication of the likelihood function (the probability
of the data given the parameters) with the prior probability distribution for these parameters
divided by the probability of the data [8]. This contrasts with a frequentist approach, which
derives parameter estimates from the likelihood alone. Bayesian statistical regression models
have been used to effectively describe epidemiological data characterised by spatial and spatio-
temporal structure [9]. The fundamental feature of Bayesian approaches is the use of probabil-
ity for measuring uncertainty in inferences [10]. The major appeal of these approaches is in
considering uncertainty in the predictions or estimates and the straightforward incorporation
of spatial and temporal structure as prior distributions [11]. This approach also allows one to
take into account a much wider class of conceptual models than non-Bayesian approaches
[12]. The priors can also be used to incorporate information from preceding studies [9].

Previous systematic reviews of DF models have been conducted, but their objectives were
different. Three papers have focused on assessing the influence of climate change on transmis-
sion of dengue [13–15], one of which specifically considered the effect of temperature [15].
Some reviews have examined the epidemiology of dengue in a certain country, for example,
in Thailand [16], Saudi Arabia [17] and four high-income countries [18]. One review reported
on different types of modelling methods for early warning systems [1] and the different kinds
of spatial methods in dengue transmission [19], respectively.

There has only been one systematic review paper that considered spatial and spatio-
temporal modelling approaches to generate a risk map of dengue [20]. This paper identified
important predictors for categorical and continuous risks and four types of maps (descriptive,
validated, predictive and early warning system). Twelve modelling approaches were identified
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in 26 publications. The most popular were spatial analyses of case
clusters, measures of spatial autocorrelation and logistic regres-
sion and multinomial models. However, these methods were
not described and Bayesian methods were not discussed.

Despite the appeal of Bayesian models and their popularity in
epidemiology, to our knowledge, there are no published system-
atic review articles of spatial or spatio-temporal modelling of
DF using Bayesian methods. The objectives of this systematic
review were to identify and review published Bayesian spatial
and spatio-temporal models that have been applied to DF, to
assess analytical methods including the structure of the model,
the use of prior distributions and the inclusion of covariates,
and then to identify opportunities for future research.

Methods

Search terms and databases

The methodology for this review included a search strategy, and
inclusion and exclusion criteria based on the preferred reporting
items for systematic reviews and meta analyses (PRISMA) guide-
lines [21, 22]. Biomedical databases (Medline (via Ebscohost) and
PubMed), science databases (ScienceDirect, Scopus and Web of
Science) and an all disciplines database (ProQuest) were searched
electronically in December 2017. A manual search through refer-
ence lists of articles was also undertaken. The literature search was
limited to refereed journal articles published from January 2000 to
November 2017 in English. Databases were searched with the
same keywords, dengue and spati* and Bayesian. The search
spati* retrieved spatial, spatio-temporal and spatiotemporal. A
Boolean operator was implemented to link the keywords. All
results were combined and the duplicates removed using
EndNote. The titles and abstracts of articles found through key-
word searches were screened first by one author and then the
papers identified were evaluated through reading the full text
and selected according to the inclusion criteria. This stage was
performed by two authors independently. Disagreement between
authors was resolved by discussion and consensus.

Inclusion and exclusion criteria

The inclusion criteria were as follows. First, articles had to be pub-
lished in a peer-reviewed journal. Second, studies were included if
they used Bayesian spatial models or Bayesian spatio-temporal
models to model DF. A spatial model was defined as one that
explicitly included a geographic index for areas or observations
and that then linked these areas in some manner, such as through
a random-effects term. Similarly, a temporal model was defined as
one that explicitly included a time index. Only English articles
were included. No geographical restrictions were applied. The
exclusion criteria were as follows: models that were not applied
to dengue, non-spatial, non-Bayesian models, modelling of
dengue vectors, dengue virus phenotypes, review papers and con-
ference/workshop proceedings. Bayesian models that only consid-
ered a temporal component were also excluded. Modelling of
dengue mosquito vectors and their egg numbers [23], rather
than cases of DF, were excluded. Similarly, modelling the dengue
virus was excluded if it was generally about the spread of the
dengue virus (via infected humans or mosquitos) and the occur-
rence of viral genetic diversity. Review papers were read and
pertinent studies included, but not the review paper itself.

This systematic review is registered on PROSPERO (reference:
CRD42018084054).

Quality assessment

All papers fulfilling the inclusion criteria were critically appraised
by two reviewers independently to identify the strengths and
weaknesses of each paper. Any disagreement between reviewers
was resolved by consensus. The critical appraisal was performed
using the adapted tool for assessment of modelling study quality
and risk of bias by Harris et al. [24] which is a modification of
that proposed by Fone et al. [25] (Supplementary Table S1).
Part A assesses screening questions, Part B checks model validity
and Part C assesses the overall results and study conclusions. The
adapted tool contains questions for each of eight criteria and clear
guidance for scoring. Papers were scored from 0 (poor) to 2
(good) on each of the eight criteria, giving a maximum score of
16 points. A quality level of ‘low’ (<8), ‘medium’ (8–10), ‘high’
(11–13) or ‘very high’ (>13) was assigned to each paper based
on the overall score.

Data extraction

All data were extracted and collected manually. Extracted data
included first author, year of publication, study area, time period
of study, dengue data (number of cases, time interval collection
period and number of areas), covariate data, objectives, analytical
method, model structure, key findings, further studies and soft-
ware. Details of covariates used in the included papers were also
extracted.

Results

Literature search

The flow chart of this literature search is given in Figure 1, and the
list of detailed content of studies is given in Supplementary
Table S2. Based on keyword searches, 26 articles from Medline
(via Ebscohost), 486 from ProQuest, 26 from PubMed, six from
ScienceDirect, 44 from Scopus and 42 from Web of Science
were obtained. Five additional records were identified through
manual searches. From the 635 citations initially identified, 489
potential relevant articles remained after removal of duplicates
(146 duplicate articles). Screening of titles and abstracts removed
an additional 437 papers. A further 21 of the 52 remaining articles
were excluded for not meeting the inclusion criteria after review-
ing the full article. As a result, 31 articles were finally included in
the review.

Dengue data

Time intervals and geographic regions
In this review, one study used daily reported dengue cases, eight
studies used weekly dengue cases, 15 studies used monthly
cases of dengue, one study used quarterly data and six studies
used annual dengue cases. The longest period of study was for
384 months (32 years), while the shortest period of study was
for 3 months (91 days), with an average of 7 years and a median
of 4 years. Eighteen studies used dengue datasets with <7 years,
while 13 studies used datasets of 7 years or greater (Supplementary
Table S2).

2 A. Aswi et al.



The largest number of districts was 1065 and the smallest
number was 10 districts. There were 10 studies in Brazil, six stud-
ies in Indonesia, four studies in Taiwan, three studies in Thailand
and Australia, respectively, two studies in Colombia and one study
in each of Malaysia, China and Puerto Rico.

Covariate data
The type and number of covariates included in the models varied
widely among the studies reviewed (Table 1). Six categories of
covariates were identified, namely climatic, demographic, socio-
economic, entomological, geographic and temporal. Although
four studies [26–29] examined four of these categories of covari-
ates, most studies used two or three categories while three studies
did not include any covariates.

Climatic covariates
More than half of the studies (20 out of 31) used climatic variables
in modelling DF disease. The most commonly used predictors
included temperature and precipitation. Two studies additionally
included the El Niño Southern Oscillation Index (SOI) [26, 30].
One study used temperature, precipitation and Oceanic Niño
Index (ONI) [27]. Mean temperature, minimum temperature
and maximum temperature [31], night-time temperature and
day-time temperature [29] and monthly mean maximum tem-
perature, mean minimum temperature and cumulative precipita-
tion [32] were also included as climatic predictors in the reviewed
models. Five studies used precipitation only [33–37].

Demographic covariates
Out of 31 studies, 13 included demographic data. Most studies
only used one of the eight categories of demographic variables
considered in Table 1, while only one study used four categories:

population density, age structure, mean age of population and
household density [38]. Population density was the most common
demographic variable used in modelling DF.

Socio-economic covariates
Socio-economic data were used in seven studies [29, 38–43]. The
most common socio-economic variable was educational level
(seven studies), followed by income and garbage collection (five
studies each). One study used seven categories of socio-economic
variables [38].

Entomological covariates
Only six studies incorporated entomological (mosquito) data in
their models [30, 31, 36, 42, 44, 45]. A Breteau index (BI)
which is defined as the number of positive containers (i.e. con-
taining A. aegypti larvae) per 100 houses inspected, was used as
a predictor in two studies [30, 45] and a House Index (HI),
which is defined as percentage of houses infested with larvae
and/or pupae, was used as a predictor in another two studies
[36, 42] to identify dengue transmission areas. A larva-free
home index and a healthy housing index were included to deter-
mine their impact on the DF relative risk [36]. Indoor residual
spraying has also been considered in modelling DF [31].

Geographic covariates
Nine studies used geographic characteristics in their model.
Altitude [26–28] and mean vegetation index [29, 46, 47] were
the most common features used. Out of nine geographic variables
applied, most studies used only one indicator. Only one study [38]
used three indicators, which were the mean elevation to sea level,
elevation range and distance from the census tracts (CTs) centroid
to the health service.

Fig. 1. Flow chart of literature search.
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Table 1. Covariate variables used in reviewed papers

IDa: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ∑

Climatology

Temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 15

Precipitation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 18

El Niño Southern Oscillation Index ✓ ✓ 2

Oceanic Niño Index ✓ 1

Demography

Population density ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9

Proportion of overseas visitor ✓ 1

Age structure ✓ ✓ ✓ 3

Percentage of urban population ✓ 1

The mean age of population ✓ 1

Household density ✓ 1

Human daily mobility ✓ 1

Ratio of male and female ✓ 1

Socio-economic

Income ✓ ✓ ✓ ✓ ✓ 5

Garbage collection ✓ ✓ ✓ ✓ ✓ 5

Water supply ✓ ✓ ✓ ✓ 4

Literacy ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Occupation ✓ ✓ 2

Living condition (slums) ✓ ✓ 2

Sewage disposal ✓ ✓ 2

Mean number of people per
household

✓ 1

Percentage of black people ✓ 1

District’s Index of Human
Development

✓ 1

Entomology

Breteau index ✓ ✓ 2

Larva -Free Home Index ✓ 1

Healthy Housing Index ✓ ✓ 2

Indoor residual spraying (IRS) ✓ 1

Mosquito density ✓ 1

4
A.

Asw
i
et

al.



Temporal covariates
Temporal data were used in 10 studies. Most studies included a
temporal lag in the climate data [26–28, 30, 32, 44, 48, 49] and
only two studies included temporal entomological data [30, 44].
Models have included time in years as a categorical variable to
evaluate the dynamics of dengue cases [50] and also non-linear
temporal trends [31].

Analytical method

A variety of Bayesian spatial and spatio-temporal approaches were
used in modelling DF. Most studies adopted a fully Bayesian
model with a spatially structured random effect using a CAR
prior structure to investigate the relationship between the risk of
dengue and selected covariates [36, 38–41, 43, 46]. Spatial empir-
ical Bayes smoothing was used for two studies to examine the spa-
tial distribution of dengue [42, 51].

Generalised linear mixed models (GLMMs) with proper CAR
spatial random effects were applied to develop disease maps, with
dengue incidence data assumed to be Poisson [52]. Temporal
components were additionally incorporated, either as a temporal
covariate [44, 50], or via a GLMM with spatial and temporal ran-
dom effects and temporal covariates [26, 27, 48]. Among the
selected studies, only two studies used a GLMM with spatial, tem-
poral and spatio-temporal random effects [29, 47], while one
included these components along with an additional temporal
covariate [28]. Other GLMM spatio-temporal random-effects
models with incorporation of a temporal trend have also been
developed [35, 37]. Two studies used a GLMM zero-inflated
model [33, 53].

Alternative models included estimation of relative risk for the
transmission of dengue disease based on discrete time and space
via a susceptible–infective-recovered model for human popula-
tions; susceptible–infective model for mosquito populations
(SIR-SI) [54], prediction of spread of DF using Bayesian max-
imum entropy (BME) [30, 55, 56], and spatio-temporal quasi-
Poisson model based on a DLNM (distributed lag non-linear
model) [49], STARM (spatial–temporal autologistic regression
model) [34], hierarchical model with adaptive natural cubic spline
[32], a semi-parametric Bayesian STAR (structured additive
regression) model [31] and a transmission model based on
Ross–Macdonald theory [45]. The analytical methods used across
all included studies are summarised in Supplementary Table S3
and summary of the structure of the spatio-temporal models dis-
cussed in the reviewed paper can be seen in Table 2. These models
are explained in more detail as follows.

Spatial models
Several spatial models have been developed and applied to DF,
namely empirical Bayes approaches and fully Bayes GLMM
with a spatial CAR prior.

Empirical Bayes approaches: An empirical Bayes method is an
approximation to the fully Bayesian method. In an empirical
Bayes approach, the prior parameters are estimated from the
data, while in a fully Bayesian analysis, the prior distribution is
completely specified before observing any data [57].

Empirical Bayes spatial smoothing for dengue incidence data
has been used to categorise the high-risk and low-risk areas in
Queensland [51]. Local empirical Bayes was applied to investigate
the relationship between the HI, dengue incidence and socio-
demographic variables [42]. The authors concluded that there is
a positive correlation between HI and Bayesian dengue incidence
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rate. The highest dengue risk regions were situated in the areas
which had the highest population densities and were close to
the major highways.

GLMM with spatial random effects: A GLMM with spatial ran-
dom effects has been applied in seven studies [36, 38–41, 43, 46].
The general model is formulated as follows:

yi � Poisson(mi)

log (mi) = log (ei)+ ui

ui = a+ bX + ui + vi

where yi is the number of dengue cases in i = 1, …, I areas; ei
and θi are, respectively, the expected number of dengue cases in
area i and the log relative risk of dengue; α is the overall level
of relative risk; β = (β1, β2, …βp) represent the coefficient of the
covariates; ui is a spatially structured random effect with CAR
prior structure and vi is a spatially unstructured random effect
with mean zero and variance s2

v . All authors used an intrinsic
Gaussian CAR (ICAR) prior and adopted a binary neighbour-
hood weighting. An ICAR model assumes the areas k and i are
neighbours if both share a common border. This can be expressed

Table 2. Summary of the structure of the spatio-temporal models discussed in the reviewed paper

IDa References Year Space Time Space–time

1 Astutik et al. [34] 2013 – – SARa

2 Chien and Yu [49] 2014 CARb Cubic spline –

3 Costa et al. [41] 2013 CAR – –

4 Fernandes et al. [33] 2009 – – CAR

5 Ferreira and Schmidt [43] 2006 CAR – –

6 Honorato et al. [39] 2014 CAR – –

7 Hu et al. [51] 2011 CAR – –

8 Hu et al. [40] 2012 CAR – –

9 Jaya et al. [36] 2016 CAR – –

10 Johansson et al. [32] 2009 Normal CSSc –

11 Kikuti et al. [38] 2015 CAR – –

12 Lekdee and Ingsrisawang [52] 2013 CAR – –

13 Lowe et al. [26] 2011 CAR AR(1)d –

14 Lowe et al. [27] 2013 CAR AR(1) –

15 Lowe et al. [28] 2014 CAR AR(1) AR(1)

16 Lowe et al. [48] 2016 CAR AR(1) –

17 Martínez-Bello et al. [47] 2018 Leroux CAR RW1e Normal

18 Martínez-Bello et al. [46] 2017 Leroux and BYMf CAR – –

19 Mukhsar et al. [37] 2016a – Temporal trend CAR

20 Mukhsar et al. [53] 2016b – Temporal trend CAR

21 Pepin et al. [44] 2015 Gravity model – –

22 Restrepo et al. [50] 2014 CAR – –

23 Samat and Percy [54] 2012 CAR – –

24 Sani et al. [35] 2015 – Temporal trend CAR

25 Vargas et al. [42] 2015 Kernel quartic function – –

26 Vazquez-Prokopec et al. [31] 2010 Markov random field P-splinesg –

27 Wijayanti et al. [29] 2016 Normal Normal Normal

28 Yu et al. [30] 2011 – – BMEh

29 Yu et al. [55] 2014 – – BME–SIR

30 Yu et al. [56] 2016 – – BME

31 Zhu et al. [45] 2016 Normal – –

aSpatial autoregressive (SAR).
bConditional autoregressive (CAR).
cCubic spline smoothing (CSS).
dFirst-order autoregressive (AR(1)).
eFirst-order random walk (RW1).
fBesag–York–Mollié (BYM).
gPenalised splines (P-splines).
hBayesian Maximum Entropy (BME).
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as follows:

(uk|ui, k = i, t2u) � N

∑
i uivki∑
i vki

,
t2u∑
i vki

( )
(1)

ωki = 1 if k, i are adjacent, ωki = 0 otherwise [58, 59]. This prior is
the most common Gaussian Markov random field [60] and is an
improper prior [61]. Allowing for spatial autocorrelation through
this prior can improve model fit [38]. However, the choice of
neighbourhood structure needs to be carefully considered as it
could impact on the significance of some covariates [43]. One
study examined two additional types of neighbourhood structure
matrices, namely, weighted by the length of the boundary and by
boundary and barriers [43].

Martínez-Bello et al. [46] compared CAR BYM (Besag, York
and Mollié) [62] prior and Leroux CAR prior [63] for spatially
structured random effects for estimating relative risk of dengue.
They found that the CAR BYM prior was better than the
Leroux CAR prior.

Spatio-temporal models

GLMM over space and time with spatial random effects: A GLMM
indexed by space and time and with spatial random effects has
been proposed in one study [52] to develop a disease map and
identify any association between dengue incidence, rainfall and
temperature. The proposed model is expressed as

yij � Poisson(mij)

log (mij) = log (popi)+ a+ b1rainij + b2tempij + ui + vi

where yij are the number of dengue cases in area i = 1, …, I, and
time j = 1, …, J; μij is mean cases, log(popi) is the offset represent-
ing the total population in each area. Rain and temp are the total
rainfall and temperature, respectively, in each area and time, and
ui are proper CAR spatial random effects. A proper CAR is a vari-
ant of the ICAR prior, with an additional term for spatial autocor-
relation ρ in the conditional expectation [64], as follows:

(uk|ul, k = l, t2u) � N
r
∑

l ulvkl∑
l vkl

,
t2u∑
l vkl

( )

If ρ = 1 then the model is the ICAR in equation (1).
GLMM with spatial random effects + temporal covariate: An

alternative representation of a GLMM with spatial random effects
and the inclusion of temporal covariates has been proposed in two
studies [44, 50]. Restrepo et al. [50] found that the convolution
model was the preferred model (this includes both ui and vi)
over models containing only the uncorrelated termvi or the
ICAR term ui, and precipitation was the most significant predictor
of dengue risk.

Pepin et al. [44] proposed a different GLMM formulation to
assess the role of city-wide vector data in forecasting DF cases.
In this model, they included the rate of cases in neighbourhood
i at time j, mosquito density data, fixed scaling factors, lagged
time for specific variables and different weighting functions
between-neighbourhood effects to illustrate patterns of city-wide
human movement which consists of economic value of the
neighbourhood, population density and travel distance between
neighbourhoods. Two scales of spatial disease data, that is,

nearest-neighbourhood effects (local) and all between-
neighbourhood effects (global) are compared to predict the asso-
ciation between mosquito density and human cases of dengue.
Models that included global between-neighbourhood effects and
two covariates (mosquito density and human cases of dengue)
and their interaction were preferred.

GLMM with spatial and temporal random effects + temporal
covariate: GLMMs with spatial and temporal random effects
and a temporal covariate have been proposed in three studies [26,
27, 48]. Lowe et al. [26] compared a spatio-temporal GLM and a
GLMM that includes random effects in the linear predictor and
found that the latter model provided more accurate dengue predic-
tions. In this model, the number of dengue cases yij are assumed to
be Poisson distributed with mean dengue count μij given by

log (mij) = log (ei)+ a+
∑
k

bkxkij

+
∑
k

gkwki + ui + vi + wj

where ui � CAR(s2
u), vi � N(0,s2

v), and wj are the temporally
autocorrelated random effects ( j = 2, …, 12) with w1 = 0, and
wj � N(wj−1,s

2
w), j = 2, …, 12.

The variable climate factors xkij are: precipitation in the previ-
ous 1 and 2 months, temperature in the previous 1 and 2 months
and Nino 3.4 in the previous 6 months. The variables wki are: alti-
tude and percentage of urban population.

Another spatio-temporal GLMM by Lowe et al. [27] extended
the model by Lowe et al. [26] by adding more recent data and
including log dengue standardised morbidity ratio in the previous
3 months (past dengue risk), spatially structured and unstruc-
tured random effects and a first-order autoregressive month
effect. Here the DF counts yij are assumed to have a negative bino-
mial distribution to allow for overdispersion in observed dengue
data. The authors compared this model with a simple model
based on past dengue risk only. They found that the extended
model improved dengue predictions.

Generalised linear and additive mixed models (GLMM/
GAMM) were applied to measure the benefit of including climate
function in the model [48]. The response had a negative binomial
distribution and the dengue relative risk models included a base-
line model with season only, a seasonal–spatial model (inclusion
of spatial structure and unstructured error), a seasonal–spatial
climate-linear model (linear climate model) and a seasonal–spa-
tial climate-non-linear model (non-linear climate model). The
results showed that the model with linear and non-linear climatic
functions explained 39% and 40%, respectively, of the variation in
dengue relative risk. An additional 7% and 8% of the variation
was explained by seasonal–spatial structure using linear and non-
linear climatic functions, respectively.

GLMM with spatial, temporal and spatio-temporal random
effects + temporal covariate: Lowe et al. [28] also formulated
another GLMM model using a negative binomial distribution
for the dengue case counts to predict dengue epidemic in Brazil
during the 2014 football tournament. This model has minor dif-
ferences and extensions to their previous model [27]: the inclu-
sion of log dengue standardised morbidity ratio 4 months
previously, a fixed effect for month, a random effect for month
and the inclusion of a first-order autoregressive month effect
for each zone. Their results showed that this model can forecast
which cities have low, medium and high risk of dengue.
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GLMM with spatial, temporal and spatio-temporal random
effects: Bayesian spatial, temporal and spatio-temporal random-
effects models have been used to determine factors that influence
the risk of dengue in the Banyumas regency, Indonesia [29]. Two
models have been compared, namely a model with the inclusion
of covariates and spatially structured random effects only and a
model with the inclusion of covariates, spatially structured
and unstructured random effects, temporally structured and
unstructured random effects and spatio-temporal random
effects. The number of DF cases was assumed to be Poisson dis-
tributed. Uninformative priors were used for all variables as
previous data were not available for Indonesia. The most sig-
nificant factors that influenced the risk of dengue were found
to be employment type and economic status. Wijayanti et al.
[29] explored only the unstructured interaction effect model
(type I). The type II–IV interaction effects in spatio-temporal
models of relative risk were not explored, which are temporal
interactions, spatial interactions and inseparable space–time
interactions, respectively. Martínez-Bello et al. [47] explored
type I–IV interaction effects, finding that the best model had
the inclusion of a fixed coefficient of lag-zero epidemiological
periods Land Surface Temperature (LST) and type IV inter-
action effects.

GLMM with spatio-temporal random effects + temporal trend:
Sani et al. [35] developed a spatio-temporal convolution model
as an extension of the spatial convolution model introduced by
Eckert et al. [65] and used this to analyse the relationship between
covariates (rainfall and population density) and dengue risk. The
number of dengue cases yij was assumed to be Poisson distributed
and the relative risk μij given by:

log (mij) = log (eij)+ b0 +
∑
k

bkxkij

+ uij + vij + (a+ di)jz

where (α + δi)jz is a temporal trend and

eij =
∑

i

∑
j yij∑

i

∑
j nij

nij

with nij denoting the number of population at area i time j.
The authors found that both rainfall and population density

affected the number of dengue cases.
This spatio-temporal convolution model has been extended to

include the probability of incident risk Pr (Iij) into the model to
overcome a misidentification of dengue location [37]. The
extended model is as follows:

log(mij) = log(Pr(Iij)) + b0 +
∑
k

bkxkij + uij + vij

+ (a+ di)jz (2)

where

Pr (Iij) =
∑

i

∑
j yij∑

i

∑
j nij

This extension resulted in more accurate estimates when com-
pared with the previous models [35, 65]. They also concluded

that both rainfall and population density significantly affected
the number of dengue cases.

GLMM zero-inflated Poisson spatio-temporal model: Zero-
inflated spatio-temporal models that can be applied to both
continuous and discrete data have been proposed [33].
When observations exhibit an excessive number of zero
values, the zero-inflated model is often more appropriate.
These have been applied to estimate the probability of
the presence of unobserved dengue disease in region i and
time j.

A Bayesian mixed zero-inflated Poisson spatio-temporal
(BMZIP S-T) model [53] has also been constructed.

The BMZIP S-T model is expressed as

yij � Poisson(mij)

where μij = φij/(1 − φij) and is modelled as per equation (2).
A spatio-temporal quasi-Poisson model: A spatio-temporal

quasi-Poisson model based on the DLNM approach has been pro-
posed to identify the relationship between the non-linear delayed
impact of meteorological variations and dengue risk in southern
Taiwan and to predict dengue cases in the coming weeks [49].
The number of weekly DF cases yij was assumed to have a
Poisson distribution as follows.

log(mij) = offset+ a+ b× (Year)+ f (Time)

+ f (T, lag = 20)+ f (R, lag = 20)+ fspac(d)

where the vector β contains the coefficients of the indicator
variable year, f(Time) is the time smoother described by a
cubic spline; f(T, lag = 20) and f(R, lag = 20) are functions of
temperature and rainfall with a maximum temporal lag of 20
weeks, respectively; fspac(d) is a spatial function which was mod-
elled using the CAR prior structure, and the offset is the loga-
rithm of average annual population data. The authors found
that the most significant factors that influenced DF epidemics
were the weekly minimum temperature and the maximum
24 h rainfall. When the minimum temperature rises, the dengue
relative risk increases, particularly at a lagged period of 5–18
weeks.

Hierarchical model with adaptive natural cubic spline:
Johansson et al. [32] proposed a model that includes population
size Nj, covariates at distributed lags lk and a natural cubic spline
smoothing function of time s( j, λ), where λ denotes the degree
of annual freedom and is set to λ = 2. The distributed lag model
is used to evaluate the effect of weather on dengue spread in the
next 6 months. For each area i, the number of monthly dengue
cases at time j, yj, is assumed to be Poisson distributed as
follows:

yj �Poisson(mj)
log(mj) = log (Nj)+ b0 +

∑
k

bkxk,j−lk + s( j, l)

A two-level approach was used to compare βk from the area-
specific models. At the first level, area-specific (i) parameter esti-
mates b̂i were assumed to be normally distributed:

b̂i � N(bi,s
2
i )
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Effect modifiers z1, z2, …, zQ were added to estimate α0 (the
average effects) and the effect modification αq:

bi a0,a1, . . . ,aQ,s
2 � N a0 +

∑Q
q=1

aqzq,i,s
2

( )∣∣∣∣∣
The authors found a positive correlation between monthly vari-
ation in temperature and precipitation and monthly variation in
the spread of dengue, and that correlation varies spatially.

BME method: BME is popular in the study of natural
systems (physical, biological, social or cultural) and for attri-
butes that are characterised by space–time dependence and
multi-sourced uncertainty. Two major knowledge bases (KB)
for the spatio-temporal modelling in the BME method are:
(1) the general KB (G-KB) that may include scientific theories,
theoretical space–time dependence models and epidemic mod-
els; and (2) the site-specific KB (S-KB) that includes hard data
and soft data, often with a significant amount of uncertainty
[66]. The BME method incorporates both knowledge bases
[67, 68].

A spatio-temporal model that is based on a stochastic BME
method has been used to predict DF outbreaks based on space
and time and to examine the association between DF incidence
and selected climate variables in Southern Taiwan [30]. In the
BME analysis, the spatio-temporal distribution of DF occurrences
is mathematically represented by the spatio-temporal random
field, X(p) or Xi,j where i and j indicate the areas and time,
respectively. DF incidence is assumed to be Poisson distributed
as follows:

X(p) = Xij � Poisson (Rijlij)

with DF mean �Xij = Rijlij and λij is a climate-driven space–time
process modelled by the log-link Poisson regression

log (lij) = log (nij)+ a0 +
∑b
l=a

blT j−l +
∑d
m=c

gm log (T j−l)

+
∑f
n=e

unSOI j−n +
∑h
o=g

ro Bidx j−o +
∑s

p=r

fp maxT j−p

+
∑u
q=t

wq minT j−q

where βl, γm, θn, ρo, φp and wq are regression coefficients for tem-
perature, logarithm of rainfall, SOI, BI, maximum temperature
and minimum temperature, respectively (for the weekly tem-
poral lags between a and b, c and d, e and f, g and h, r and s,
and t and u, respectively) and nij is the population size. The
authors conclude that climatic conditions significantly affect
DF outbreaks. Yu et al. [55] extended their previous model by
inclusion of a stochastic susceptible–infected–recovered (SIR)
model, that is, BME-SIR to obtain online space–time predictions
of DF transmission. This model considered stochastic differen-
tial equations, characterising both the spatio-temporal pattern
of disease spread and the heteroscedastic variance pattern across
space and time. The aim was to achieve online updates of SIR
model parameters.

A SIR-SI model: A discrete space–time stochastic susceptible–
infective–recovered for human populations; susceptible–infective
for mosquito populations (SIR-SI) model has been developed to
circumvent problems of relative risk estimation using standar-
dised morbidity ratios and the Poison-γ model which does not
allow for spatial correlation [54]. The SIR-SI model was defined
as follows:

S(h)i,j = m(h)N (h)
i + (1− m(h))(S(h)i,j−1)− ℑ(h)

i,j

ℑ(h)
i,j � Poisson (l(h)i,j )

l(h)i,j = exp (b(h)
0 + c(h)i )

b(h)b

N (h)
i +m

( )
I(h)i,j−1S

(h)
i,j−1,

I(h)i,j = (1− m(h))I(h)i,j−1 + ℑ(h)
i,j − <(h)

i,j

R(h)
i,j = (1− m(h))R(h)

i,j−1 + <(h)
i,j

<(h)
i,j = g(h)I(h)i,j−1

with a non-stochastic vector population as follows:

S(v)i,j = m(v)N (v)
i + (1− m(v))(S(v)i,j−1)− ℑ(v)

i,j

ℑ(v)
i,j =

b(v)b

N (v)
i +m

( )
I(v)i,j−1S

(v)
i,j−1

I(v)i,j = (1− m(v))I(v)i,j−1 + ℑ(v)
i,j

Here the superscripts (h) and (v) represent the human and mos-
quito populations, respectively. S(h)i,j , I(h)i,j and R(h)

i,j are the total
number of susceptible, infective and recovered humans in area i
for time j, respectively; ℑ(h)

i,j and <(h)
i,j are the number of newly in-

fective and recovered humans; μ(h) is the weekly birth and death
rates in the human population; γ(h) is the rate of weekly recoveries;
b is weekly biting rate; m is the number of alternative hosts avail-
able; β(h) is the probability of transmission from mosquito to
human, and β(v) is the converse; and N (h)

i is the number of
humans in area i.

The number of new infections is assumed to follow a Poisson
distribution with mean l(h)i,j , intercept b(h)

0 and spatial random
effect c(h)i using a CAR prior. Models were applied to all of
Malaysia divided into 16 states. The results showed that the pro-
posed SIR-SI model that considers the inclusion of the transmis-
sion process of dengue disease, covariates and spatial correlation
was preferred over unmodelled SMRs or the Poisson-γ model.
The authors also identified areas with very high and high dengue
risk.

STARM: The STARM model is an extension of an autologistic
regression model that includes covariates, spatial and temporal
dependence simultaneously. This model has been applied to pre-
dict the association between the incidence of endemic dengue and
rainfall using a Bayesian method [34]. For binary data that are
measured repeatedly on a spatial lattice, STARM can be very
beneficial [69]. The incident rate (IR) is converted to the binary
scale as a representation of the A. aegypti spread, that is, 1 if
there is endemic dengue (IR > 10/100 000 population) and 0 if
there is no endemic dengue. Endemic level and rainfall are
dependent and independent variables, respectively. The STARM
model may be defined as follows:
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where Yi,j is dengue endemic at the ith region and the jth time,
X1,i is rainfall index at the ith region, Ni,j is neighbourhood struc-
ture. θ0, θ1, θ2, θ3 are an intercept and coefficients for rainfall,
spatial autoregression and temporal autoregression, respectively.
The authors use the inverse Gaussian as a prior distribution for
each of θ0, θ1, θ2, θ3. The result showed that there is a positive cor-
relation between the endemic level of DHF incidence and rainfall.

A semi-parametric Bayesian spatio-temporal geoadditive STAR
model: A spatio-temporal geoadditive STAR model has been used
to evaluate the impact of indoor residual spraying and spatial
autocorrelation in the odds of dengue infection [31]. A predictor
structure for the spatio-temporal geoadditive model is given as
follows:

hij = f1(xij1)+ · · · + fk(xijk)+ ftime(j)+ fspat(sij)+ u′ijg

where ηij, xij1, …, xijk are predictor and covariate values for indi-
vidual i at time j. The fixed effects of non-linear function of cov-
ariates (f1, …, fk) and non-linear time trend ftime were modelled
by independent diffuse priors using Bayesian penalised splines.
fspat is a spatially structured random effect of the location sij
using Markov random field priors and u′ijg are linear predictors
for the covariate vector u.

This STAR model assessed the impact of rain, spray cumula-
tive proportion (cum_spr) and spatial correlation (spat) on the
odds of dengue virus infection, where the probability of infection
followed a binomial distribution (0 if there is no infection, 1 if
there is an infection) at house level (1490 premises) as follows:

logit (case, 0|1) = ftime + rain (fixed)+ f1(cum spr)

+ fspat + f2(cum spr∗spat)

The authors compared two STAR models, that is, a model with
and without rain as a fixed effect. Interestingly the results showed
that a model without a rain covariate was better able to describe
the spatial pattern of dengue infection. The authors concluded
that there was a significant positive correlation between the num-
ber of indoor residual spraying applications up to a time lag of
2 weeks and the weekly number of cases.

Transmission model based on Ross–Macdonald theory: A den-
gue transmission model based on the Ross–Macdonald theory has
been proposed to identify the pattern of dengue transmission in
space and time. This model incorporates four essential sub-
models, that is, female mosquito density dynamics, human daily
movement, virus transmission and estimation of parameters
[45] that can be explained as follows.

The correspondence between reported incidence and model-
ling cases is given as follows:

Gj = drj + 1j; 1j � N(0,S)

where δ is reported incidence rate, ρj = (ρ1j, ρ2j, …, ρIj)
J is a vector

of the estimated number of incidences at each time period j, εj is
an error term and Γj = (γ1j, γ2j, …, γIj)

J is the vector space–time
surveillance data at time j.

Female mosquito density xki (j) with age k at time j in district i
can be calculated as

xki (j) = KBi( j− k− 1)p(k)

where K is the proportionality coefficient between the vector
density and BI, Bi( j) is the value of BI at time j in district
i, p(k) is the daily survival probability of adult mosquitoes at
age k. To estimate model parameter K, MCMC methods were
used.

Human daily commuting into different areas, which is defined
as those who work or study in different districts and who go out
in the morning and return in the afternoon, is assumed to impact
on dengue transmission as follows:

Til = Ti
NiNl

(Ni + Sil)(Ni + Nl + Sil)

where Til is the number of travellers leaving from district i to l; Ni

is the population in district i; Sil is the total number of residents in
the circle whose centre is the origin district i and radius is the dis-
tance between district i and the destination district l, minus the
population at i and l. Ti is the total number of travellers leaving
from district i which is defined as Ti =Ni(Nc/N), where Nc and
N are the total number of travellers and the total population,
respectively.

In virus transmission modelling, vectorial capacity, which is
defined as the mean of infectious mosquito bites per unit time,
is used to evaluate the infectivity from mosquitoes and is calcu-
lated as

Vk
i (j) = mk

i (j)a
2
i e

k+q
∏k+q

l=k

p(l)

where Vk
i , m

k
i represent vectorial capacity contributed by mosqui-

toes with age k in district i, and the ratio of mosquitoes at age k to
humans, respectively. Here ai and ek+q represent Aedes mosquito
biting rate of humans in district i within 12 h, and the expectation
of remaining infectious life at age k + q, respectively.

The authors concluded that the space–time distribution of
incidence is highly heterogeneous, with 81.6% of transmission
occurring in urban centres in Guangzhou, China with a peak in
mid-October. They also found that there is inconsistency between
infected cases and reported cases in space–time. Vector indices
and human mobility factors significantly affect the dengue trans-
mission patterns. Urban areas had the highest incidence rates and
suburban areas had the second highest incidence rates.

Assessment of quality

Using the adapted tool for assessment of modelling study quality,
quality scores for the reviewed paper ranged from 7 to 16 out of
16 (Table 3). One study was classified as low quality, three as
medium quality, 10 as high quality and 17 as very high quality.

p(Yi,j|Yı́,ȷ́ : (ı́, ȷ́) = (i, j)) = p(Yi,j|Yı́, ȷ́ : (ı́, ȷ́) [ Ni,j) =
exp u0Yi,j + u1X1,iYi,j +

∑
k[Ni

u2Yi,jYk,j + u3Yi,j(Yi,j−1 + Yi,j+1)
{ }

1+ exp u0Yi,j + u1X1,iYi,j +
∑

k[Ni
u2Yi,jYk,j + u3Yi,j(Yi,j−1 + Yi,j+1)

{ } .
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The median score was 14/16, which is categorised as high quality.
Details on the quality of data were lacking in many papers.

Discussion

Covariates

Climatic variables were dominant among covariates used by stud-
ies to predict the DF outbreaks based on place and time.
Precipitation and temperature were the most common and most
commonly significant predictors [32, 49, 52]. Most studies

found a positive significant association with precipitation [34,
35, 37, 50], although one study found a negative correlation
with precipitation 4–6 months previously [48]. These more com-
plex associations depend on local seasonal patterns.

Population density was the most common demographic factor
used in modelling DF. Study results were generally consistent
in showing that population density was positively significantly
correlated with an increase in dengue cases [28, 35, 37, 42].
Furthermore, urban areas had higher incidence rates than subur-
ban areas [45]. Kikuti et al. [38] found that population density
and the percentage of population aged under 15 years were

Table 3. Assessment of included modelling studies

No Author Year AaO SaP MS MM PRDS QoD PoR IDoR FS Rating

1 Astutik 2013 2 1 2 2 2 0 1 1 11 High

2 Chien 2014 2 2 2 2 1 2 2 2 15 Very high

3 Costa 2013 2 2 2 2 1 2 2 2 15 Very high

4 Fernandes 2009 2 1 2 2 2 0 2 2 13 High

5 Ferreira 2006 2 2 2 2 1 2 2 2 15 Very high

6 Honorato 2014 2 2 2 2 1 2 2 2 15 Very high

7 Hu 2011 2 1 1 1 1 2 2 2 12 High

8 Hu 2012 2 1 2 2 2 2 2 2 15 Very high

9 Jaya 2016 1 2 2 2 1 0 2 1 11 High

10 Johansson 2009 1 1 1 1 1 0 2 1 8 Medium

11 Kikuti 2015 2 2 1 2 2 2 2 2 15 Very high

12 Lekdee 2013 2 1 2 2 1 0 2 1 11 High

13 Lowe 2011 2 1 2 2 2 2 2 2 15 Very high

14 Lowe 2013 2 1 2 2 2 2 2 2 15 Very high

15 Lowe 2014 2 1 2 2 1 2 2 2 14 Very high

16 Lowe 2016 2 2 2 2 2 2 2 2 16 Very high

17 Martínez-Bello 2018 2 2 2 2 2 2 2 2 16 Very high

18 Martínez-Bello 2017 2 2 2 2 2 2 2 2 16 Very high

19 Mukhsar 2016a 1 1 1 1 1 1 1 1 8 Medium

20 Mukhsar 2016b 0 2 1 1 1 0 1 1 7 Low

21 Pepin 2015 2 1 2 2 1 2 2 2 14 Very high

22 Restrepo 2014 2 1 2 2 2 2 2 2 15 Very high

23 Samat 2012 2 1 1 2 1 0 1 1 9 Medium

24 Sani 2015 2 1 1 2 1 0 2 2 11 High

25 Vargas 2015 2 2 0 1 1 2 1 2 11 High

26 Vazquez-Prokopec 2010 2 2 2 2 2 2 2 2 16 Very high

27 Wijayanti 2016 2 1 2 2 2 1 2 2 14 Very high

28 Yu 2011 2 1 1 1 1 1 2 2 11 High

29 Yu 2014 2 1 1 2 1 0 2 2 11 High

30 Yu 2016 2 1 1 2 1 1 1 2 11 High

31 Zhu 2016 2 1 2 2 2 2 2 2 15 Very high

Median score 2 1 2 2 1 2 2 2 14 Very high

Mean score 1.8 1.4 1.6 1.8 1.4 1.3 1.8 1.8 12.9 High

AaO, aims and objectives; SaP, setting and population; MS, model structure; MM, modelling methods; PRDS, parameter ranges and data sources; QoD, quality of data; PoR, presentation of
results; IDoR, interpretation and discussion of results; FS, final score.
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correlated with detection of dengue. Human daily mobility as an
indicator of demography, referring to commuting, was included
for only one study [45]. Human movement significantly affects
the spatial spread of infectious disease like dengue [70, 71].
Therefore, it is important to incorporate the variety of human
movements in modelling dengue transmission.

The most common socio-economic variable was educational
level, followed by income and garbage collection. The significance
of socio-economic factors differ by regions, but dengue is often
more common among those of lower socio-economic status.
For example, in Brazil, inadequate garbage disposal and income
were the most significant factors related to the incidence of den-
gue [39] and lower socio-economic status (within a slum society)
increased the risk of dengue [38]. In Indonesia, the most signifi-
cant factors that influenced the risk of dengue were employment
type and education level [29].

Incorporation of entomological data in modelling DF to deter-
mine their impact on DF relative risks has been used by only six
studies. Some studies have found that the most significant effect
on the relative risk of DF is a larva-free home [36] and there
was a significant positive correlation between the number of in-
door residual spraying applications up to a time lag of 2 weeks
and the weekly number of cases [31]. Without mosquitoes,
dengue cannot be transmitted.

Geographical data were used in nine studies reviewed. The
most common indicator was altitude [26–28] and mean vegeta-
tion index [29, 46, 47]. Only one study [38] used three indicators,
namely the mean elevation from sea level, elevation range and dis-
tance from the CTs to the public health unit. The other studies
used only one indicator. Lowe et al. [28] found that altitude
was significantly negatively correlated with relative risk of dengue.
Kikuti et al. [38] showed that residential adjacency to the health
unit was most significantly correlated with dengue cases detection
and the spatial distribution of dengue cases detection was hetero-
geneous. Therefore, it is important to consider neighbourhood
features when evaluating DF risk.

This review has also shown that almost all the reviewed papers
that include a lag time use climate data [26–28, 30, 32, 44, 48, 49]
and only a few papers include entomological data [30, 44]. Various
temporal lags and climate variables have been used to find the most
significant combination of temporal lags in describing the relative
risk of dengue and predicting DF outbreak. For example, in
Thailand, temperature and precipitation were significant dengue
predictors with a time lag of 1 month preceding, but precipitation
4–6 months preceding was negatively correlated with dengue rela-
tive risk [48]. Three studies reported on slightly different covariates
in Brazil. The first of these used temperature and precipitation with
time lags of 3 months [28]. The second used an additional covariate
ONI with time lags of 4 months [27]. The third used SOI with time
lags of 6 months but precipitation and temperature were 1 and 2
months previously [26]. Lowe et al. [26] have highlighted that
SOI significantly affects the time signal of dengue prediction. In
southern Taiwan, it was found that the relative risk of DF increased
when weekly minimum temperature increased with time lag over
4 weeks [49]. Therefore, in order to predict DF outbreak more
precisely, a variety of temporal lags of climate variables and other
covariates such as entomological data should be considered.

Modelling approaches

Fully Bayesian methods are becoming more common as an alter-
native to the frequentist methods for spatial analysis of diseases.

The benefit of Bayesian methods is that they can reduce the esti-
mated variance particularly for regions with small populations
[39]. Moreover, with Bayesian approaches, it is easier to incorpor-
ate variance components in a hierarchical manner and hence bet-
ter estimate predictive uncertainty compared with frequentist
methods based on maximum likelihood [26].

GLMMs also play a significant role in modelling spatial and
spatio-temporal DF patterns. The inclusion of unstructured ran-
dom effects in the model can account for overdispersion in den-
gue count distributions and allow for unknown factors. However,
unstructured random effects are not able to overcome spatial
dependence between locations. One way to allow for correlated
heterogeneity between locations is the inclusion of spatially struc-
tured random effects [26]. Where GLMMs with spatial random
effects have been applied, most studies have modelled the spatial
random effect using an ICAR prior and adopted a binary
adjacency-based neighbourhood spatial weight matrices. An add-
itional two studies used a proper CAR prior [52, 54]. However,
specific areas like rural areas or areas without neighbours need
to be investigated in order to enhance the correlation structure
in the model. For example, distance-based weight matrices, may
be preferable for investigating the effect of road travel or human
mobility. Only one study has used different types of neighbour-
hood adjacency matrices, namely, binary, weighted by the length
of the boundary and by boundary and barriers [43]. Since the sig-
nificance of some covariates change with the use of different adja-
cency structures, these different types of neighbourhood
structures need to be taken into consideration. The inclusion of
the spatially structured component using a CAR prior often
improves model fit [38]. However, the impact of using other
smoothing priors has not been done and needs to be further
investigated.

Some studies have included both spatial and temporal random
effects in modelling DF [26, 27, 48]. These authors assigned an
intrinsic CAR prior to the spatially structured random effects
and the first order autoregressive (AR (1)) prior for temporally
structured random effects. An AR (1) model assumes that the cur-
rent value is only affected by the prior value of the previous time
period or temporal stage. Carroll et al. [72] considered temporal
structure with a CAR prior distribution which allows more flex-
ible structured variation over time; this model was applied to mel-
anoma data. To increase the model fit, other time-series
components that describe seasonal patterns, moving averages,
trends, first- or second-order random walks should be considered.

Among the selected studies, only one study used a GLMM
with spatial, temporal and spatio-temporal random effects [29],
and only one with an additional temporal covariate [28].
Wijayanti et al. [29] assumed an interaction of two spatially
unstructured and temporally unstructured random effects,
which means there was no spatial and temporal structure on
the interaction. More reasonable space–time interactions can be
considered and compared. For example, the combination of spa-
tially unstructured and temporally structured components may be
more appropriate when the time trends differ between areas but
the spatial structure is similar. Other types of space–time interac-
tions that can be considered are a combination of spatially struc-
tured and temporally unstructured [41], or a combination of
spatially and temporally structured components [73]. Lowe
et al. [27] applied a first-order autoregressive monthly effect for
each region in the space–time interaction, which means that the
temporal trends are different for each region point and only
depend on one previous time lag, without any spatial structure.
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The limitation of this interaction model is that neighbours in space
are not considered. By working with adjacency matrices, neigh-
bourhoods can be defined for both time and space and incorpo-
rated in spatio-temporal autoregressive (STAR) models [74].

Transmission models have been proposed by two studies [45,
54]. An SIR-SI included a transmission model for both the human
and mosquito populations [54]. However, the mosquito popula-
tion was assumed to be non-stochastic. Therefore, there needs
to be better integration of transmission (mechanistic) and sto-
chastic models. Other transmission models have been proposed
by integrating four sub-models based on the Ross–Macdonald
theory. This has been applied to a dengue study in China.
However, all of the parameters for the independent variables
were assumed to have normal distributions. Other prior distribu-
tions could be considered in order to detect patterns of dengue
transmission more precisely.

Study limitations

Only studies published in English were considered. It is acknowl-
edged that there are other papers relevant to Bayesian spatial
modelling in other languages, so we may have excluded valuable
contributions. Furthermore, modelling dengue virus itself was
not considered in this review, despite the acknowledged correl-
ation between dengue virus and the number of dengue cases.
Finally, inconsistencies in categorisation of some covariate
variables, for example, indicators of socio-economic status, socio-
demographics and environmental variables, have been found in a
number of studies. These inconsistencies were not pursued here.

Conclusions

Various Bayesian modelling approaches that aim to relate a range
of possible explanatory variables with DF incidence or risk have
been reviewed. Bayesian approaches are recommended instead
of frequentist methods as they allow incorporation of a wider
range of components of variance at different levels in the model
and it is easier to obtain a more complete assessment of prediction
uncertainty. Temperature and precipitation were important deter-
minants of the relative risk of DF and predicting DF outbreak.

Most models used GLMM spatial random effects with spatially
correlated effects using a CAR prior. Other GLMM models with
the inclusion of temporal covariates and temporal trends were
used to predict dengue risk. The only model that incorporated
four sub-models, that is, female mosquito density dynamics,
human daily movement, virus transmission and estimation of para-
meters was a transmission model based on Ross–Macdonald the-
ory. To improve the precision of model fit of DF, different types
of neighbourhood structure, proper and improper priors in spatial
random effects, temporally structured effects and types of space–
time interaction should be considered.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818002807
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