@,

BiolVled Central

Technical Note

GOGrapher: A Python library for GO graph representation and
analysis
Brian Muller, Adam] Richards, Bo Jin and Xinghua Lu*

BIVIC Research Notes

Address: Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, 135 Cannon St Suite 303
Charleston, SC 29425, USA

Email: Brian Muller - mullerb@musc.edu; Adam J Richards - richa@musc.edu; Bo Jin - jinbo@musc.edu; Xinghua Lu* - lux@musc.edu
* Corresponding author

Published: 7 July 2009
BMC Research Notes 2009, 2:122 doi:10.1186/1756-0500-2-122

Received: |13 January 2009
Accepted: 7 July 2009

This article is available from: http://www.biomedcentral.com/1756-0500/2/122

© 2009 Lu et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The Gene Ontology is the most commonly used controlled vocabulary for
annotating proteins. The concepts in the ontology are organized as a directed acyclic graph, in
which a node corresponds to a biological concept and a directed edge denotes the parent-child
semantic relationship between a pair of terms. A large number of protein annotations further
create links between proteins and their functional annotations, reflecting the contemporary
knowledge about proteins and their functional relationships. This leads to a complex graph
consisting of interleaved biological concepts and their associated proteins. What is needed is a
simple, open source library that provides tools to not only create and view the Gene Ontology
graph, but to analyze and manipulate it as well. Here we describe the development and use of
GOGrapher, a Python library that can be used for the creation, analysis, manipulation, and
visualization of Gene Ontology related graphs.

Findings: An object-oriented approach was adopted to organize the hierarchy of the graphs types
and associated classes. An Application Programming Interface is provided through which different
types of graphs can be pragmatically created, manipulated, and visualized. GOGrapher has been
successfully utilized in multiple research projects, e.g., a graph-based multi-label text classifier for
protein annotation.

Conclusion: The GOGrapher project provides a reusable programming library designed for the
manipulation and analysis of Gene Ontology graphs. The library is freely available for the scientific
community to use and improve.

Introduction tion, manipulation, and analysis of GO based graphs. The

Network graphs based on the Gene Ontology (GO) data-
base are now widely used in projects that analyze biolog-
ical concepts (see [1-4] and more references therein).
Most published studies have utilized their own imple-
mentations of graph creation and analysis routines. The
primary motivation underlying this project is to create a
robust, reusable, openly distributed library for the crea-

package can be utilized as a foundation in the future
development of applications that involve the Gene Ontol-
ogy using the Python computing language [5]. Python is
steadily gaining in popularity within the scientific com-
munity [6-8] and we believe that this accessible program-
ming language will continue to grow increasingly
pervasive in the bioinformatics sciences [9].

Page 1 of 4

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19583843
http://www.biomedcentral.com/1756-0500/2/122
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Research Notes 2009, 2:122

Library Description and Structure

As a reusable library, GOGrapher is a tool created prima-
rily for the developers who write GO-related applications,
so that they can reuse a broad range of common functions
to save time and effort. The library contains common rou-
tines for graph operation and analysis, for instance, crea-
tion of graphs, finding shortest paths, extracting
minimum spanning trees, and graph topology analysis.

The object-oriented hierarchy of the library's classes is
shown in Figure 1 as a Unified Modeling Language (UML)
diagram. There are four logical groups of classes, and each
is indicated by a distinct color in the figure. The first group
is comprised of three classes representing the nodes (ver-
tices) in the graphs, shown with orange borders. It
includes a base GONode class, a term node class (GOTer-
mNode), and a protein node class (GOProteinNode). The
second group is made up of the four basic graph type
classes (cyan borders) which are categorized based on
weighting and directionality. The third group consists of
classes that handle serialization and storage of various
graph instances (shown with brown borders). Finally, a
weighting interface has been created; classes that imple-
ment the interface can produce a weighted version of a
graph using the weighting functions provided by users.
Two example weighters are given (green borders).

"e EWO rkﬂ

http://www.biomedcentral.com/1756-0500/2/122

Node Objects

Graphs are represented by collections of vertices and
edges. The vertices (shown with orange borders in Fig. 1)
in GOGrapher graphs represent entities such as biological
concepts (GO terms) and proteins or genes.

Graph Objects

The GOGrapher library contains four different types of
graphs (shown with cyan borders in Fig. 1) based on
whether each graph is directed and whether it is weighted.
A base class referred to as GOGraphBase is defined to rep-
resent the fundamental information about a GO ontol-
ogy, e.g., which of the three aspects it represents. In
addition, every graph class in this package extends a corre-
sponding graph class from the NetworkX graphing library
[8,10]. The methods and properties of the NetworkX
superclasses are inherited in the GOGrapher classes. In
addition, all of the graph manipulation and analysis func-
tions [11] provided by NetworkX will work equally well
for the GOGrapher graph classes. This multiple inherit-
ance provides classes with the properties and functionali-
ties both of a graph and of an ontology.

The definition of the GO from the Gene Ontology Consor-
tium can be used to create an initial instance of the GODi-
Graph class (an unweighted directed graph). Other GO

DiGraph

GOProteinGraph
+annotate(gograph)

GOGraph

+makeWeighted(weightingClass)
+toXGMML (fileHandle)

GODiGraph

+makeWeighted(weightingClass)
+toUndirected()

Ij

GOGraphBase

GONode

GOProteinNode

+Protein_Symbol
+aspect

+species

+storaae
+savePickle(filename)
+loadPickle(filename)
+makeImage(filename)

GOTermNode
+G0_ID

Figure |

GOXGraph

XDiGraph

Weightinginterface ==
+makeWeighted(originalGraph) I

SimpleWeighter = == I
|
pun GOXDiGraph ICWeighter ==
+makeWeighted(weightingClass)
+toUndirected()
StorageFactory
+makeStorage(storageType, *args)
<=

Storagelnterface

+getTermAssocListBySpecies(species,aspect)

MysqlStorage FilebasedStorage

UML Class Diagram. This figure is a UML class diagram in which classes are grouped according to their functionalities: the
graph classes have cyan borders; the node classes have orange borders; the weighting interfaces have green borders; and the

storage related classes have brown borders. Dashed lines indicate that a class implements an interface (with the implementer as
the source of the arrow). Solid lines indicate that a class extends the functionality of a parent class (with the extending class as

the source of the arrow pointing at the parent class).

Page 2 of 4

(page number not for citation purposes)

BMC Research Notes 2009, 2:122

related graphs can be created by transforming an instance of
the GODiGraph object into the desired type. For example, an
instance of GODiGraph can be converted to an undirected
graph, or, if given weighting information, it can be converted
to a weighted graph (either directed or undirected). Since
many GO terms are species specific, we allow users to specify
whether or not a graph should be associated with one or
more species, e.g., yeast or human, so that the terms that
have never been used to annotate proteins from the species
can be trimmed from the graph. The GOProteinGraph is a
special case of an undirected, unweighted graph in which
protein nodes are added to the graph with edges connecting
them to their associated terms. This graph may be useful in
situations in which the actual protein/term associations pro-
vide meaningful biological information.

Graph Creation Process

A directed unweighted graph known as a GODiGraph is
first created according to the definition given by the Gene
Ontology Consortium (see next subsection for different
information sources). This graph can be further modified
to produce other GO-related graphs, e.g., undirected or
weighted versions, by invoking the provided method
calls. Each instance of the GODiGraph is created with a
specific aspect of the Gene Ontology, e.g., Biological Proc-
ess. If the attribute species of a GODiGraph instance is not
set, a full graph with all GO terms will be created. If a user
is primarily interested in a subgraph that is relevant to a
specific species, the user can associate the created GO
graph with a collection of protein annotations from one
or more species. Then, the leaf nodes that have not been
used to annotate any proteins from the species will be
trimmed. In addition, a user can create a graph in which
both GO terms and proteins are first class objects, i.e., an
instance of GOProteinGraph. In this case, a GODiGraph is
first created according to GO definition, then the anno-
tated proteins are added to the graph as vertices, and
finally, the graph is converted into an undirected graph.
This is due to the fact that there is no parent-child relation-
ship between a GO term and a protein.

GO Information Sources

GOGrapher provides classes (brown borders in Fig. 1) to
access ontology and annotation information needed for
creating GO graphs. The sources for this information are
available either as a MySQL database or data files; both are
available on the GO website [12].

Database Backend

The GOGrapher library can store all information (ontol-
ogy and annotation data) needed for creating and manip-
ulating GO-related graphs using a MySQL [13] database
management system (DBMS). Current MySQL versions of
the GO database are publicly provided on the Gene
Ontology website [12]. To use the database as an informa-
tion source, a user only needs to import the database

http://www.biomedcentral.com/1756-0500/2/122

source once, and then database access and query are per-
formed inside GOGrapher functions and are transparent
to users of library. One disadvantage with this method is
the amount of time it takes to initially create graphs; inter-
action with a database is slower than simply reading files
(the process discussed in the next section).

Ontology and Annotation Files

The library is also capable of using ontology definition
and annotation data files from the Gene Ontology Con-
sortium. The Web Ontology Language (OWL) representa-
tion is a suitable format for GOGrapher due to its
portability and wide use. The Open Biomedical Ontology
XML (OBO-XML) format is also supported by GOGra-
pher. The annotation files are available in a unified for-
mat. GOGrapher can instantiate a GODiGraph using an
ontology definition file in either of the above file formats,
and further association of annotated proteins to the graph
can be carried out using any number of annotation files.

Graph Storage and Output

An instance of a GO graph class can be stored in several
forms, including as an image or a serialized format. An
image of a GO graph can be created and stored using the
GOGrapher functions that are inherited from the
PyGraphviz library [14]. All graph layouts and file formats
supported by Graphviz are supported by GOGrapher.
GOGrapher is also capable of exporting an extensible
Graph Markup and Modeling Language (XGMML) repre-
sentation [15] of GO related graphs. The format is based
on the Graph Modeling Language (GML) which is widely
used to describe and render graph visualization by a vari-
ety of programs, including the popular graph visualiza-
tion application Cytoscape [16]. It should be noted that
large graphs (for instance, a fully annotated entire GO
graph) can take a long time to load in Cytoscape. Python's
cPickle library is used for the permanent file storage and
retrieval of graphs as native Python objects. It handles the
serialization and unserialization of Python objects as byte
streams to and from files on the user's machine.

Graph Weighters

A weighting class that implements a set interface (green bor-
ders in Fig. 1) can be used to transform an unweighted (ether
directed or undirected) graph to a corresponding weighted
graph. A weighting class extends a base weighter class and
must implement a single function that accepts two nodes
and returns an appropriate weight according to a certain
weighting scheme. It is simple for a user to implement a new
weighter class that uses a different weighting process based
on the weighting framework provided in GOGrapher.

GOHeirarchicalClassifier: A Case Study

GOGrapher was also employed in a project that devel-
oped a graph-based multi-label classification system for
text categorization. To train a GO graph-based classifier,

Page 3 of 4

(page number not for citation purposes)

BMC Research Notes 2009, 2:122

an initial directed GO graph was created using GOGra-
pher. Using the dynamic typing capabilities of the Python
language, each GO node was then associated with a clas-
sifier, e.g., a naive Bayes or a SVM classifier. The training
documents were further associated with each GO term
and were further propagated to their ancestor nodes, a
step that utilized the topological sort functionality of Net-
workX. Then the classifier associated with each node was
trained using the combined documents. When given a
testing document, the classifiers associated with the nodes
were invoked according to the graph structure, thus the
resulting multiple class labels are organized as a graph.

Performance

GOGrapher has been tested on a number of Linux distri-
butions (RedHat, Debian, Ubuntu) and Windows ver-
sions (Server 2003, XP). All performance tests were
conducted with a graph corresponding to the biological
process ontology, which contains 15,157 terms relevant
to human proteins. It took under two and a half minutes
to create and save a complete GO graph (including time
to parse an ontology and an annotation file) on a Win-
dows Server 2003 machine with a 2.4 GHz processor and
1 GB of RAM. A computer running Debian with a 2.4 GHz
processor and 1 GB of RAM takes slightly less than two
and half minutes. On both machines it takes fewer than
ten seconds to simply save or load a graph.

Creating an image of a large graph can be time consum-
ing. This expense is primarily due to the running time of
the Graphviz layout algorithms. It is suggested that only
images for relatively small graphs should be created. Addi-
tionally, there are currently no Windows binaries of
Pygraphviz released, essentially relegating image creation
to the Linux, Unix, and Mac OS X distributions. In most
cases the creation of an XGMML file may be the best
choice; this method is supported on all platforms. A
XGMML file can be created by GOGrapher and then
imported into a visualization program like the cross-plat-
form application Cytoscape [16].

Comparison with existing tools and future directions

To our best knowledge, GOGrapher is currently the only
programming library available for the manipulation and
analysis of the Gene Ontology graphs. Most of the other
tools are distributed as independent applications, either
available for download or provided as online applica-
tions, that cannot be extended to provide a framework for
additional forms of analysis. GOGrapher is useful as a
library upon which new tools can be built. As a library, it
reduces the redundancy and complexity that come from
recreating the same functionality involved in creating GO
graphs, for instance, implementation of a parser for anno-
tation files and gene ontology files. GOGrapher also pro-
vides programmers with a variety of types of network

http://www.biomedcentral.com/1756-0500/2/122

analysis functionality by the means of inheriting anther
foundation library, NetworkX. As an open source library,
GOGrapher library can be extended with functionalities
that meet the needs of future tool developers.

Availability and requirements

The GOGrapher library is freely available under the GNU
General Public License version 3 at http://
projects.dbbe.musc.edu/trac/GOGrapher. The site con-
tains a short tutorial and an online version of the API.
Minimally, Python [5] and NetworkX [8,10] must be
installed. For graphing functionality, Graphviz [17] and
Pygraphviz [14] must also be installed. GOGrapher is
cross platform software and has been tested on a variety of
Linux distributions and Microsoft Windows.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

XL conceived the project. BM lead implementation, and
all authors contributed to coding and testing of the
library.

Acknowledgements

This research is partially supported by the following NIH grants:
ROILMO009153-01Al, T15LM07438, and 2P20RR017677. B.M. is supported
by graduate fellowship of the College of Graduate Studies, Medical Univer-
sity of South Carolina. The authors would like to thank Mr. Matthew Shot-
well, MS, for critical reading and comments.

References

I. Khatri P, Draghici S: Ontological analysis of gene expression
data: current tools, limitations, and open problems. Bioinfor-
matics 2005, 21(18):3587-95.

2. Alexa A, Rahnenfiihrer], Lengauer T: Improved scoring of func-
tional groups from gene expression data by decorrelating
GO graph structure. Bioinformatics 2006, 22(13):1600-7.

3. Grossmann S, Bauer S, Robinson P, Vingron M: Improved Detec-

tion of Overrepresentation of Gene-Ontology Annotations

with Parent-Child Analysis. Bioinformatics 2007, 23(22):3024-31.

Goeman J, Mansmann U: Multiple testing on the directed acyclic

graph of gene ontology. Bioinformatics 2008, 24(4):537-44.

Python Programming Language Website [http://python.org]

SciPy Python Package Website [http://www.scipy.org]

Numpy Python Package Website [http://numpy.scipy.org]

NetworkX Python Package Woebsite [https://net

workx.lanl.gov/wiki]
BioPython Package Woebsite

Main_Page]

10. Hagberg AA, Schult DA, Swart PJ: Exploring network structure,
dynamics, and function using NetworkX. Proceedings of the 7th
Python in Science Conference (SciPy) 2008.

I1. NetworkX Application Programming Interface Documenta-
tion [https://networkx.lanl.gov/reference/networkx/]

12. Gene Ontology Downloads Page [http://www.geneontol
ogy.org/GO.downloads.shtml]

13. MySQL Database Website [http://www.mysql.com]

14. pyGraphviz Python Package Website
workx.lanl.gov/wiki/pygraphviz]

15. The eXtensible Graph Markup and Modeling Language Doc-
umentation [http://www.cs.rpi.edu/~puninj/XGMML/]

16. Cytoscape Website [http://www.cytoscape.org]
17. Graphviz Project Website [http://www.graphviz.org]

»

®© N

hd

[http://biopython.org/wiki/

[https://net

Page 4 of 4

(page number not for citation purposes)

http://projects.dbbe.musc.edu/trac/GOGrapher
http://projects.dbbe.musc.edu/trac/GOGrapher
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17848398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17848398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17848398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18203773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18203773
http://python.org
http://www.scipy.org
http://numpy.scipy.org
https://networkx.lanl.gov/wiki
https://networkx.lanl.gov/wiki
http://biopython.org/wiki/Main_Page
http://biopython.org/wiki/Main_Page
https://networkx.lanl.gov/reference/networkx/
http://www.geneontology.org/GO.downloads.shtml
http://www.geneontology.org/GO.downloads.shtml
http://www.mysql.com
https://networkx.lanl.gov/wiki/pygraphviz
https://networkx.lanl.gov/wiki/pygraphviz
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cytoscape.org
http://www.graphviz.org

	Abstract
	Background
	Findings
	Conclusion

	Introduction
	Library Description and Structure
	Node Objects
	Graph Objects
	Graph Creation Process

	GO Information Sources
	Database Backend
	Ontology and Annotation Files
	Graph Storage and Output

	Graph Weighters
	GOHeirarchicalClassifier: A Case Study
	Performance
	Comparison with existing tools and future directions

	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	References

