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A commentary on

Compensatory plasticity: time matters

by Lazzouni, L., and Lepore, F. (2014). Front. Hum. Neurosci. 8:340. doi: 10.3389/fnhum.2014.00340

The mammalian nervous system can adapt to the challenges of life through neural plasticity. The
brain will undergo extensive reorganization following sensory deprivation or damage to afferent
pathways (Kaas, 2001). This plastic reorganization develops as a function of time. A recent review
on plasticity in the blind (Lazzouni and Lepore, 2014) stressed the importance of critical periods
and the influence of the duration of sensory deprivation on the re-organization of sensory cortices.
Such considerations are paralleled in the hearing sciences, sharing the authors’ opinion that “time
matters.” Restoring lost sensory function to a blind or deaf cortex, via surgically implanted devices
offers a unique insight into brain reorganization, allowing scientists to follow the transition from
deaf to hearing, from blind to sighted. While retinal implants are just becoming available in a
clinical setting (Zrenner et al., 2010), cochlear implants (CIs) have been offered since the 1980s
(Clark, 2003). Here we argue that, for auditory implants, time matters along two dimensions: pre
and post-implantation. On the one hand, plasticity is especially strong when sensory deprivation
occurs at early stages of development. Referred to as the sensitive period for brain development, it
provides cut-off ages to guide implantation (Sharma et al., 2002; Bedny et al., 2010). On the other
hand, the functional maturity of the auditory cortex crucially depends on sensory experience (Kral
et al., 2005), emphasizing the importance of rehabilitation.

Age at implantation plays a substantial role in performance with a CI. Research has shown the
existence of an early critical period for brain development and demonstrated how deprivation-
driven functional changes in the cortex are affected by age. Cats that were implanted after the fifth
month of age had smaller activation areas of the auditory cortex, compared with cats implanted
earlier, even when they had longer experience with implant (Kral et al., 2002, 2005; Kral and
Sharma, 2012).

In humans, the latency and morphology of the P1 component of auditory-evoked potentials can
serve as a biomarker for the development of the central auditory pathways (Sharma et al., 2005b;
Dorman et al., 2007; Kral and O’Donoghue, 2010). Using this measure, a cut-off age for optimal
auditory cortical plasticity was identified. Children implanted before the age of 3.5 years showed
a faster and more robust development of the P1 than children implanted past age seven. Sharma
et al. (2002) observed that 55 out of 57 early-implanted children had P1 latencies within the range
of age-matched normal-hearing children vs. 10 out of 29 middle-implanted and 1 out of 21 late-
implanted children, despite all children being matched for implant use duration. In a longitudinal
study, late-implanted children showed atypical P1 latencies and morphologies during the first year
of implantation whereas the early-implanted group showed a more rapid development (Sharma
et al., 2005a). Behavioral studies also show faster and better language development in children
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implanted before the age of 3 (Nikolopoulos et al., 1999; Kirk
et al., 2002), which correlates well with functional changes in the
brain (Lee et al., 2001; Giraud et al., 2002). Thus, both animal and
human CI studies suggest that age at implantation has a stronger
influence on performance than duration of experience with the
implant.

Despite the dominant role of age at implantation, experience
with a CI also induces functional changes in the auditory
system—at both peripheral and central level—stressing the
importance of a post-implantation rehabilitation period
(Sandmann et al., 2009). Spiral ganglion neurons play a
critical role in relaying the afferent auditory information;
studies in deafened cats and guinea pigs showed that electrical
stimulation prevented their retrograde degeneration and
increased their size (Shepherd et al., 1983, 1994; Losteau, 1987;
Leake et al., 1991, 1999; Li et al., 1999). Similarly, electrical
stimulation through CIs had a restorative effect on the medial
superior olive, a key auditory brainstem structure (Tirko and
Ryugo, 2012). In humans, electrical stimulation resulted in
functional improvements. Activation of both primary and
secondary regions of the auditory cortex in response to sound
was observed in CI patients 1 week after implant switch-on
(Giraud et al., 2001); as CI experience increased, the authors
consistently observed a reduction in the number of activated
clusters in the secondary regions, indicating a better tuning
of primary auditory region. This effect was smaller in late-
implanted than in early-implanted individuals, illustrating the
complex interaction between the factors of implant experience
and age at implantation (Giraud et al., 2001; Kral et al.,
2002).

Returning to the parallel between visual and auditory
deprivation, studies on critical period and visual implantation
are still not possible as retinal implants are currently only
available to adults. However, several questions arise, for instance,
can we observe a similar benefit when implanting during the
sensitive period for retinal implants? As hearing aid use correlates

with positive CI outcomes (Lazard et al., 2012), will the use
of sensory substitution devices in the blind benefit or hinder
visual restoration? On par with Lazzouni and Lepore’s review
(Lazzouni and Lepore, 2014), research on auditory deprivation
supports the compensatory adaptation theory, whereby the
deafferentiated cortex reorganizes and adapts to sensory loss.
Anatomical and functional changes take place in the auditory-
deprived brain, contrary to the general loss hypothesis that
would predict undifferentiated degradation of sensory function.
Moreover, research on CIs provides a different perspective on the
compensatory adaptation theory. Whether this reorganization
is detrimental or beneficial to hearing with a CI is very much
an open debate (see Heimler et al., 2014 for a review). Cross-
modal reorganization of the auditory cortex can limit the benefit
from a CI (see for instance Sandmann et al., 2012), but in other
cases, it can enhance it (Mitchell and Maslin, 2007; Rouger et al.,
2007). Time spent in the deprived state may play a key role in
solving this apparent contradiction (Giraud and Lee, 2007; Lee
et al., 2007). How soon is too soon for surgical implantation and
activation to maximize the risk-benefit trade off is debated and
highly depends on individual factors (James and Papsin, 2004;
Colletti et al., 2012; Hagr et al., 2015).

In sum, both the time spent in a deprived state and acquiring
sensory experiences matter for the brain to cope with the
challenges of change. Stimulating the impaired sense as much
as possible and restoring it as soon as possible within the cut-off
period shall maximize the benefits from implantation.
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