
Citation: Chinpong, K.;

Thavornwattana, K.; Armatrmontree,

P.; Chienwichai, P.; Lawpoolsri, S.;

Silachamroon, U.; Maude, R.J.;

Rotejanaprasert, C. Spatiotemporal

Epidemiology of Tuberculosis in

Thailand from 2011 to 2020. Biology

2022, 11, 755. https://doi.org/

10.3390/biology11050755

Received: 26 March 2022

Accepted: 12 May 2022

Published: 16 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Spatiotemporal Epidemiology of Tuberculosis in Thailand from
2011 to 2020
Kawin Chinpong 1,2,†, Kaewklao Thavornwattana 1,2,†, Peerawich Armatrmontree 1,2,†, Peerut Chienwichai 1 ,
Saranath Lawpoolsri 3 , Udomsak Silachamroon 4, Richard J. Maude 5,6,7,8 and Chawarat Rotejanaprasert 3,5,*

1 Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand;
kawin.chi@edu.cra.ac.th (K.C.); kaewklao.tha@edu.cra.ac.th (K.T.); peerawich.arm@edu.cra.ac.th (P.A.);
peerut.chi@cra.ac.th (P.C.)

2 Department of Computer Engineering, Faculty of Engineering, King Mongkut’s University of technology
Thonburi, Bangkok 10140, Thailand

3 Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
saranath.law@mahidol.ac.th

4 Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University,
Bangkok 10400, Thailand; udomsak.sil@mahidol.ac.th

5 Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University,
Bangkok 10400, Thailand; richard@tropmedres.ac

6 Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA 02115, USA
7 Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford,

New Road, Oxford OX1 1NF, UK
8 The Open University, Milton Keynes MK7 6AA, UK
* Correspondence: chawarat.rot@mahidol.ac.th
† These authors contributed equally to this work.

Simple Summary: This retrospective study was conducted to describe and analyze spatiotemporal
patterns of tuberculosis (TB) incidence at provincial level of Thailand. TB notification data from
2011 to 2020 were obtained from the surveillance reporting system of the Bureau of Epidemiology,
Department of Disease Control, Ministry of Public Health. Time series and clustering patterns of
the occurrence were assessed by using time series and spatial analyses. The findings indicated
temporal trends and clusters of the disease occurred in the study area. More specifically, there was
an overall decreasing trend, and significantly high-rate clusters were mostly along the border of
neighboring countries.

Abstract: Tuberculosis is a leading cause of infectious disease globally, especially in developing
countries. Better knowledge of spatial and temporal patterns of tuberculosis burden is important
for effective control programs as well as informing resource and budget allocation. Studies have
demonstrated that TB exhibits highly complex dynamics in both spatial and temporal dimensions
at different levels. In Thailand, TB research has been primarily focused on surveys and clinical
aspects of the disease burden with little attention on spatiotemporal heterogeneity. This study aimed
to describe temporal trends and spatial patterns of TB incidence and mortality in Thailand from
2011 to 2020. Monthly TB case and death notification data were aggregated at the provincial level.
Age-standardized incidence and mortality were calculated; time series and global and local clustering
analyses were performed for the whole country. There was an overall decreasing trend with seasonal
peaks in the winter. There was spatial heterogeneity with disease clusters in many regions, especially
along international borders, suggesting that population movement and socioeconomic variables might
affect the spatiotemporal distribution in Thailand. Understanding the space-time distribution of TB is
useful for planning targeted disease control program activities. This is particularly important in low-
and middle-income countries including Thailand to help prioritize allocation of limited resources.
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1. Introduction

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), is a lead-
ing cause of morbidity and mortality globally with approximately 1.4 million deaths and
10 million people developing TB in 2019 [1]. The TB burden is particularly high in low- and
middle-income countries (LMICs), with over 95% of deaths and nearly 40% undiagnosed
in these regions [2]. Limited accessibility to healthcare and the social stigma of the dis-
ease contribute to delays in TB detection and poor treatment adherence [3]. Mtb complex
pathogens are mainly spread by airborne transmission from infected individuals with
active disease. Poor living conditions and overcrowding can perpetuate transmission with
faster spread during coughing [4]. This disease is not only a public health concern in LMICs
but also leads to financial and social insecurity. The economic burden of TB is substantial
due to reduced income, logistics, and medical costs with lost annual income estimated at
approximately 58% for individuals and 39% for households [5]. Thailand is considered by
the WHO as one of the TB highest-burden countries and TB is ranked as one of the top ten
national infectious diseases under the Thai National Disease Surveillance System.

For TB control activities, spatial heterogeneity in the distribution of infection has
been an important factor determining the effectiveness of national TB control programs,
especially in developing countries [6]. Without proper consideration of spatial heterogene-
ity in disease burden, control programs can be hindered by failure to implement specific
interventions to efficiently manage the local disease situation in different areas; thus, a
better understanding of TB spatiotemporal epidemiology can inform planning of effective
prevention and control strategies by policymakers [7]. This is particularly helpful in LMICs
including Thailand, in which it is necessary to prioritize resource allocation by focusing
on regions with the highest burden. Moreover, accomplishing disease control objectives at
global or national levels requires good knowledge management including spatial analysis
of disease distribution serving as a prelude to control activities and future elimination.

With the development of geographical and temporal analysis methods, these analytical
tools have been utilized to investigate TB epidemiology in LMICs. For instance, a time
series analysis was built on historical data to predict the future disease burden in China [8,9].
Spatial statistics including spatial filtering and cluster analysis have been used to analyze
and visualize the spatial patterns of tuberculosis in Asian and African countries [10–12].
These studies demonstrated that TB exhibited highly complex dynamics in both spatial
and temporal dimensions at different levels. In Thailand, TB research has been primarily
focused on surveys and clinical aspects of disease prevalence with little attention on spatial
heterogeneity [13,14]. A few studies performed spatial and temporal analyses for a limited
area and/or brief time period. For instance, spatial TB hotspot detection was used in one
Thai province [10], while another examined the association of TB with social factors in
Thailand during a four year period [14]. Although these investigations have provided
valuable insights in understanding the spatial patterns and potential risk factors associated
with disease occurrence, previous studies had important limitations, and there is additional
scope to more broadly employ spatiotemporal analysis and disease clustering in order to
more effectively support disease control policies.

In this regard, it is important to further investigate to have a clearer insight of space-
time heterogeneity in the occurrence of TB at small spatial and temporal scales to inform
targeted public health responses. Therefore, this research was conducted and analyzed
using retrospective surveillance data to describe demographic attributes of people with TB
and characterize the temporal pattern of incidence using time series analysis. Furthermore,
we also aim to identify spatial clusters of TB using data on monthly TB case notifications
for the whole country from national surveillance data for the years 2011 to 2020 in Thailand.
The findings from this research were discussed and beneficial in the decision-making
process for targeting of public health interventions for more effective disease control.
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2. Materials and Methods
2.1. Study Area and Data Sources

The study was conducted in Thailand, which has a population of approximately 70 million
people across 77 provinces and borders Myanmar, Laos, Cambodia, and Malaysia. Thailand
has a tropical climate with three seasons: rainy (May–October), winter (October–February),
and summer (February–May). The study was planned as a retrospective analysis of reported
tuberculosis cases collated from the surveillance reporting system, Bureau of Epidemiology,
Department of Disease Control, Ministry of Public Health (MOPH). All the cases were aggre-
gated monthly tuberculosis cases notified during the years 2011 to 2020 at provincial level
classified as three types in the surveillance system (pulmonary, meningitis, and tuberculosis
in other organs). A TB case was identified using one or more of the following criteria [15,16]:
(1) diagnosis of TB by a physician with one of the A15–A19 ICD-10 (the 10th revision of the
International Classification of Diseases) codes; (2) positive TB result with one or more of the
following laboratory tests—sputum smear, sputum culture, GeneXpert MTB/RIF assay, and line
probe assay (LPA); (3) current TB treatment with rifampicin or kanamycin. The surveillance data
included demographic information as well as month and province of diagnosis. The geographic
coordinates of the province centroids and province boundaries were from the GEO package file
in the Database of Global Administrative Areas (GADM), a high-resolution database of country
administrative areas. Files for analysis were compiled using R programming language.

2.2. Rate Standardization

To study spatiotemporal heterogeneity, it is important to account for population at risk
when health outcomes are compared across spatial units since incidence may be influenced
by numbers of individuals at risk. This requires standardization of the health outcome to
control the population effect. Epidemiological standardization techniques can be applied in
either direct or indirect manners over a selected standard population as a common reference
for comparison [17]. Using indirect standardization, the ratio of observed to expected
health outcomes is calculated as a standardized ratio. The standardization can also help
to decrease the influence of areal effects due to small numbers of the outcome, which
could lead to an unstable rate and large errors of estimation [18–20]. The standardized
mortality or incidence ratio for province i at time period t, xit, was calculated as the ratio
between incidence or death count per population size [21] as xit = Nit/Pit, where Nit is the
TB incidence or death counts and Pit is the number of population at risk.

2.3. Descriptive and Temporal Analyses

TB cases were analyzed at provincial level and aggregated by age group for descriptive
analysis. The demographic data were analyzed using R version 1.3.1093. Temporal patterns
were assessed using the monthly numbers of cases and analyzed by the seasonal-trend
decomposition procedure based on the Loess smoother (STL) [22]. The TB time series data
were extracted into components Yt = mt + st + et, where Yt = ∑i xit represents the incidence
or death count of TB combined from all provinces, mt is the trend component, st is the
seasonal, and et is remainder or residual at province i and month t [23,24]. The procedure
starts from trend calculation using a moving average method as m̂t =

1
2k+1 ∑k

j=−k Yt+j ,
where m̂t is the estimate of the trend-cycle at time t obtained from the averaged number of
events of the time series within k months of t (set iterator j ∈ [−k, k]). Then, the seasonal
component, st, can be computed by evaluating seasonal index for each period, which is
averaged over the detrend values for the same month for all periods while the residuals, et,
are calculated using differencing from all known variables. The remainder is the residual
left in the time series data after removing its trend, cycle, and seasonal components. This
component is the random fluctuation in the time series data that the other components in
temporal decomposition cannot explain. In this study, we performed the temporal analysis
on the TB data over the 10-year period using forecast version 8.14 and fpp2 version 2.24
(Hyndman, Australia) libraries in R version 4.1.0.
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2.4. Spatial Pattern Analysis
2.4.1. Spatial Contiguity Matrices

For spatial pattern analysis in this study, we focused on spatial cluster detection. In
the following sections, we first describe the spatial contiguity matrix for the neighboring
structure we used. Then, global autocorrelation testing was explained and used to assess
the overall clustering property in the data. Finally, local hotspot detection was applied to
appropriately identify specific cluster locations.

In the first step to identify the neighborhood contingency, a spatial contiguity or spatial
weight matrix, W, is a square matrix that defines spatial contiguity for all node pairs, with
a zero diagonal, and off-diagonal nonzero elements. This matrix is required for spatial
autocorrelation calculation between the value of a provincial node and its neighbors that
appear in global and local detection. A general approach to specify the matrix is to calculate
the distance band labeling the node-pair compared with a distance threshold. However, for
the areal data in our study, which does not include patient coordinates, the boundary-based
contiguity matrix might be more appropriate. There are four main types of contiguity
matrix associated with the game of chess: linear, rook, bishop, and queen contiguity,
perhaps the most widely used due to the flexibility to capture various autocorrelation
forms. The main concept of the queen contiguity criterion is considering adjacent neighbors
mutually sharing borders and edges. For each province-pair (i, j) in our study map, the
members wij and wji in the queen contiguity matrix W were set to 1 when i = j, otherwise
as 0. The adjacent matrix was processed from the Thailand provincial-level geopackage
file (gkpg extension, retrieved from GADM) loaded using GeoPandas 0.9.0 (Jordahl et.al.)
and calculated queen contiguity matrix using libpysal 4.4.0 (Rey and Anselin) [25,26] as
represented in Figure 1.

Figure 1. Map of Thailand with provincial borders (blue lines) and connected provinces from spatial
contiguity matrix (black dots and red lines).
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2.4.2. Global Spatial Detection

Global detection was applied to identify the overall clustering property in the data.
In general, global cluster tests are used to examine whether autocorrelation exists in the
dataset without being concerned with the specific coordination of clustering [27]. There are
several approaches for global detection, e.g., Geary’s c statistic that relies on sum squared
differences of adjacent pairs of values, and Moran’s I coefficient that considers spatial
patterns compared with the random form. Despite the various applications of Geary’s c
and Moran’s I, these methods do not test under hotspot and coldspot segregation [28]. On
the other hand, the Getis-Ord G statistic considering the summation of values associated
with adjacent points might be more suitable for our study.

In general, the global Getis-Ord statistic, G, is used to measure the overall spatial
association of values that have polygon contiguity [29,30]. As the general case is that
no particular location i is fixed, in the global detection case, the statistic equation can be
expressed as

G =
∑n

i=1 ∑n
j=1 wijxixj

∑n
i=1 ∑n

j=1 xixj
, j 6= i (1)

where wij is the spatial weight value in the spatial matrix, and xi is the standardized rate for
province i. The normalized G (Z-score, ZG) score was used for hypothesis testing under the
null hypothesis of spatial independence. Highly positive ZG values indicate clustering of
areas with similarly high health outcomes, whereas highly negative ZG values indicate the
tendency to have similarly low health outcomes. The significance of the global Getis-Ord
statistic was then evaluated under permutation testing distribution using esda 2.3.6 that is
a subset of the libpysal library 4.4.0 (Rey and Anselin) in Python (Rossum, Drake, and Fred,
CA) [26].

2.4.3. Local Spatial Detection

Due to the limitation of global detection only concerning the overall clustering prop-
erty, local detection was also applied to appropriately identify specific cluster locations [31].
Local Moran’s I and local Geary’s C are common measures that only calculate the similarity
with neighbors and classify clusters into outliers. To inform spatial locations for effective
public health control planning, the hotspot analysis calculating high–low values for cluster
detection such as local Getis–Ord G∗i statistic would be more appropriate for the purpose
of our study.

The local Getis–Ord statistic, G∗i , compares local averages for each province (province
itself included) to global averages from overall area to identify high-value and low-value
clusters. For province i, the standardized Getis–Ord G∗i in the distribution of the population
density form can be defined as [11,32]

G∗i =
∑j wijxj −WiX√

(nS∗li)−W2
i

n−1

, ∀j (2)

where W is a spatial matrix that includes self-loop for all provinces (set wii = 1 for all i), wij is
the spatial weight value in spatial matrix W, xj is either standardized incidence or mortality
rate for province j, Wi is the sum of value from matrix W in position i, S∗li is sum square weight
only row i, and X and s denote mean and variance for all n provinces. This calculation relies
on the same hypothesis as global detection but considers contiguous neighbors of province
i instead. Provinces that contain an extremely high G∗i value were considered as part of a
high-value cluster (hotspot cluster) and those with an excessively low G∗i value were assigned
to a low-value cluster (coldspot cluster). The significance of G∗i statistic was tested under the
permutation distribution as for global detection. The detected significant hotspots/coldspots
imply that high/low TB cases in a particular province were surrounded by others with high/low
TB cases, respectively. To classify a province as a hotspot, a threshold Z-score of >1.96 equivalent
to the level of significance at 0.05 was considered. Others with Z-scores between −1.96 and
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+1.96 were considered as having nonsignificant clusters while those with Z-scores < −1.96 were
classified as coldspots. The Getis–Ord G∗i statistic was computed for provincial standardized
mortality and incidence rates using library esda 2.3.6 (Rey and Anselin) with geopandas 0.9.0
(Jordahl et al.) and matplotlib 3.4.2 (Hunter, UT) for spatial visualizations [26,33].

3. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Descriptive and Temporal Analyses

In total, cases and deaths notified in the national surveillance system during 2011 to
2020 were 143,997 and 400, respectively, as shown in Table 1. Pulmonary TB accounted
for 67.91% of cases and 89.3% of deaths, the remainder being extrapulmonary (meningitis
and other organs), as shown in Table 1. Annual proportions of standardized incidence
and mortality are shown in Figure 2. People over 65 years old comprised 28.46% of
standardized incidence and 44.78% of standardized mortality overall, followed by those
aged 55–64 years with 20.16% of standardized incidence and 20.01% of mortality. Both
incidence and mortality rate decreased with decreasing age but age distributions did not
change over time. The total proportions in children less than 15 years old were 3.26% of
standardized incidence and 0.48% of mortality while there were no deaths for children
0–4 years old.

Table 1. Annual TB cases and deaths by type of infection notified in the surveillance system during
2011–2020.

Year
Pulmonary Meningitis Other Organs Overall

Incidence Mortality Incidence Mortality Incidence Mortality Incidence Mortality

2011 29,825 103 829 6 11,384 14 42,038 123
2012 16,403 75 442 3 7050 4 23,895 82
2013 7630 63 233 6 3225 3 11,088 72
2014 5148 15 154 0 2194 0 7496 15
2015 2958 10 98 0 1572 0 4628 10
2016 1815 1 47 0 1152 1 3014 2
2017 6993 24 150 1 3123 1 10,266 26
2018 8954 22 217 1 4551 1 13,722 24
2019 8839 25 224 1 4823 1 13,886 27
2020 9222 19 231 0 4511 0 13,964 19

Figure 3 shows the time series decomposition of the TB cases (Figure 3a) and deaths
(Figure 3b) notification data. The incidence rates tended to decrease from 2012 to 2016 and
increased in 2017 followed by a levelling off, as seen from the trend component. For the
seasonal variation, both incidence and mortality peaked early in each calendar year and
decreased with fluctuation toward the end of the year.

3.2. Spatial Pattern Analysis
3.2.1. Global Spatial Detection

The general G statistics were applied to examine the global autocorrelation in each
time period to evaluate the spatial correlation over the study areas. Since this measure
only tests the overall pattern of spatial pattern against randomness and could miss isolated
hotspots if only strong global autocorrelation is considered, the level of significance was
relaxed to 0.1 to initially assess the global spatial behavior. The results of global G statistics
suggested spatial autocorrelation in both incidence and mortality. It was found that the test
values for incidence rate were statistically significant (p-value < 0.1) only in 2012 and 2013
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while the mortality rates were found to be spatially clustered only in 2011 to 2013 and 2015
to 2016, as presented in Table 2.

Figure 2. Annual proportion of standardized incidence (a) and mortality (b) by age group during
2011–2020.
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Figure 3. Time series decomposition of the monthly notified TB incidence (a) and mortality (b) during
2011–2020.
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Table 2. Annual general G statistics for the notified TB incidence and mortality rates in Thailand at
provincial level in 2011–2020.

Years
Incidence Rate Mortality Rate

G p-Value Interpretation G p-Value Interpretation

2011 0.0772 0.4087 Scattered 0.2137 0.01 Clustered
2012 0.0913 0.0538 Clustered 0.4168 0.0416 Clustered
2013 0.1096 0.0692 Clustered 0.3245 0.0907 Clustered
2014 0.1193 0.1777 Scattered 0.6526 0.2942 Scattered
2015 0.1246 0.4187 Scattered 1.2458 0.0364 Clustered
2016 0.1331 0.4124 Scattered 1.2255 0.0234 Clustered
2017 0.0875 0.2304 Scattered 0.322 0.3345 Scattered
2018 0.0923 0.4539 Scattered 0.2734 0.2839 Scattered
2019 0.1011 0.301 Scattered 0.2486 0.2691 Scattered
2020 0.0981 0.4566 Scattered 0.2652 0.1931 Scattered

3.2.2. Local Spatial Detection

To further investigate the local behavior, a more specific detection using the Getis-
Ord G∗i statistic was performed for each province for all study periods. In Figure 4, hot
(red) and cold (blue) spot incidence maps are shown in the top panel with standardized
incidence rates of provincial TB in the bottom panel. The incidence decreased from 2011
through 2016, then increased in 2017 after which they were stable until 2020, the same
pattern as was found in the time series analysis. The high-value incidence clusters (hotspot
group) were mainly focused along the borders with neighboring countries over the study
period. In the east, the hotspots mostly appeared around the provinces of Chachoengsao,
Sa Kaeo, and Prachin Buri. In the northeast, bordering Cambodia, the results implied the
potential clusters were in Ubon Ratchathani, Si Sa Ket, Yasothon, and Amnat Charoen while
other high incidence zones in the northeast were suggested to be Sakon Nakhon, Nakhon
Phanom, and Bueng Kan. In northern areas, hotspots included Chiang Rai, Lampang, Nan,
Phayao, and Phrae during 2015–2020 while there were other foci in the west including Tak,
Kamphaeng Phet, and Nakhon Sawan.

Figure 4. Maps of yearly provincial incidence clusters using local Getis–Ord statistic (upper) and
crude TB incidence rates (lower) during 2011–2020.

Figure 5 depicts hotspots of TB mortality rates in the top panel and spatial distribution
of TB mortality rates in the bottom panel. Provincial mortality rates generally reduced
from 2011 to 2016 and slightly increased from 2017 until the end of the study period in
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2020, similar to the findings of the time series analysis. For local detection, cluster maps
mostly showed coldspots, especially in the northeastern and southern regions. During
2011–2013, hotspots mostly appeared in the western provinces such as Tak, Nakhon Sawan,
Kamphaeng Phet, and Phichit. During 2014–2015, the hotspots were mostly in the northern
region; then, they were clustered in the provinces along the Thai-Lao border in the regions
of Nan, Phrae, and Phayao during 2017–2020. Some provinces in the east and south were
also detected as potential hotspots in 2017–2020.

Figure 5. Maps of yearly mortality clusters using local Getis–Ord statistic (upper) and crude TB
mortality rates (lower) during 2011–2020.

4. Discussion

A retrospective analysis was applied to TB surveillance data in Thailand from 2010
to 2020 with age stratification to examine temporal and spatial distributions. In our time
series analysis, there was a seasonal pattern in the TB incidence and mortality with an
annual peak in winter. A seasonal effect on transmission of tuberculosis has been observed
in Peru and China [34,35]. In addition, variations in vitamin D levels, indoor activities,
PM2.5 concentration, and seasonal immune function changes could be possible drivers of
seasonal tuberculosis [36,37]. In Thailand, high levels of air pollution usually occur during
the first quarter of each year, which is the dry season of the country [38], suggesting that
air pollution could irritate the respiratory system and trigger the seasonal pattern.

Based on the national operational plan 2017–2021, a detailed analysis of the available
data suggested that the disease burden was falling during 2011–2016 due to the advent
of the universal health coverage policy; however, there still might be a fraction underre-
ported [39]. The report from the 5th Joint International Monitoring Mission for TB Control
(JIMM) suggested that Thailand, compared with other countries in the region, had been
facing a number of challenges including under-reporting from non-MOPH health facili-
ties [40], which might have resulted in the decreasing trends of incidence and mortality
during 2011–2016. Nonetheless, according to the Thailand Operational Plan to End Tu-
berculosis 2017–2021, the first strategy was to ensure that all presumptive TB cases have
access to TB screening and early TB diagnosis via molecular diagnostics, and to ascertain
an effective TB surveillance system, especially in key target populations [39]. So, this
suggests an increase in the access to early diagnosis and more TB case findings in key target
populations, which might imply the increasing incidence trend after 2016.

In Thailand, the EPTB proportions to the total TB cases were 29% in 2011, which
then increased to 36% in 2019. Globally, this TB type represented 15% of the 6.3 million
new TB cases reported in 2016, varying from 8% notified in the WHO Western Pacific
Region to 24% reported in the WHO Eastern Mediterranean Region [41]. In North America,
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Sub-Saharan Africa, and Australia, there were 30% of all new TB cases and relapses in
2016 [41]. EPTB rates were different according to the socioeconomic level of the country and
to the supports and resources of TB programs. Despite the data reports, studies conducted
on extrapulmonary TB have been mostly in high-income countries; thus, there is a need
to better understand EPTB in low- and middle-income countries [42]. Moreover, this type
of TB is likely to be undiagnosed in developing countries due to the difficulties in its
diagnostic process with limited infrastructure. Thus, EPTB deserves greater attention in
those areas, especially in resource-limited settings.

Age-standardized incidence and mortality rates were higher with increasing age but
the age distribution did not change over time. This is consistent with TB survey estimates
using WHO data in African countries [43]. Moreover, a study in the US reported that the
estimated latent TB infection prevalence was highest in persons aged >65 years old among
the non-US born and highest in persons aged 45−64 years among the US born. The elderly
also had the worst outcomes among all the age groups in a study in Zimbabwe, which
might be related to immunosuppressant comorbidities or other age-related diseases [44].
TB treatment among senior populations has been found to be complicated by the treatment
of comorbidities such as diabetes mellitus, leading to increased adverse treatment effects,
mortality, high rates of recurrent TB, and drug resistance [45,46]. Hence, there should be
focused attention on the more vulnerable older population with underlying diseases, who
have worse treatment outcomes than other age groups.

Incidence rates of notified TB cases exhibited spatial heterogeneity, as indicated by
the occurrence of spatial clusters and isolated hotspots in particular areas. This study
indicated that statistically significant hotspots and spatial clusters were common along the
borders with neighboring countries. From data reported to the WHO, countries neighboring
Thailand are among the list of those with a high burden of TB [47]. Tuberculosis infection
among migrant workers, especially along the borders, has been one of the major public
health problems for Thailand’s TB control program [48,49], as also shown in the hotspot
analysis. On the other hand, high-mortality hotspots were mostly in the middle of the
country. This difference might be due to the population structure in those areas. Incidence
cases along the borders were in areas with high population movement and migrant workers
who were of working age, while the central region was more conservative with a more
senior population who might also have had underlying health conditions. Nonetheless,
further investigation is needed in order to form proper public health interventions.

The TB pattern in the Thai borderland is seemingly related to the mobility of migrants
seeking economic opportunities who traversed the borders and traveled across the country
for treatment [49]. Some migrants travel from their hometowns to Thailand due to a
lack of available, affordable, and appropriate care in those settings [48]. Traveling can
be costly and logistically challenging for such migrants, who have often exhausted other
options for accessing medical treatment and supportive care. Some have to travel with
active TB either to access treatment or to return home to their family [50]. Moreover,
legal status and financial difficulties are also related to the social, legal, and economic
environments where migrants live [50]. There are also barriers to accessing TB care for
migrant populations, including legal and health insurance issues [51]. Therefore, further
investigation on migrants is an important issue for TB control activities of the country.
In addition, effective disease surveillance and responses are essential and should cover
various migrant conditions.

The utilization of spatiotemporal analysis to examine the pattern of TB cases can be
beneficial in understanding the space-time distribution and aggregation of TB clusters [7].
Consequently, the results suggest that TB transmission is highly heterogeneous and there
may be benefit in using this to guide variation in the intensity of control activities between
different administrative units. Areas with high disease rates might require more atten-
tion and appropriate support compared to regions with lower risk [52]. Regions with
hotspots and clusters of TB notifications should be prioritized for targeted strategies to
control TB transmission in those areas. Thus, policymakers and health authorities would
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need to effectively manage resource allocation for better results from TB prevention and
control activities.

Our study had several limitations. It was conducted using a retrospective design with
secondary surveillance data; thus, the numbers are heavily dependent on reporting rates.
As no data were available on testing, it was assumed that the case numbers reflected a
similar proportion of true incidence in all provinces. The TB notifications were aggregated
in groups rather than as individuals, which meant the complicated interactions of factors
at an individual level could not be examined. Nonetheless, our analyses utilized the data
potential by using various analytical tools to investigate both space and time dimensions
to more comprehensively inform surveillance activity planning. In addition, we applied
a long-period of 10 years (120 months) to examine the disease patterns. Although there
are other spatial detection methods such as SatScan [53], which is widely used in spatial
analysis, the scan statistics for this are assumed to be circular and, given the irregular shape
of the administrative boundaries at provincial level in this study, this could potentially
miss hotspots and isolated areas with excess risks. In future work, other spatiotemporal
analytical methods such as Bayesian disease mapping could be employed and compared to
further examine the spatiotemporal heterogeneity of the disease distribution. Additionally,
a focus on the association between TB occurrence and various environmental and socioeco-
nomic risk factors with underlying diseases might improve the knowledge of the disease
pattern and better inform control efforts.

5. Conclusions

This study utilized spatiotemporal methods to analyze and provide a better under-
standing of the spatial and temporal patterns of notified TB cases and deaths. The temporal
pattern was examined using time series decomposition, and global and local spatial cluster
measures were used to reveal geographical characteristics of the disease. The results of
the study showed an overall decreasing trend with seasonal peaks in winter. There was
observed spatial heterogeneity and disease clusters in many regions, especially along
country borders. In Thailand, the TB surveillance system has traditionally been operated
passively at health facilities where patients with active TB symptoms seek medical care
and healthcare workers can diagnose and provide treatment. However, this surveillance
system may be inaccurate to measure the total burden of TB, especially in the remote
communities and migrant populations. Our findings can be beneficial in providing more
details of the space-time distribution of TB and targeting high-risk populations, which is
helpful for effective planning allocation of limited resources for control program activities.
It is hoped that our findings can support public health interventions and provide a more
comprehensive picture of TB for more effective disease control activities.
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