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Long non-coding RNAs (lncRNAs) play important roles in various biological processes,
where lncRNA–protein interactions are usually involved. Therefore, identifying lncRNA–
protein interactions is of great significance to understand the molecular functions of
lncRNAs. Since the experiments to identify lncRNA–protein interactions are always costly
and time consuming, computational methods are developed as alternative approaches.
However, existing lncRNA–protein interaction predictors usually require prior knowledge
of lncRNA–protein interactions with experimental evidences. Their performances are
limited due to the number of known lncRNA–protein interactions. In this paper, we
explored a novel way to predict lncRNA–protein interactions without direct prior
knowledge. MiRNAs were picked up as mediators to estimate potential interactions
between lncRNAs and proteins. By validating our results based on known lncRNA–protein
interactions, our method achieved an AUROC (Area Under Receiver Operating Curve) of
0.821, which is comparable to the state-of-the-art methods. Moreover, our method
achieved an improved AUROC of 0.852 by further expanding the training dataset. We
believe that our method can be a useful supplement to the existing methods, as it provides
an alternative way to estimate lncRNA–protein interactions in a heterogeneous network
without direct prior knowledge. All data and codes of this work can be downloaded from
GitHub (https://github.com/zyk2118216069/LncRNA-protein-interactions-prediction).

Keywords: heterogeneous network, lncRNA–protein interaction, lncRNA–miRNA interaction, miRNA–protein
interaction, network similarity
INTRODUCTION

Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins. These genes were once
considered as “junk DNAs” or “dark matters” in the genome (Schaukowitch and Kim, 2014).
However, over the last few years, more and more functioning ncRNAs have been discovered, such as
ribosomal RNAs(rRNA), ribozymes, transfer RNAs (tRNA), small nuclear RNAs (snRNAs), small
nucleolar RNAs (snoRNAs), micro RNAs (miRNAs), long noncoding RNAs (lncRNAs), and many
others (Peculis, 2000; Henras et al., 2004; Okamura and Lai, 2008; Kung et al., 2013). All these
ncRNAs can influence biological progress on various levels (Louro et al., 2009).
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Long non-coding RNAs are ncRNAs with a length larger than
200 nt (Kapranov et al., 2007). Experiments show that lncRNA–
protein interactions play important roles in many biological
processes, such as splicing, polyadenylation, and translation
(Singh, 2002; Lukong et al., 2008; Kishore et al., 2010;
Licatalosi and Darnell, 2010). Therefore, studying interactions
between lncRNAs and proteins makes great sense for us to
understand a wide variety of biological processes.

Although we can now obtain RPIs (RNA–protein
interactions) through large-scale experiments such as
RNAcompete (Ray et al., 2009), RIP-Chip (Keene et al., 2006),
HITS-CLIP (Licatalosi et al., 2008), and PAR-CLIP (Hafner et al.,
2010), all these experiments are costly and time-consuming.
Therefore, computational predictions have been recognized as
an efficient alternative approach. Muppirala et al. (2011)
proposed the RPISeq method for predicting RNA–protein
interactions using only sequence information. Wang et al.
(2013) extracted sequence-based features to represent each
protein–RNA pair and used naive-Bayes classifier to predicting
protein–RNA interactions. Lu et al. (2013) introduced a new
method named lncPro, which scored each RNA–protein pair by
encoding RNA and protein sequences into numerical vectors.
Suresh et al. (2015) presented an SVM-based method, named
RPI-Pred, to predict protein–RNA interaction pairs based on
their sequences and structures. Li et al. (2015) developed a
heterogeneous network model (LPIHN) and a random walk
with restart algorithm to predict novel lncRNA–protein
interactions. Ge et al. (2016) constructed the lncRNA–protein
bipartite network, and scored candidate proteins for each
lncRNA based on the bipartite network projection algorithm.
Yang et al. (2016) constructed another lncRNA–protein bipartite
network, where the HeteSim algorithm was employed to evaluate
the relevance between lncRNAs and proteins. Zheng et al. (2017)
applied the HeteSim algorithm on the fusion of multiple protein–
protein similarity networks to predict lncRNA–protein
interactions. Hu et al. (2017) presented transformation-based
semi-supervised link prediction (LPI-ETSLP) to predict
lncRNA–protein interactions. Xiao et al. (2017) proposed a
computational method named PLPIHS for predicting lncRNA–
protein interactions using HeteSim Scores. Hu et al. (2018)
presented a model named HLPI-Ensemble integrated three
mainstream machine learning algorithms for predicting human
lncRNA–protein interaction. Zhang et al. (2018b) combined
multiple similarities and features with a feature projection
ensemble learning frame to predict lncRNA–protein
interactions. Zhang et al. (2018a) proposed a linear
neighborhood propagation method (LPLNP) to calculate the
linear neighborhood similarity of lncRNA–protein interactions.
Zhang et al. (2019c) proposed the KATZLGO method to predict
lncRNA–protein interactions based on the KATZ measure,
which utilize the information of all paths between pair of nodes.

All existing methods rely on known lncRNA–protein
interactions to construct the predictor. However, the number
of experimentally verified lncRNA–protein interactions is
limited, which affects the prediction performances of all
existing methods. To expand the spectrum of predictable
Frontiers in Genetics | www.frontiersin.org 2
lncRNA–protein interact ions , we took miRNAs as
intermediates in predicting lncRNA–protein interactions.

MiRNAs are short RNA molecules with a length of 19 to 25
nucleotides (Lu and Rothenberg, 2018). Some miRNAs can
regulate both lncRNAs and proteins. For example, PTEN
(Phosphatase and TENsin homolog) is a kind of tumor
suppressor gene, which is critical for maintaining cellular
homeostasis (Poliseno et al., 2010). The miR-21 regulates the
translation process of PTEN (Zhang et al., 2010), as well as the
expression of PTENpg1, which is transcribed from PTEN
pseudogene as an lncRNA (Yu et al., 2014). Meanwhile, the
PTENpg1 alpha isoform affects the transcription process of
PTEN by competing transcription factors (Johnsson et al.,
2013). We assumed that this triangular regulation network can
be common in the gene regulation system. To validate this
assumption, we collected lncRNA–miRNA interactions and
protein–miRNA interactions from the RAID v2.0 database. We
found that the lncRNA–protein interactions are significantly
enriched in the set of lncRNAs and proteins that are sharing a
common set of interacting miRNAs (chi-square test, p-value <
10-16).

In the light of this observation, miRNAs were taken as
mediators to predict novel lncRNA–protein interactions in this
work. Both lncRNA–miRNA interactions and miRNA–protein
interactions were considered as the basis to predict lncRNA–
protein interactions. In the cause of improving our prediction
performance, the similarity of lncRNAs and proteins was
calculated in various aspects, which is based on the assumption
that similar lncRNAs or proteins tend to have similar
interactions. Our methods provide a way to explore novel
lncRNA–protein interactions without prior knowledge of direct
lncRNA–protein interactions. Since existing methods always
require direct lncRNA–protein interactions as training data,
our method may provide a useful supplement to the state-of-
the-arts methods.
MATERIALS AND METHODS

Dataset Curation
Biomolecule interactions have become a hot research topic in
computational biology. RAID v2.0 is a large database for
biomolecule interaction information, which contains more
than 5.27 million RNA-associated interactions, including over
4 million RNA–RNA interactions and 1.2 million RNA–protein
interactions, involving nearly 130,000 genes across 60 species (Yi
et al., 2017). We downloaded the protein–miRNA interactions
and lncRNA–miRNA interactions as our training dataset from
this database. LncRNA–protein interactions were also obtained
as our independent testing dataset simultaneously.

We downloaded 2,862 lncRNA–miRNA interactions and 2,521
protein–miRNAs interactions, which are all experimentally verified,
from the RAID v2.0 database (Yi et al., 2017). In order to ensure
that each lncRNA has a protein linked to it via a miRNA, and vice
versa, common miRNAs were extracted from these interactions.
Altogether 360 miRNAs were included in our dataset.
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Subsequently, the lncRNA–miRNA interactions and the protein–
miRNA interactions were selected according to the common
interacting miRNAs. We kept 1,356 lncRNA–miRNA interactions
and 1,156 protein–miRNA interactions in our dataset. These
interactions are among 331 lncRNAs, 360 miRNAs, and 103
proteins. The sequences of lncRNAs and proteins were obtained
from NCBI Gene database (Brown et al., 2015) and the Uniprot
database (The UniProt Consortium, 2017), respectively. For those
lncRNAs, which cannot be found in the NCBI Gene database, the
sequence was retrieved from the Ensemble database (Hunt
et al., 2018).

In order to evaluate the performance of our predictive model,
we obtained experimentally verified lncRNA–protein direct
interactions from the RAID v2.0 database according to the
lncRNAs and proteins in our dataset. Subsequently 1,925
lncRNA–protein interactions were chosen as our independent
testing dataset, which are formed by 268 lncRNAs and 58
proteins. The interactions from the RAID database are listed in
the Supplementary Materials (Table S1, Table S2 and Table S3).

Similarity Measures
Previous studies (Gong et al., 2019; Zhang et al., 2019a; Zhang
et al., 2019b) have demonstrated the usefulness of similarities for
network models. For convenience, let L be the set of lncRNAs,M
the set of miRNAs, and P the set of proteins, e.g. L = {l1, l2,…, lx},
M = {m1, m2,…, my} and P = {p1, p2,…, pz}, where x denotes the
number of different lncRNAs, y the number of common
miRNAs, and z the number of different proteins.
Frontiers in Genetics | www.frontiersin.org 3
The lncRNA–miRNA interaction network can be represented
using a bipartite graph G1, as follows:

G1 = L,M, E1ð Þ, (1)

where E1 is the set of edges in this bipartite graph, and L andM as
defined above. Each edge in E1 represents an interaction between
one lncRNA and one miRNA. A part of the lncRNA–miRNA
interaction network is illustrated as Figure 1.

Similarly, we used another bipartite graph G2 to represent the
protein–miRNA interaction network, as follows:

G2 = P,M, E2ð Þ, (2)

where E2 is the edge set of the protein–miRNA interaction
network, and P and M as defined above. Each protein–miRNA
interaction corresponds to an edge in E2. A part of the protein–
miRNA interaction network is illustrated as Figure 2.

With the definition of two bipartite graphs, similarities between
lncRNAs or proteins were both calculated in three different ways,
which are elaborated in the following sections, respectively.

Network Similarity
For a given miRNA,mk∈M (k = 1, 2,...., y), we define the set of its
interacting lncRNAs as L(mk), which is a subset of L:

L mkð Þ = lj(l,mk) ∈ E1,mk ∈ M, l ∈ Lf g : (3)

We also define P(mk), which is a subset of P, as follows:

P mkð Þ = pj p,mkð Þ ∈ E2,mk ∈ M, p ∈ Pf g : (4)
FIGURE1 | A part of the lncRNA–miRNA interaction network. Ten lncRNAs and 10 miRNAs formed this part of the interaction network. The network is a bipartite
graph. One lncRNA can interact with multiple miRNA and vice versa.
FIGURE 2 | A part of the protein–miRNA interaction network. Ten proteins and 10 miRNAs formed this part of the interaction network. The network is a bipartite
graph. One protein can interact with multiple miRNA and vice versa.
January 2020 | Volume 10 | Article 1341
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For miRNAs in M, of which the network contribution in the
lncRNA–miRNA interaction network or the protein–miRNA
interaction network can be calculated respectively as follows:

c1 mkð Þ = − ln L mkð Þj j=o
y

k=1

L mkð Þj j
 !

, and (5)

c2 mkð Þ = − ln P mkð Þj j=o
y

k=1

P mkð Þj j
 !

, (6)

where c1(mk) is the network contribution of miRNA mk in the
lncRNA–miRNA interaction network, c2(mk) the network
contribution of miRNA mk in the protein–miRNA interaction
network, and |.| the cardinal operator on a set.

For convenience, M(li) and M(pj), which are both subsets of
M, are defined as follows:

M lið Þ = mj m, lið Þ ∈ E1, li ∈ L,m ∈ Mf g, and (7)

M pj
� �

= mj m, pj
� �

∈ E2, pj ∈ P,m ∈ M
� �

, (8)

where M(li) and M(pj) represent the set of miRNAs that interact
with a given lncRNA or a given protein.

With all definition above, the network similarity between two
lncRNAs lu and lv (u, v = 1, 2,…, x) can be defined as follows:

n1 lu, lvð Þ = o
mk∈M luð Þ∩M lvð Þ

c1 mkð Þ, (9)

where n1(lu, lv) is the network similarity between lu and lv.
Similarly, given two proteins, pu and pv, the network

similarity between pu and pv can be defined as follows:

n2 pu, pvð Þ = o
mk∈M puð Þ∩M pvð Þ

c2 mkð Þ, (10)

where n2(pu, pv) is the network similarity between pu and pv.

Sequence Similarity
The sequence similarity was calculated by the Smith-Waterman
algorithm. Given two lncRNAs, the sequence similarity between
two lncRNA sequences is defined as follows:

e1(lu, lv) =
w lu, lvð Þ
luj j + lvj j , (11)

where e1(lu, lv) is the sequence similarity, w(lu, lv) the Smith-
Waterman score between lu and lv, and |lu| and |lv| the length of
the lncRNA lu and lv, respectively.

Given two proteins, the sequence similarity between two
protein sequences is defined similarly as follows:

e2 pu, pvð Þ = w pu, pvð Þ
puj j + pvj j , (12)

where e2(pu, pv) is the sequence similarity, and w(pu, pv), |pu|, and
|pv| the length of the protein pu and pv, respectively.

Statistical Feature Similarity
Pseudo-amino acid composition (PseAAC), which was proposed
by Chou in 2001 (Chou, 2001), has been widely applied in all
branches of computational and functional proteomics (Chou,
Frontiers in Genetics | www.frontiersin.org 4
2011; Chou, 2015). Pseudo-k nucleotides composition
(PseKNC), which is a major advancement of the PseAAC
concept in analyzing nucleotide sequences, has been
introduced recently (Chen et al., 2014). Because of its
simplicity and effectiveness, the PseKNC methods quickly
penetrate into all major topics in functional genomics, in both
genome and transcriptome levels (Chen et al., 2015a; Chen et al.,
2015b). The computational procedures for PseAAC and PseKNC
have been elaborated in many literatures (Chou, 2011; Chen
et al., 2013; Qiu et al., 2017) and some recent reviews (Chen et al.,
2015a; Zhao et al., 2018).

In this work, we employed pseudo di-nucleotide composition
(PseDNC), which is a special form of PseKNC when k = 2, to
represent lncRNA sequences, and PseAAC for protein
sequencesFor simplicity, we do not describe the computational
details of the PseDNC and PseAAC algorithms here. We only
describe how we apply PseDNC and PseAAC in our work.

Given a lncRNA, its PseDNC representation can be described
as a numerical vector with 16+l dimensions as follows:

V1 lið jl,w1,HÞ = d1 d2 ⋯ d16 d16+1 d16+2 ⋯ d16+l½ �T , (13)
whereV1(li | l,w1,H) is the PseDNC representation of li, l andw1

two parameters in computing the PseDNC representation, and H
a set of di-nucleotide physicochemical properties that are applied
in computing the PseDNC representations.

The similarity between two lncRNAs can be defined
as follows:

f1 lu, lvð Þ = 1= ‖V1 luð jl,w1,HÞ − V1 lvð jl,w1,HÞ ‖2, (14)

where f1(lu, lv) is the feature similarity between two lncRNAs, and
||.|| the operator that takes the length of a vector.

Similarly, given a protein, its PseAAC representation can be
described as a numerical vector with 20 + t dimensions
as follows:

V2 pj
� ��t ,w2,HÞ = r1 r2 ⋯ r20 r20+1 r20+2 ⋯ r20+t½ �T , (15)

whereV2(pj | t, w2,H) is the PseAAC representation of lj, t andw2

two parameters in computing the PseAAC representation, andH a
set of amino acid physicochemical properties that are used in
computing the PseAAC representations.

The similarity between two proteins can be defined as follows:

f2 pu, pvð Þ = 1= ‖V2 puð jt ,w2,HÞ − V2 pvð jt ,w2,HÞ ‖2, (16)

where f2(pu, pv) is the feature similarity between two proteins.
We utilized online webserver Pse-In-One (Liu et al., 2015) to

generate PseDNC and PseAAC in our work.
Heterogeneous Network Model
By integrating the bipartite graph G1 and G2, we can construct a
heterogeneous network model, where lncRNAs, miRNAs, and
proteins are connected together. A part of this network is
illustrated as Figure 3. Given a lncRNA li and a protein pj, a
whole network correlation that is brought by the mk can be
defined as follows:
January 2020 | Volume 10 | Article 1341
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t mkð Þ = L mkð Þj j + P mkð Þj j : (17)

The whole network correlation function between lncRNA li
and protein pj can be defined as follows:
k li, pj
� �

= − o
mk∈M lið Þ∩M pjð Þ

ln t mkð Þ=o
y

k=1

t mkð Þ
 !

, (18)

The whole network correlation matrix can be established as
K = {k(li, pj)}, i = 1, 2,.., x and j = 1, 2,…, z.

For two given lncRNAs, the similarity between them can be
noted as s1(lu, lv), where lu and lv are two lncRNAs. Similarly, for
two given proteins, the similarity between them can be noted as
s2(pu, pv). The similarity between two lncRNAs or two proteins
can be measured in various aspects, which have been elaborated
in the above section.

The similarity matrix for lncRNAs and proteins can be
established as S1 = {s1(lu, lv)}, u, v = 1, 2,…, x and S2 = {s2(pu,
Frontiers in Genetics | www.frontiersin.org 5
pv)}, u, v = 1, 2,…, z, respectively. We normalize the values in
matrix S1 and S2 as follows:

q1 lu, lvð Þ =
s1 lu ,lvð Þ

o
x

v=1
s1 lu, lvð Þ

u ≠ v

1 u = v

 , u, v = 1, 2,…, x and

8>><
>>:

(19)

q2 pu, pvð Þ =
s2 pu ,pvð Þ

o
z

v=1
s2 pu, pvð Þ

u ≠ v

1 u = v

, u, v = 1, 2,…, z

8>><
>>: (20)

where q1(lu, lv) and q2(lu, lv) are normalized value in S1 and S2. We
note the normalizedmatrix asQ1 andQ2 respectively, whereQ1 = {q1
(lu, lv)}, u, v = 1, 2,…, x and Q2 = {q2(pu, pv)}, u, v = 1, 2,…, z.

With all above definitions, we can establish the final scoring
matrix as follows:

W = Q1KQ2 (21)
FIGURE 3 | A part of the lncRNA–miRNA–protein association network. Five proteins, 15 miRNAs, and 24 lncRNAs formed this part of the interaction network. Every
miRNA can interact with multiple lncRNAs, and multiple proteins as well.
January 2020 | Volume 10 | Article 1341
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The prediction of lncRNA–protein interactions is made based
on the scores in W. If a value in W were larger than a given
threshold, the corresponding lncRNA and protein would be
predicted to interact. Otherwise, no interaction would be predicted.

The whole flowchart of our method is illustrated in Figure 4.
Three different similarity measures were applied to lncRNAs and
proteins, respectively. Since they can be chosen independently to
each other, there are nine different combinations of the
similarity choices

Performance Evaluation
Given a threshold, a set of lncRNA–protein interactions can be
predicted from the matrix W. By comparing this set against the
testing dataset, the number of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) can be
obtained, respectively. Five statistical measures can be
calculated as follows:

TPR =
TP

TP + FN
, (22)

FPR =
FP

FP + TN
, (23)

Pre =
TP

TP + FP
, (24)

Rec =
TP

TP + FN
, and (25)

Acc =
TP + TN

TP + TN + FP + FN
, (26)

where TPR is for true positive rate, FPR for false positive rate, Pre
for precision, Rec for recall, and Acc for accuracy.
Frontiers in Genetics | www.frontiersin.org 6
By varying the threshold from the maximum value to the
minimal value in W, a receiver operating curve (ROC) can be
plotted using the TPR and the FPR values. In the meantime, a
precision-recall (PR) curve can be obtained using the precision
and the recall values. Due to the nature that the negatives are far
more than the positives in the current topic, the area under the
ROC (AUROC) and the area under the PR curve (AUPR) are
used both as primary performance measures of our method.

Parameter Calibrations
In our work, there are parameters when the PseDNC and the
PseAAC sequence representations are generated. We used a grid
search strategy to find the optimal parameters in the PseDNC
and PseAAC. The parameter l varies from 10 to 20 with a step of
1, w1 from 0.1 to 1 with a step of 0.1, t from 10 to 20 with a step
of 1, and w2 from 0.05 to 0.5 with a step of 0.05. We finally
choose l = 10,w1 = 0.1, t = 11 andw2 = 0.5. The physicochemical
properties in the PseDNC are Rise, Tilt, Twist, Slide, Shift, and
Roll, which are defined in Pse-In-One (Liu et al., 2015). The
physicochemical properties in the PseAAC are HOPT810101,
JOND750101, ZIMJ680104, KRIW790103, TAKK010101,
ROSM880104, BLAS910101, and KRIW790101, which are all
defined in AAIndex (Kawashima et al., 2008).
RESULTS AND DISCUSSION

Performance Analysis
We compared the prediction performance under different
combinations of similarity matrices. Figure 5 illustrates the ROC
and PR curve of our method with nine different similarity
combinations. The AUROC and AUPR values were collected in
FIGURE 4 | The flowchart of the entire work. The lncRNA–miRNA interactions and protein–miRNA interactions are merged to form a heterogeneous network model
according to the commonly shared miRNAs in two different types of interactions. Three different similarity measures are combined with the whole network correlation matrix to
form nine different scoring matrices. By optimizing the prediction performances, we finally choose to use network similarity measures for both lncRNAs and proteins.
January 2020 | Volume 10 | Article 1341
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Table 1. According to these values, the prediction performance of
our method is optimized when the network similarity measure was
applied to both lncRNAs and proteins. Under this condition, the
AUROC achieved 0.821, while the AUPR achieved 0.376. It seems
like theAUPR is low.However, byanalyzing thePRcurve,we found
that the precision is low when the recall is in the range of (0.1, 0.4).
That is to say, some lncRNA–protein pairs with a high correlation
score have no experimentally verified interaction between them.
This may be because these interactions are not discovered yet.

Due to the nature that the negatives are far more than the
positives in predicting lncRNA–protein interactions, the testing
dataset is highly imbalanced. In order to provide a set of valuable
prediction results in a practical application, a recommended
threshold is 2.147, which will balance the TPR and FPR, and will
produce 74.3% accuracy.

Effects of the Two Similarity Matrices
In order to analyze the effect of every single similarity matrix
individually, we combined every single similarity matrix solely
with the whole network correlation matrix, respectively. In other
Frontiers in Genetics | www.frontiersin.org 7
words, eitherQ1 orQ2 is removed from Eq (21) to see the effect of
the othermatrix solely. TheROCand thePRcurveof all sixdifferent
configurations are illustrated inFigure6. Thenetwork similarity for
lncRNAs performs the best among three similarities for lncRNAs.
For proteins, the best similarity measure is also the network
similarity. This result consists with the other results in our work.
Therefore, we can safely conclude that the network similarity best
suits our method. Particularly, the network similarity matrix for
protein achieved a very close prediction performance to the
comprehensive form of our model. Since the number of proteins
and lncRNAs are imbalanced in our dataset, the number of
interactions from miRNAs to proteins is far more than that to
lncRNAs on average. This may be the reason that why the network
similarity matrix for proteins can achieve a very promising
performance solely with the whole network correlation matrix.
Comparison With Existing Methods
HeteSim is a widely appliedmeasure, which aims at quantifying the
correlation of nodes in a heterogeneous network (Shi et al., 2014).
It has been used in predicting various types of interactions and
connections (Shi et al., 2014). Due to the mechanism difference
between our method and existing methods, it is difficult to perform
a completely fair comparison. We compared our method to Yang's
work (Yang et al., 2016), where HeteSim is employed to measure
the correlation between lncRNAs and proteins. In order to perform
a sufficiently fair comparison, we obtained protein–protein
interaction from the STRING database (Mering et al., 2003) to
satisfy the requirement of Yang's work. Same testing datasets were
applied to evaluate the prediction performance of Yang's work and
our method simultaneously. However, due to the different
mechanisms between our method and Yang's work, we tested
our method using the independent testing dataset, while fivefold
cross-validation was applied on Yang’s method with the same
dataset. Since fivefold cross-validation may produce overestimated
performance values, we believe that our method achieved a
comparable performance in this comparison (Figure 7).
FIGURE 5 | ROC and PR curves of nine similarity combinations. The horizontal axis in ROC (left panel) is for FPR and the vertical axis for TPR. The horizontal axis in
PR curve (right panel) is for recall and vertical axis for precision. Net is for network similarity. Seq is for sequence similarity. Feat is for statistical feature similarity. The
first part in the legend is for similarity measures of lncRNAs and the latter part for proteins. For example, the Net+Net means that we used network similarity for
lncRNAs and proteins. The Net+Seq means that we used network similarity for lncRNAs and sequence similarity for proteins.
TABLE 1 | AUROC and AUPR of nine similarity combinations.

Similarity matrix AUROC
a

AUPR
b

Net
c

+ Net 0.821 0.376
Net + Seq

d

0.752 0.287
Net + Feat

e

0.748 0.310
Seq + Net 0.815 0.393
Seq + Seq 0.764 0.308
Seq + Feat 0.758 0.345
Feat + Net 0.818 0.392
Feat + Seq 0.768 0.309
Feat + Feat 0.762 0.344
aAUROC, Area under receiver operating curve.
bAUPR, Area under precision-recall curve.
cNet, Network similarity.
dSeq, Sequence similarity.
eFeat, Statistical feature similarity.
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Prediction of Novel Interactions
In order to evaluate the actual prediction effect of our method, we
selected 20 interactions that are top ranked in our results. These
interactions are recorded inTable 2. Fifteen out of 20 interactions in
Table2hadbeenverifiedbyCLIP-seq (Uleet al., 2005) inRAIDv2.0.
Twoof the remainingfivehadbeenverifiedbyeCLIP (VanNostrand
et al., 2016) inNPInterdatabase (Tenget al., 2019). Sinceourmethod
does not require any prior knowledge of direct lncRNA–protein
interactions, and all data in our method came only from the RAID
v2.0database,ourmethodshouldhaveagoodperformance.Although
other three interactions are not verified, it is possible that they are
undiscovered interactionsunder certain conditions.

Prediction Based on Interactions of
Whole Database
Since only experimentally verified interactions were obtained to
compose our benchmarking dataset, a large number of predicted
interactions in the RAID V2.0 database were discarded. We
incorporated these predicted interactions to optimize our
Frontiers in Genetics | www.frontiersin.org 8
method. A total of 20,425 lncRNA–miRNA interactions and
1,349 protein–miRNA interactions were extracted while sharing
a common set of miRNAs. These interactions are among 1,133
lncRNAs, 464 miRNAs, and 113 proteins. We also collected
2,803 lncRNA–protein interactions as our independent testing
dataset. Altogether 615 lncRNAs and 65 proteins were included
in this testing dataset. Our method achieved an AUROC of 0.852
on this dataset (Figure 8). Since our method can work with only
known lncRNA–miRNA interactions and miRNA–protein
interactions, it can be used as a supplement to state-of-the-art
methods using direct lncRNA–protein interactions.

Database Coverage Analysis
Due to the mechanism of our method, we restricted the lncRNA–
protein interactions within those lncRNAs and proteins, which can
find a sharing miRNA interactor. This restriction narrowed the
profile of applicable data in the database. There are 2,862
experimentally verified lncRNA–miRNA interactions in the
RAID v2.0 database, including 358 lncRNAs and 1,208 miRNAs;
1,356 lncRNA–miRNA interactions between 331 lncRNAs and 360
FIGURE 6 | ROC curve and PR curves of single similarity matrix. Since we only use similarity matrix for lncRNAs or proteins, not the same time, we only have six
different curves in each panel. The axis in both panels have the same meaning as in Figure 5, respectively. The “Net,” “Seq,” and “Feat” have the same meaning as
the legends of Figure 5.
FIGURE 7 | The ROC curve and the PR curve of our method and Yang's method.
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miRNAs were utilized in this work, accounting for 47.4%, 92.5%,
and 29.8% of which in the whole database, respectively. There are
2,521 experimentally verified protein–miRNA interactions between
144 proteins and 1,032 miRNAs in the RAID v2.0 database; 1,156
protein–miRNA interactions of them were selected as our training
data, composed by 103 proteins and 360 miRNAs. The protein–
miRNA interactions, proteins, and miRNAs take up 45.8%, 71.5%,
Frontiers in Genetics | www.frontiersin.org 9
and 34.9% of the entire RAID database, respectively. There are
40,668 experimentally verified lncRNA–protein interactions in the
RAID v2.0 database, including 3,066 lncRNAs and 10,224 proteins.
The testing dataset in our work including 1,981 verified lncRNA–
protein interactions between 266 lncRNAs and 58 proteins, taking
up 4.87%, 8.7%, and 0.57% of which in the database, respectively.
Due to the limited number of known miRNA–protein interactions
and miRNA–lncRNA interactions, the coverage of proteins in the
whole database is low.

We admit that this will limit the application scope of our
method. However, we believe this will get better when the
number of available miRNA–protein interactions is increased,
because the statistical test has already shown that the lncRNA–
protein interactions are significantly enriched in the set of lncRNAs
and proteins that are sharing a common set of miRNAs.
CONCLUSION

LncRNAscanaffectbiologicalprocessesfromvariouslevels.Itisofgreat
importance to study the molecular functions of lncRNAs. In the
meanwhile, LncRNAs perform their role mostly by their interaction
with proteins. Therefore, lncRNA–protein interaction should be
studied in detail. In this paper, we proposed a method to predict
lncRNA–protein interactions without prior knowledge of existing
lncRNA–protein interactions. Instead, we utilized the lncRNA–
miRNA interactions and the miRNA–protein interactions as the
basis of our prediction. The miRNAs are used as mediators to
connect the realm of lncRNAs and the realm of proteins. This is
basedonthehypothesisthatalncRNAandaproteinmayinteractifthey
share interacting miRNAs. By quantitatively modelling the
heterogeneous network that is formed by lncRNAs, miRNA, and
FIGURE 8 | The ROC curve including interactions without experimental evidences in the RAID v2.0 database. In other words, interactions of the whole RAID
database were utilized to train our model. The network similarity of both lncRNAs and proteins were selected to generate our final scoring matrix, which preformed
the best in former experiment.
TABLE 2 | 20 top-ranked predictions from this work.

LncRNA
a

Species Protein
b

Species Verified?
c

XIST Homo sapiens DGCR8 Homo sapiens RAID04292086
XIST Homo sapiens EIF4A3 Homo sapiens RAID05222952
BCYRN1 Homo sapiens DGCR8 Homo sapiens ncRI-40427659
XIST Homo sapiens LIN28A Homo sapiens RAID04539901
XIST Homo sapiens FUS Homo sapiens RAID04292231
XIST Homo sapiens DGCR8 Homo sapiens RAID04639959
MALAT1 Homo sapiens DGCR8 Homo sapiens RAID05228988
MCM3AP-AS1 Homo sapiens FUS Homo sapiens RAID04862787
MCM3AP-AS1 Homo sapiens DGCR8 Homo sapiens RAID04826597
MCM3AP-AS1 Homo sapiens LIN28A Homo sapiens None
MCM3AP-AS1 Homo sapiens LIN28B Homo sapiens ncRI-40454080
OIP5-AS1 Homo sapiens DGCR8 Homo sapiens RAID05191621
XIST Homo sapiens LIN28B Homo sapiens RAID05100914
CTBP1-AS2 Homo sapiens FUS Homo sapiens RAID04330329
MCM3AP-AS1 Homo sapiens EIF4A3 Homo sapiens RAID04868241
XIST Homo sapiens FMR1 Homo sapiens RAID04486531
MALAT1 Homo sapiens EIF4A3 Homo sapiens RAID05074375
CRHR1-IT1 Homo sapiens DGCR8 Homo sapiens RAID05171544
IGF2-AS Homo sapiens DGCR8 Homo sapiens None
CTBP1-AS2 Homo sapiens LIN28A Homo sapiens None
alncRNA: The lncRNA names in the Gene or the Ensemble database.
bprotein: The protein names in the UniProt database.
cVerified: If the direct interaction had been verified by experiment in RAID or NPInter database,
this column contains the RAID and NPInter interaction identifier; otherwise “None.”
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proteins, we developed a simple, yet effective, method to predict the
lncRNA–protein interactions. The best similarity measure in our
method is the network similarity, which does not rely on sequence
information. This gives our method a unique capability to predict
lncRNA–protein interaction without comprehensive sequence
information of both interactors. By comparing our predictions to the
known lncRNA–protein interactions, we can conclude that our
method has, at least, a comparable prediction performance to the
state-of-the-art methods. Since our method does not rely on prior
knowledgeof lncRNA–protein interactions, it isahelpful supplement
to existingmethods.
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