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Abstract

Predicting the affinity profiles of nucleic acid-binding proteins directly from the protein sequence 

is a major unsolved problem. We present a statistical approach for learning the recognition code of 

a family of transcription factors (TFs) or RNA-binding proteins (RBPs) from high-throughput 

binding assays. Our method, called affinity regression, trains on protein binding microarray (PBM) 

or RNA compete experiments to learn an interaction model between proteins and nucleic acids, 

using only protein domain and probe sequences as inputs. By training on mouse homeodomain 

PBM profiles, our model correctly identifies residues that confer DNA-binding specificity and 

accurately predicts binding motifs for an independent set of divergent homeodomains. Similarly, 

learning from RNA compete profiles for diverse RBPs, our model can predict the binding affinities 

of held-out proteins and identify key RNA-binding residues. More broadly, we envision applying 

our method to model and predict biological interactions in any setting where there is a high-

throughput ‘affinity’ readout.
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A long-term goal in the study of gene regulation is to understand the evolution of 

transcription factor (TF) and RNA-binding protein (RBP) families, namely how changes in 

protein domain sequence lead to differences in DNA- or RNA-binding preference
1, 2. To be 

generally applicable, such analyses require data sets with a large number and diversity of 

training examples. Recent technological advances have enabled the assessment of the 

relative preferences of proteins to DNA and RNA on an unprecedented scale
1, 3-8. Much of 

the newly available TF binding data comes from protein binding microarray (PBM) 

experiments, where the DNA-binding preferences of an individual fluorescently tagged TF 

are measured using a universal array of >40K double-stranded DNA probes
3
. The largest 

existing compendium of in vitro binding data for diverse RBPs uses the RNA compete assay, 

which measures the binding affinity of an RBP against >200K single-stranded RNA 

probes
7, 8. We asked whether exploiting these data with sophisticated multivariate statistical 

techniques might allow us to learn family-level models of the DNA or RNA preferences of 

large classes of TFs and RBPs.

To this end, we developed a machine learning approach called affinity regression to learn the 

nucleic acid recognition code for TF or RBP families directly from the protein sequence and 

probe-level binding data from PBM or RNA compete experiments. Unlike previous 

methods
9, 10

, our approach requires neither a summarization of binding data as motifs, nor 

an alignment of protein domain sequences, but instead works directly from amino acid and 

nucleotide k-mer features and allows us to accurately predict the binding profile – and 

generate a high-quality binding motif – for a TF or RBP not seen in training directly from its 

protein sequence alone. Moreover, by using the trained interaction model to map binding 

data back onto features of the protein sequence, we can identify key residues that contribute 

to the binding specificities of individual proteins.

Results

Training a “recommender system” to model biological interaction data

We propose a general statistical framework for any problem where the observed data can be 

explained as interactions between two kinds of inputs. While this problem setting is 

ubiquitous in computational biology, most algorithmic work comes from recommender 

systems such as Netflix, where users select movies that they like and the recommender 

algorithm tries to suggest appropriate movies for a new user. By describing each movie by a 

set of features (e.g. {“comedy”, “horror”, length, actors}) and each user by personal features 

({age, gender, geographic location, marital status, Facebook likes}), the recommender seeks 

to learn relationship rules between the feature spaces of users and movies (e.g. “30-year-old 

British men like comedy movies with Mr. Bean”).

Here we model high-throughput binding data, such as PBM data for a large family of TFs, 

using a recommender system formulation. Rather than learn rules for movie preferences of 

users, we learn rules for binding preferences of TFs for DNA probes. Given a family of 

structurally-related TF binding domains and their PBM binding profiles, we introduce an 

algorithm called affinity regression to learn a model that explains the binding data as 

interactions between amino acid K-mer features of the protein domain sequences and 

nucleotide k-mer features of the DNA probes (Fig. 1a). The algorithm learns a weighting on 
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all interactions between TF K-mer features and DNA k-mer features that accurately explains 

one input's preference for the other given the observed binding data. For example, we may 

learn the rule that in the homeodomain family, the sequence of protein residues ‘FQNR’ 

contributes to binding (‘likes’) the DNA sequence ‘TAATTA’.

Formally, we set up a bilinear regression problem to learn an interaction matrix Wbetween 

TFs, represented by the input matrix P, and DNA probes, represented by the input matrix D, 

that reconstructs the output matrix Y of observed binding profiles (Fig. 1a). Each TF protein 

sequence is represented by its K-mer count features as a row in P, and each DNA probe 

sequence by its k-mer count features as a row in D; columns in Y represent the binding 

profiles of different TFs across probes. The affinity regression interaction model is 

formulated as:

where D, P, Y are known and W is unknown.

Here the number of probes is very large (10,000s) while the number of TFs is much smaller 

(a few 100). To obtain a better conditioned system of equations, we multiply both sides of 

the equation on the left by YT (Fig. 1b and Methods); the outputs then become pairwise 

similarities between binding profiles rather than the binding profiles themselves. We then 

apply a series of transformations to obtain an optimization problem that is tractable with 

modern solvers (see Methods, Supplementary Note). We use singular value decomposition 

to cut down the rank of the input matrices and thus reduce the dimensions of the interaction 

matrix W to be learned. We then convert from a bilinear to a regular regression problem by 

taking a tensor product of the input matrices (analogous to tensor kernel methods in the dual 

space
11, 12

) and solve for W with ridge regression. In our experiments, we used K = 4 for 

amino acid K-mer features of TF and RBP protein sequences, k = 6 for DNA probe features, 

and k = 5 for RNA probe features, motivated by parameter choices in existing string kernel 

literature
13, 14

 (Supplementary Note).

We can interpret the affinity regression model through mappings to its feature spaces
15

. For 

example, to predict the binding preferences of an unknown TF, we can right-multiply its 

protein sequence feature vector through the trained DNA-binding model to predict the 

similarity of its binding profile to those of the training TFs (Fig. 1c). To reconstruct the 

binding profile of a test TF from the predicted similarities, we assume that the test binding 

profile is in the linear span of the training profiles and apply a simple linear reconstruction 

(Supplementary Note, Fig. 1c). Finally, to identify the residues that are most important for 

determining the DNA-binding specificity, we can left-multiply a TF's predicted or actual 

binding profile through the model to obtain a weighting over protein sequence features, 

inducing a weighting over residues. We call these right- and left-multiplication operations 

“mappings” onto the DNA probe space and the protein space, respectively.
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Affinity regression outperforms nearest neighbor on homeodomains

We trained an affinity regression model on PBM profiles for 178 mouse homeodomains 

from a previous study from Berger et al.
1
 We transformed the probe intensity distributions to 

emphasize the right tail of the intensity distribution, containing the highest affinity probes 

(see Supplementary Note), and used pairwise similarities of transformed profiles as outputs. 

Our task was to learn a model for homeodomain to DNA probe binding interactions that 

would generalize to held-out protein sequences, so that for example we could predict the 

binding motif for a test homeodomain from its amino acid sequence alone.

Affinity regression followed by linear reconstruction enabled accurate prediction of probe-

level binding intensities from homeodomain sequence (Supplementary Note). For example, 

Fig. 1d plots the predicted versus experimental probe intensities for Cart1, using a model 

trained on 90% of the homeodomains where Cart1 was one of the held-out examples. In 

particular, probes containing the three 8-mers that are most enriched at the top of the 

intensity distribution are correctly predicted by probe reconstruction to have high affinities 

to Cart 1 (Fig. 1c). Moreover, the correlation between predicted and experimental probe 

intensities was similar to the correlation between experimental probe intensities from 

replicate Cart1 PBM experiments (replicate-replicate correlation 0.63, replicate-prediction 

correlation 0.62, Fig. 1e; see Supplementary Fig. 1 for other TFs).

In 10-fold cross validation on held-out homeodomains, affinity regression strongly 

outperformed prediction based on the BLOSUM nearest neighbor, where the training 

domain that is most similar to each test example based on global sequence alignment with 

BLOSUM substitution scores is considered the nearest neighbor, and this neighbor's binding 

profile is used for prediction (Fig. 1f; Supplementary Fig. 2). Indeed, not only did affinity 

regression outperform nearest neighbor methods in 10-fold cross validation when evaluated 

either on correlation with experimental binding intensities across all probes (p < 8.0e – 6, 

one sided KS test) or on detection of the 1% highest affinity probes (p < 5.6e – 4, one sided 

KS test), it also performed almost as well as an ‘oracle’ method, where we chose the optimal 

training example binding profile as the prediction (Fig. 1g). These results demonstrate the 

strong statistical performance of the family-level TF-DNA binding model learned with 

affinity regression.

Interaction model identifies DNA binding specificity residues

Since the affinity regression model captures interaction information between K-mer features 

of the TF amino acid sequences and DNA k-mers, we next asked whether the trained model 

could identify which residues in the homeodomain sequences determine DNA binding 

specificity. To achieve this, we trained a model W on all the homeodomain PBM data, and 

we ‘mapped’ each TF's PBM binding profile Y through the probe k-mer matrix and the 

interaction model, YTDW, to get a weighting over amino acid K-mers. Using this weighting, 

we obtained a mapping score for each K-mer in the TF domain sequence as well as a 

positional importance score for each residue by summing weights of the K-mer windows 

containing it (Supplementary Note, Fig. 2a). A heatmap of these positional importance 

scores for a subset of the training data, including the Hox proteins and PYP-containing 

TALE domains, is shown in Fig. 2b (see also Supplementary Fig. 3). The DNA-contacting 
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residues receive the highest scores in this heatmap, producing a bright band of important 

residues towards the end of the multiple sequence alignment. In addition, other regions are 

highlighted for specific classes of homeodomains, and importantly, these residues are not 

found among those conserved across all homeodomains (top of heatmap, Fig. 2b).

To assess the statistical significance of the mapping scores at each K-mer in the domain 

sequence, we trained 10,000 affinity regression models for different randomizations of the 

K-mer features in each input sequence, used the empirical null distribution of scores at each 

K-mer position to define a nominal p-value, and corrected for multiple non-independent tests 

using the Benjamini-Hochberg-Yekutieli procedure (see Supplementary Note, 

Supplementary Fig. 4). For example, Fig. 2c shows the positional importance profile for 

two distinct homeodomains, Hoxa9 and Pknox1, with significant positional K-mers (FDR < 

0.05) shown in bold face on the sequences at the bottom. The Hoxa9 profile shows the 

largest significant peak over the third helix α3, corresponding to the DNA contacting 

residues. Structural alignment of Hoxa9 with Hesx-1 suggests that two glutamic acids in 

alpha helix α1 interact with arginines in α2 and α3, forming salt bridges that stabilize the 

binding configuration
16, 17

. Our positional K-mer analysis finds a significant peak over α1 

containing both glutamic acids (LEKE), and the major peak over α3 also contains the 

arginine residue of a salt bridge; there is a third peak over α2 (which does not pass FDR < 

0.05) that contains the arginine for the other salt bridge. The residues corresponding to the 

DNA contacts (red) and the identified components of the salt bridges (cyan) are shown on 

the Hoxa9 co-crystal structure in Fig. 2d (highlighted residues defined in Methods.)

By contrast, Pknox1 is a three-amino acid loop extension (TALE) homeodomain, and the 

positional importance profile derived from the affinity regression model indeed identifies a 

peak corresponding to the TALE residues PYP
18

 in between alpha helices α1 and α2 (Fig. 
2c), which has been reported to be involved in the Knox homeodomain-DNA target 

interaction in an analysis of the plant homeodomain OSH15
19

. In addition, sequence 

alignment of OSH15 and Pknox1 suggests that the hydrophobic residues WL in the 

significant peak over helix α1 may contribute to a hydrophobic core that stabilizes the 

homeodomain
19

. Fig. 2e shows the structure for human PKNOX1 aligned to the previous 

co-crystal structure with the core DNA contacting residues and TALE residues as identified 

by significant positional K-mers annotated in red; significant residues in green may 

contribute to the hydrophobic core, while residues in orange are identified as significant by 

the model but to our knowledge are not directly supported in the literature.

Predicted binding profiles yield accurate mouse homeodomain motifs

We next sought to confirm that the predicted binding profile can be used to generate a 

reliable DNA binding motif. Summarizing a PBM binding profile as a single position-

specific scoring matrix (PSSM) can be problematic, as there are numerous motif discovery 

algorithms (summarized and benchmarked in Weirauch et al.
20

) that produce different 

results from each other and often return multiple motifs. Despite these caveats, we decided 

to compare the results of applying the same motif discovery algorithm to predicted binding 

profiles and to actual PBM experimental data, to see if similar motifs were obtained.
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For the mouse homeodomains, we used affinity regression to predict binding profiles using 

10-fold cross-validation. For each held-out domain, we applied the motif discovery 

algorithm Seed-and-Wobble
3
 to its predicted binding profile as well as to the PBM binding 

profile of its nearest neighbor in the training set. For both affinity regression and nearest 

neighbor, we retained the algorithm's top three motifs. To define ground truth motifs, we 

generated three Seed-and-Wobble motifs for each PBM profile and selected a ‘target’ motif 

by comparison to the UniPROBE database (see Methods). We then used Kullback-Leibler 

divergence (DKL) to compare the predicted motifs for each test homeodomain to the target 

motif and reported the best match for each method.

Fig. 3a shows the comparison of affinity regression versus nearest neighbor for the task of 

generating a motif close to the target motif; here we transformed the log(DKL) scores by 

subtracting the minimum log(DKL) score over the set, so that all values are positive and 

small values correspond to well-predicted motifs. For guidance on what is a good or poor 

score, we identified homeodomains for which we have replicate experiments and computed 

the log(DKL) of the best matching motif from the replicate PBM experiment to the target 

motif (Supplementary Note); we took the median of these scores as our threshold for strong 

motif prediction performance. Regions where the performance of affinity regression or 

nearest neighbor is as good or better than this “median replicate” score are shown in gray in 

Fig. 3a. Overall, similar numbers of homeodomains are better predicted by affinity 

regression as nearest neighbor (90 versus 87, with one tie), and there is no significant 

difference in performance based on log(DKL) scores between the two methods (using p < 

0.05 threshold, Wilcoxon signed rank test). Several examples where affinity regression and 

nearest neighbor both succeed, both fail, or diverge in performance are shown in Fig. 3b.

Affinity regression gives accurate motifs for diverse homeodomains

We next turned to a newly generated data set of 218 homeodomains from diverse species for 

which PBM experiments and motif analyses have been carried out
21

. Before predicting and 

evaluating motifs, we assessed how well affinity regression, trained on the mouse 

homeodomain set alone, could predict binding data for these diverse homeodomains. The 

PBM data in the Weirauch et al. study used a different probe design than the original mouse 

homeodomain data set; however, 8-mer Z-scores
1
 summarized from PBMs with different 

probe designs can be compared. Therefore, we trained a modified version of affinity 

regression where we represented every 8-mer by constituent k-mers of length k = 1, ... , 7 

and regressed against the 8-mer Z-scores on the mouse homeodomain data set (see 

Supplementary Note). For the Z-score model, we trained on a subset of 75 non-redundant 

mouse homeodomains defined by Alleyne et al.
9
, who previously tried to predict Z-scores 

from homeodomain sequence by training independent regression models for each 8-mer. 

Alleyne et al. found that their regression models could not outperform a nearest neighbor 

approach based on a 15 amino acid representation of the homeodomains in leave-one-out-

cross-validation; by contrast, the Z-score affinity regression model outperformed their best 

reported result (Supplementary Table 1).

Fig. 3c shows an example of predicted versus experimental 8-mer Z-scores for an 

Oikopleura dioica homeodomain assayed by Weirauch et al. The overall rank correlation of 
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predicted and experimental Z-scores is high (ρ = .765), and 48% of the top 100 8-mers based 

on predicted Z-scores overlap with the top 100 8-mers determined from experimental Z-

scores. Moreover, running the PWM-Align-Z algorithm
21

 on top 100 predicted 8-mers 

produces a motif similar to the one obtained from the top experimental 8-mers (Fig. 3c). 

Overall, the Z-score affinity regression model strongly outperformed BLOSUM nearest 

neighbor for prediction of Z-scores on the diverse Weirauch et al. homeodomains based on 

Spearman correlation or AUPR for discriminating the top 1% of 8-mers from the bottom 

50% (p < 1e – 16 and p < 6.91e – 9, signed rank test, respectively; Fig. 3d, Supplementary 
Fig. 5a,b). Only on the difficult task of discriminating between the top 1% and bottom 99% 

of 8-mers does affinity regression statistically tie BLOSUM nearest neighbor.

We then asked whether we could derive accurate motifs for these diverse homeodomains 

from the Z-scores or binding profiles predicted by affinity regression, using models trained 

on mouse homeodomains only. The previous study used four separate motif discovery 

algorithms
21

 – BEEML
22

, Feature-REDUCE
20

, PWM-Align, and PWM-Align-Z – and used 

cross-validation on replicate experiments for each TF to select among algorithms and 

parameter settings to produce the final reported motif. However, as previously observed
20

, 

the motifs generated by the different algorithms have very different statistical properties, 

with BEEML and FeatureREDUCE producing low information content/degenerate motifs 

and PWM-Align and PWM-Align-Z giving higher information content motifs 

(Supplementary Fig. 6). Therefore, motifs derived from predicted versus experimental Z-

scores/binding intensities can only be compared when generated by the same algorithm. We 

chose PWM-Align-Z, which takes as input the top 8-mers ranked by Z-score, and BEEML, 

which uses probe-level binding data, as motif algorithms for our analysis.

We first used the Z-score affinity regression model to predict 8-mer Z-scores for each 

Weirauch et al. homeodomain and derived PWM-Align-Z motifs from the top 100 predicted 

8-mers. We compared performance to nearest neighbor motifs on the data set of 75 non-

redundant mouse homeodomains, where training set motifs were again generated by PWM-

Align-Z and assessed performance by log(DKL) – min log(DKL) relative to PWM-Align-Z 

motifs generated directly from the experimental data. We found that the motifs predicted by 

affinity regression were significantly closer to ground truth motifs than nearest neighbor 

motifs (p < 0.014, Wilcoxon signed rank test; Supplementary Fig. 7; Supplementary Note). 

By examining the bimodal motif score distributions (Supplementary Fig. 7) and visually 

inspecting motifs, we concluded that motifs satisfying a score threshold of 5 were generally 

close to ground truth. Fig. 3e shows the DKL-based score for each predicted motif versus the 

ground truth motif for the Weirauch data set, plotted against phylogenetic distance for the 

corresponding homeodomain from the nearest training set homeodomain (Supplementary 

Note, Supplementary Fig. 8); specific examples are highlighted in red, with experimental 

and predicted motifs shown in Fig. 3f. Whereas the motif score is positively correlated with 

phylogenetic distance (R ~ 0.482), there are still many motifs at high phylogenetic distance 

that satisfy the motif quality threshold.

As a second motif assessment, we used BEEML to extract motifs from binding profiles 

predicted by affinity regression and compared to previously reported ground truth BEEML 

motifs
21

. Since BEEML can converge to a suboptimal motif or fail to converge, we ran 
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BEEML 3-4 times per homeodomain on predicted and true binding profiles (Supplementary 

Note) and reported the motif that was closest to the ground truth BEEML motif for both 

affinity regression and nearest neighbor. To obtain motifs with higher information content, 

we scaled BEEML energy matrices as previously described
10

 (Supplementary Note). We 

were able to compare performance for 181 (out of 218) test homeodomains for which at 

least one BEEML run converged for each method and found that affinity regression 

significantly outperformed nearest neighbor (p < 1.3e – 3, Wilcoxon signed rank test; 

Supplementary Fig. 9; Supplementary Note). Finally, we compared the accuracy of the best 

affinity regression motif to those produced by the PreMoTF method
10

, which trains a 

random forest model to predict scaled BEEML motifs from homeodomain amino acid 

features. We again found that the best affinity regression BEEML motif significantly 

outperformed PreMoTF (p < 1.31e – 4, Wilcoxon signed rank test; Supplementary Fig. 9, 

Supplementary Note).

Affinity regression learns a model of RBP-RNA interactions

To demonstrate that our approach is not limited to TFs and PBM data, we turned to a recent 

study that performed 231 RNA compete binding experiments to assay the binding 

preferences of 207 RBPs
8
. This diverse data set comprises seven structural classes of RBPs 

from multiple organisms, with good representation of two larger classes RBPs – the RNA-

recognition motif (RRM) proteins and the KH domains. We carried out a filtering process to 

identify a subset of 130 RBPs that shared similar 4-mers (Supplementary Note), containing 

many RRM proteins as well as some KH domains, and asked whether affinity regression 

model could learn general principles of RBP-RNA interactions for these examples.

We used 10-fold cross-validation on these 130 RNA compete experiments to assess 

performance of affinity regression for the prediction of RNA binding affinities from RBP 

amino acid sequence. Fig. 4a shows that affinity regression systematically outperforms 

nearest neighbor for the binding profile prediction task (p < 1.74e – 4 vs. NN, p < 3e – 6 vs. 

BLOSUM NN, one-sided KS test; Supplementary Fig. 10), here evaluated based on 

Spearman correlation of the predicted and experimentally measured binding intensities 

across over 200K probes. Indeed, we also significantly outperform nearest neighbor and 

BLOSUM nearest neighbor when evaluated by detection of the top 1% brightest probes in 

the experimental binding data (p < 1e – 4 vs. NN, p < 1e – 4 vs. BLOSUM NN, one-sided 

KS test; Fig. 4b, Supplementary Table 2). Using BLOSUM substitution scores to compute 

the nearest neighbor performed worse than simply using similarity in the 4-mer space, 

possibly because the protein sequences are less sequence similar than in the homeodomain 

case and many have multiple RBP domains. Affinity regression also did not come as close to 

‘oracle’ performance, i.e. prediction based on the optimal nearest neighbor for the scoring 

metric, as in the homeodomain case, perhaps due to the diversity of RBP sequences.

Next we asked whether we could identify residues contributing to RNA-binding specificity, 

as we did for DNA-binding specificity in mouse homeodomains. To do this, we first split the 

RBP sequences into their constituent RNA-binding domains and trained a domain-level 

affinity regression model (Supplementary Note). We then mapped the predicted binding 

profile through the probe matrix and the trained model (YTDW) to obtain positional K-mer 
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and residue scores over individual domain sequences, as before. Fig. 4c shows a subset of 

the resulting heatmap of positional importance scores derived from the model (see 

Supplementary Fig. 11 for all training domains). Similar to before, we used an empirical 

null model to assess the significance of high-scoring positional K-mer scores and identified 

K-mers that satisfied an FDR < 0.15 threshold (Supplementary Note; Supplementary Fig. 
12). For example, one of the significant regions for RBFOX1, an RRM RBP in the heatmap, 

is the subsequence GFGFVT, which belongs to a beta sheet that contacts the RNA and 

contains both phenylalanines that are known to be critical for RNA binding
23

 (Fig. 4d; see 

Supplementary Fig. 13 for additional examples).

Finally, to assess how well we could predict binding motifs for RBPs, we trained a Z-score 

affinity regression model using data for all 207 RBPs without filtering in a 10-fold cross-

validation setting (Supplementary Note). Here, we trained on 7-mer Z-scores as reported in 

the website cisBP-RNA, and we represented each 7-mer by k-mers of length k = 1, ... , 6 . 

We used the top 100 7-mers predicted by affinity regression as input to PWM-Align-Z to 

generate binding motifs and compared to ground truth motifs generated by the same 

algorithm on the experimental binding data. Fig. 4e shows a subset of affinity regression 

predicted motifs and ground truth motifs for the RNA compete data (see Supplementary 
Fig. 14 for all motifs). We found that the motifs generated by the Z-score affinity regression 

model strongly outperformed nearest neighbor motifs (p < 7.66e – 10, Wilcoxon signed rank 

test; Supplementary Fig. 15), demonstrating the power and generalizability of our 

approach.

Discussion

Numerous methods have been developed for learning the binding preferences of a single TF 

from PBM probe data, including rank statistics for scoring preferred 8-mer patterns
3
, PSSMs 

learning methods
3, 24

, and more general support vector regression models based on k-mer 

string kernels
25

, among others (reviewed and benchmarked previously
20

). Likewise, RNA 

compete binding data for a single RBP can be summarized by a standard PSSM or k-mer 

enrichment statistics or used to learn binding motifs that incorporate predicted target RNA 

secondary structure
26

. By contrast, there has been relatively little work on learning the DNA 

recognition code for a family of TFs from PBM data and, to the best of our knowledge, 

learning family-level models of RBP binding preferences has not been attempted before. 

Several studies
9, 10

 have tried to learn a family-level DNA-binding model from the mouse 

homeodomain PBM compendium. These methods used a simplified representation of the 

input space of protein domain sequences (e.g. DNA-contacting residues, position-specific 

residues in a multiple alignment) and a reduced output representation of binding motifs 

(individual Z-scores or PSSMs) and deployed standard machine learning algorithms to learn 

the mapping from input to output. By contrast, our approach does not involve any reduced 

representation of the space of protein sequences or binding profiles and outperformed these 

previous approaches. In the mouse homeodomain setting, using affinity regression with 

position-specific residues relative to a multiple alignment also gives good prediction of 

probe intensities, though slightly weaker than with the 4-mer representation (p < 2.46e – 3 

based on Spearman correlation, Wilcoxon signed rank test; Supplementary Table 3). 
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However, learning directly from K-mers rather than using a multiple sequence alignment 

was critical for training on RNA compete profiles for a diverse set of RBPs.

Likewise, the ability to retain richer binding information in the form of probe-level 

intensities – rather than first compressing the binding profile to a PSSM – is a key feature of 

our approach. In particular, mapping binding profiles through the model onto the protein K-

mer space revealed key binding specificity residues in individual TFs and RBPs. There is 

some debate as to whether PSSMs or richer models are better for representing TF binding 

information, with some arguing that standard PSSMs are adequate in most cases
27

. We 

indeed could extract accurate motifs from Z-scores or binding profiles predicted by affinity 

regression, based on a systematic evaluation of predicted versus ground truth motifs from 

two different algorithms. However, the performance advantage of the extracted motifs over 

nearest neighbor was generally more modest than the advantage at the Z-score/binding 

profile level. We therefore reason that PSSMs, while familiar and interpretable, are a lossy 

compression of PBM/RNA compete binding data, and that richer representations such as 

those that use k-mers may provide higher accuracy for predicting target sites
28

.

Various authors have used predicted secondary structure in the modeling of RBP binding 

preferences
29-31

. Following Foat and Stormo
30

, we used occurrences of 5-mers in the 

unpaired region of predicted stem loops as separate features from simple 5-mer occurrences 

(Supplementary Note). We found that the 5-mers in stem loops gave no advantage over 

simple 5-mers (Supplementary Table 4), likely because the current version of the RNA 

compete assay is designed to avoid probes with secondary structure. However, several newer 

assays to measure in vitro protein-RNA interactions do generate rich statistics for structured 

RNA probe sequences, including the RNA Bind-n-Seq assay
32

 and a method that uses in situ 
transcription to synthesize RNA probes tethered to DNA with a repurposed sequencing 

instrument
33

. As data from these newer assays becomes available across families of RBPs, it 

will become important to extend our affinity regression approach to suitably incorporate 

RNA secondary structure in the feature representation.

Our results show that affinity regression is highly effective for learning and interpreting 

family-level models of protein-nucleic acid interactions from high-throughput binding 

compendia. More broadly, affinity regression can be used to train a bilinear interaction 

model for any macromolecular or cellular interactions where interactors are described by 

features and where a high-throughput ‘affinity’ readout is available. As one example, we can 

apply affinity regression to link upstream signaling pathways with downstream 

transcriptional response in tumors samples, pairing phosphoproteomic measurements with 

motif hits in gene promoters to predict transcriptional output
34

. High-throughput screening 

data with quantitative readouts, cell co-culture systems with quantitative phenotypes, and T 

cell epitope binding data are all potential applications of our approach. We therefore 

envision our method as a general strategy to model and interpret biological interaction data.

Methods

Additional details on PBM and RNA compete data sets and probe-level data normalization, 

mathematical development of the algorithm, affinity regression model selection, statistical 
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significance of amino acid K-mer scores, and motif analyses are provided in the 

Supplementary Note.

Training the affinity regression model

We define affinity regression as the following regularized bilinear regression problem. Let 

 be a matrix which defines the binding intensities over probes i = 1, ..., N for 

TFs j = 1, ... , M, so that each column of Y corresponds to a PBM experiment. Let 

 be a matrix that defines the k-mer features (in the alphabet of bases) of each 

probe i. Let  be a matrix that defines the K-mer features (in the alphabet of 

amino acids) of each TF protein sequence j. We set up a bilinear regression problem to learn 

the weight matrix  on combinations of pairs of TF-probe features:

(1)

To solve this regression problem, we formulate an L2-regularized optimization problem:

where D, P and Y are known (Fig. 1a). We can transform the system to an equivalent system 

of equation by reformulating the matrix products as Kronecker products
35, 36

:

(2)

where ⊗ is a Kronecker product, and vec(·) is a vectorizing operator that stacks a matrix and 

outputs the corresponding stacked vector.

Since the number of probes N is very large and the number of TFs is typically small (M << 
N), we may represent the system as a smaller system of equations by using a kernel-like 

transformation in the output space, namely we left-multiply both sides of Equation (1) by YT 

before the tensor product transformation (Equation (2)) so that our new outputs are the 

similarities between the original output vectors (see Supplementary Note for error term 

handling):

(3)

Again this system of equations can be solved using L2-regularized regression (Fig. 1b). Due 

to the enormous size of the space of pairs of features (in our case, in the millions), we 

employ additional compression techniques to solve the system of equations of the affinity 

regression problem so that it can be solved on a standard desktop computer (see 

Supplementary Note).
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Homeodomain analysis

Motif prediction—We used three motif algorithms in our analysis: Seed-and-Wobble on 

predicted and experimental binding profiles in the mouse homeodomain data set, and PWM-

Align-Z and BEEML on predicted and experimental Z-scores and binding profiles, 

respectively, on homeodomains from Weirauch et al. For all methods, we determined a high 

information content core of each ‘ground truth’ motif obtained by the motif discovery 

algorithm on experimental data, and we used this core to define the length of the PSSM for 

motif comparisons based on symmetrized Kullback-Leibler divergence, DKL (see 

Supplementary Note).

Determination of target (‘ground truth’) motifs—For ground truth motifs for 178 

mouse homeodomains, we applied Seed-and-Wobble to the experimental PBM data, 

considered the top three motifs for each homeodomain, and chose the motif closest to 

‘primary’ PSSM posted on the UniPROBE database, as measured by the Kullback-Leibler 

divergence (DKL), as the ‘target’ motif. The three predicted Seed-and-Wobble PSSMs for 

affinity regression (respectively, nearest neighbor) were then compared to the target PSSM, 

and the PSSM with minimum DKL was selected for performance evaluation. For the test set 

of 218 divergent homeodomains, the target motif was taken to be the PSSM generated by 

PWM-Align-Z or BEEML, as previously reported
21

.

Phylogenetic tree construction—We pooled 75 non-redundant training mouse 

homeodomain sequences with an additional 218 more divergent homeodomains from 

Weirauch et al.
21

 Multiple sequence alignment was performed using ClustalX, and this 

alignment was used to generate the phylogenetic tree (Jalview) based on average distance 

using percent identity. Every branch was assigned a score by averaging the log(DKL) scores 

of the subbranches.

Protein Structures—PyMOL was used to visualize the PDB protein structures. 

Highlighted residues are as follows: 1PUF (Hoxa9): red, A/206-209, A/248-259 (DNA 

binding residues), cyan, A/220-223, 256 (salt bridge residues). 1X2N (PKNOX1): red, A/

52-65 (DNA binding residues) and A/32-35 (TALE), green A/25-29, and orange A/46-49.

RNA binding protein analysis

RNA motif prediction—We used PWM-Align-Z to produce a PSSM for each RBP RNA 

compete experiment using k = 7 as the width of the k-mers and N = 100 top k-mers for the 

alignment (see Supplementary Note).

Protein Structure—Highlighted residues for PDB structure 2ERR (RBFOX1) are: red, A/

147-150 (EIIF) and A/157-162 (GFGFVT), both RNA-proximal regions.

RNA motif visualization—We visualized the PSSMs from 207 RBPs, including both 

RRM and KH subfamilies using the motifStack (version 1.4.0) R package and plotted them 

in a circularized phylogenetic tree.
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Software availability

Source code that implements the main affinity regression algorithm and runs the simulation 

experiments described in the Supplemental Note is available as a Supplementary File. A full 

implementation of the affinity regression algorithm, scripts used to generate the analyses in 

the study, and processed PBM and RNA compete data can be obtained from https://

bitbucket.org/leslielab/affreg.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Affinity regression learns highly accurate models of transcription factor-DNA binding 
interactions from protein binding microarray experiments
a) Affinity regression decomposes the binding intensity for each TF and DNA probe as a 

weighted interaction between the k-mer features of the probe and the K-mer features of the 

TF amino acid sequence. Training the interaction model involves solving a regularized 

bilinear regression to minimize errors in reconstructing the probe intensity data across all 

TFs and probes. The model is represented by the interaction matrix W, whereas P and D 
represent the K-mer features of protein sequences and the k-mer features of DNA probes, 

respectively. b) Lowering the number of equations by left multiplication with YT makes the 
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problem computationally feasible on a standard computer, and the matrix YTD is amenable 

to low rank approximation. c) Full-dimensional probe intensity profile prediction is achieved 

by mapping the lower dimensional solution back into the span of the training probe intensity 

profiles. d) Predicted probe intensities (y-axis) are plotted against experimental probe 

intensities (x-axis) for the homeodomain Cart1, using a model trained on 90% of the mouse 

homeodomain PBM data set with Cart1 among the held-out proteins. Probes containing the 

three most enriched 8-mers are correctly predicted to have high intensities. e) Replicate 

experimental probe intensities (black) and predicted probe intensities (blue) are both plotted 

against Cart1 experimental probe intensities, showing that the prediction method has a 

similar level of variation as replicate noise. f) Probe correlation performance on held-out 

homeodomains for affinity regression (y-axis) versus BLOSUM nearest neighbor (x-axis). 

Each point is the Spearman correlation between the predicted and actual probe intensities, 

reporting results on held-out TFs using 10-fold cross-validation. g) The bar plots show 

prediction performance measured by Spearman correlation of probe intensities (left) and 

AUPR (area under precision-recall curve) for detection of the top 1% of probes (right) for 

affinity regression, BLOSUM nearest neighbor, nearest neighbor, and an ‘oracle’ method 

that chooses the training example with optimal performance for the evaluation metric (best 

possible neighbor). ‘BLOSUM nearest neighbor’ uses local alignment scores with the 

BLOSUM50 substitution matrix to compute the nearest neighbor; ‘nearest neighbor’ uses 

Euclidean distance in the k-mer vector space to identify the nearest neighbor. Error bars 

represent the standard error of the mean across 10 folds. Affinity regression is significantly 

better than both nearest neighbor methods, and there is no significant difference between 

affinity regression and the ‘oracle’ method.
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Figure 2. Affinity regression identifies key residues that contribute to homeodomain-DNA 
binding specificity
a) Mapping the experimental or predicted PBM intensity profile through the model produces 

a weighting over amino acid K-mers, which is used to compute a positional importance 

profile over residues of the TF sequence binding. b) Sequence conservation of the 

homeodomain family (top track) and the predicted binding importance profiles across 

members of the homeodomain family (bottom map) are shown. Binding importance profiles 

are computed from K-mer weights via yTDW and mapped to each TF sequence. The 

brightest band of columns corresponds to the core DNA-contacting residues. Binding-

specificity features particular to groups of homeodomains are also correctly identified, such 

as the PYP sequence corresponding to the TALE domain. For Hoxa9 and Pknox1, 4-mers 

with positional importance score satisfying a 5% FDR threshold are shown with red boxes 

(see Supplementary Fig. 4 for all mouse homeodomains). c) Actual mapped amino acid 
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positional importance scores are shown for human PKNOX1 (TALE homeodomain) and 

mouse Hoxa9. A local peak can be seen for PKNOX1 at the TALE domain (PYP) that does 

not appear for Hoxa9. Statistically significant positional 4-mers are shown in boldface on the 

sequences at the bottom of the panel. d,e) Statistically significant 4-mers from the positional 

importance maps for Hoxa9 and Pknox1 are highlighted on known structures from PDB. For 

Hoxa9, the PDB co-crystal structure is shown; for PKNOX1, the homeodomain structure is 

aligned to the previous co-crystal structure. The protein is shown in yellow, and the 

predicted residues that contact DNA are in red. In Hoxa9, identified components of two salt 

bridges that stabilize the binding conformation are in cyan; in PKNOX1, a significant region 

potentially contributing to the hydrophobic core is shown in green; predicted residues 

without a known role in binding specificity are indicated in orange. See methods and 

materials for highlighted residues.
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Figure 3. DNA binding profiles predicted by affinity regression generate accurate binding motifs 
for diverse homeodomains
a) In 10-fold cross-validation, for each test TF we predicted probe intensities, generated 

PSSMs using Seed-and-Wobble, and compared these predicted motifs to PSSMs estimated 

directly from the experimental data. We used the log2 Kullback-Leibler divergence (DKL) to 

compare motifs; these scores are shifted by adding the min DKL to all values, so that the 

adjusted scores are all positive and small values correspond to good detection of the target 

motif. The gray regions correspond to motif detection that is as good or better than the 
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(adjusted) median log(DKL) between motifs from replicate experiments. For most TFs, 

affinity regression and nearest neighbor produce PSSMs in a similar score range, and these 

with no statistical significance between their performance (p > 0.05, one-sided KS tests). b) 
Examples of predicted PSSMs are presented with corresponding target PSSMs (derived from 

experimental PBM data). c) Example of predicted Z-scores from the Z-score affinity 

regression model, trained on 75 non-redundant mouse homeodomains, versus experimental 

Z-scores for SNAPOd2T00005194001, one of the diverse homeodomains assayed by 

Weirauch et al. Binding motifs generated by PWM-Align-Z based on the top 100 8-mers 

predicted by affinity regression and the top 100 8-mers based on actual Z-scores are shown. 

d) Performance comparison of the Z-score affinity regression model versus the ‘oracle’ 

nearest neighbor, BLOSUM nearest neighbor, and nearest neighbor in 4-mer space. Error 

bars represent the standard error of the mean across 10 folds. e) Motif accuracy of affinity 

regression predicted motifs, generated by running PWM-Align-Z on the top 100 predicted 8-

mers, versus phylogenetic distance from the nearest training set homeodomain for all 218 

Weirauch et al. homeodomains, based on the phylogenetic tree shown in Supplementary 
Fig. 8. Motif accuracy is reported as log(DKL) – min log(DKL) relative ground truth motifs 

generated by PWM-Align-Z; motif scores < 5 are shown in the green region and indicate 

accurate motifs, while those above this threshold are in the red region. f) Examples of 

predicted and ground truth motifs based on PWM-Align-Z motif extraction.
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Figure 4. Affinity regression learns a predictive model of RBP-RNA interactions from RNA 
compete experiments
a) Test probe correlation comparison between BLOSUM nearest neighbor and affinity 

regression for 130 RBPs, using 10-fold cross-validation and showing performance for held-

out proteins. Each point is the Spearman correlation between the predicted and actual RNA 

compete probe intensities. b) The bar plots show performance on held-out RBPs using 10-

fold cross-validation for affinity regression, nearest neighbor methods, and an oracle that 

returns the optimal training example as neighbor. Error bars represent the standard error of 

the mean across 10 folds. Affinity regression performs significantly better than both 
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BLOSUM nearest neighbor and nearest neighbor, and the is no significant difference in 

comparison to the ‘oracle’ neighbor for probe intensity Spearman correlation and top 1% 

probe prediction AUROC. c) Predicted binding importance profiles across a subset of RRM 

proteins (see Supplementary Note for KH domains), computed by mapping K-mer 

weights yTDW onto each RRM. RBPs that have multiple RRM binding domains are 

represented as multiple rows. The learned model finds several amino acid K-mers that are 

correlated with binding. For specific RBPs, amino acids 4-mers with positional importance 

score satisfying a 5% FDR threshold are shown with red boxes (see Supplementary Fig. 12 
for all RBPs). d) The co-crystal structure shows human splicing factor RBFOX1, one of the 

RRM RBPs in the heatmap, in complex with the RNA sequence UGCAUGU; identified in 

red are significant positional K-mers corresponding to the sequence GFGFVT, containing 

two phenylalanines critical for RNA-binding within a beta sheet contacting the RNA, as well 

as the RNA-proximal K-mer (EIIF). e) Predicted PSSMs for protein subfamilies with the 

RRM and KH domains. The inner PSSM wheel shows the PWM-Align-Z PSSM for the 

actual RNA compete experiment, while the outer wheel shows the affinity regression 

predicted motif on unseen TFs in a 10-fold cross-validation setting.
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