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Abstract. Background and aim: Next generation sequencing (ngs) is becoming the standard for clinical diag-
nosis. Different steps of NGS, such as DNA extraction, fragmentation, library preparation and amplification,
require handling of samples, making the process susceptible to contamination. In diagnostic environments,
sample contamination with DNA from the same species can lead to errors in diagnosis. Here we propose a
simple method to detect within-sample contamination based on analysis of the heterozygous single nucleo-
tide polymorphisms allele ratio (AR). Methods: A dataset of 38000 heterozygous snps was used to estimate
the ar distribution. The parameters of the reference distribution were then used to estimate the contamination
probability of a sample. Validation was performed using 12 samples contaminated to different levels. Resu/#s:
Results show that the method easily detects contamination of 20% or more. The method has a limit of detec-
tion of about 10%, threshold below which the number of false positives increases significantly. Conclusions:
The method can be applied to any type of ngs analysis and is useful for quality control. Being fast and easy to

implement makes it ideal for inclusion in NGS pipelines to improve quality control of data and make results

more robust. (www.actabiomedica.it)
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Introduction

Since the development of the Sanger sequenc-
ing technique (1,2), DNA sequencing has become a
fundamental approach for the study and diagnosis of
an increasing number of genetic diseases (3,4). With
the advent of NGS, the cost of sequencing decreased
sharply, while output capacity showed an enormous
increase (5). While NGS brought huge advantages in
term of cost and sequencing capacity, it also has some
drawbacks that need to be taken into account. When
used for diagnostic applications, within-species sample
contamination is a potential problem. Different stud-
ies (6-8) have demonstrated that the multiple handling
steps required to set up NGS experiments, as well as
multiple sample processing, often lead to sample con-

tamination. Contamination can produce an unusually
large number of heterozygous SNPs with an unexpect-
ed allele ratio (AR), making the analysis susceptible
to genotype misclassification and false positives (FPs).
While different tools exist to verify the quality of NGS
data, like fastQC or NGS QC Toolkit (9), little has
been done to develop algorithms to detect within-spe-
cies contamination. There are tools to detect contami-
nation in prokaryotic genomes or microbial contami-
nation in eukaryotic genomes (10), but unfortunately
there is little or nothing for within-species contamina-
tion of human samples. Here we propose a method
for detecting within-sample contamination, based on
analysis of the AR of heterozygous SNPs. The AR of
a heterozygous SNP in a clean sample is usually about
0.5, but in the presence of a contaminant we observe
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more heterozygous SNPs with unexpected AR, very
different from 0.5. The idea behind the method is that
the higher the number of SNPs with unexpected AR
in a given sample, the higher the probability that the

sample is contaminated.

Materials and methods
Library preparation and sample sequencing

For this study we used 894 different samples which
were analyzed following the NGS workflow described
below. The detailed procedure is described in (11). In-
solution target enrichment was performed according
to “Nextera Rapid Capture Enrichment Guide, Sep-
tember 2014” (Illumina, San Diego, CA, USA), with
the exception of the quantity of Tagment DNA en-
zyme (5 pl in place of 15 pl specified in the protocol).
Fifty nanograms of each genomic DNA were initially
fragmented by Nextera enzymatic technology. Limit-
ed-cycle PCR was carried out to incorporate specific
index adaptors to each sample library. PCR products
were purified with beads, concentration measured with
dsDNA BR assay kit on Qubit 2.0 Fluorometer Sys-
tem (Invitrogen, Carlsbad, CA, USA), while quality
and average size of fragments assessed with DNA1000
Kit on the Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Palo Alto, CA). Five hundred nanograms of
each indexed DNA library were combined into the
12-plex library pool, hybridized with target-specific
biotinylated probes and captured using streptavidin
magnetic beads. A second round of hybridization,
capture, PCR amplification and PCR clean-up were
performed. The final enriched pooled libraries were
quantified using the dsDNA BR assay kit on Qubit
2.0 Fluorometer System (Invitrogen, Carlsbad, CA,
USA), quality and average size of fragments, mainly
distributed between 500 and 600 bp, were verified us-
ing HS DNA Kit on the Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA). The pool (12-
plex library) was sequenced on a MiSeq personal se-
quencer (Illumina, San Diego, CA) according to the
manufacturer’s instructions (150 bp paired-end read

sequencing, MiSeq kit V3).

Variant Selection

The reference dataset of SNPs was built from
the annotated VCF files of 894 samples. The samples
used for this study were filtered prior to use in DNA
contamination analysis. For each sample we kept only
heterozygous SNPs with a mapping quality superior
to 18 and that were sequenced with a coverage of at
least 10X. This procedure allowed us to discard poorly
sequenced SNPs with unexpected ARs due to analyti-
cal artifacts.

Detecting contamination

Our method is based on the hypothesis that con-
taminated samples contain more heterozygous SNPs
with unexpected AR (very different from 0.5) than
non-contaminated samples. The first step consisted
in determining the mean, standard deviation and 95%
confidence interval (CI95) of the AR distribution of
the reference dataset of SNPs. Since at this point we
did not have a method to distinguish whether a sam-
ple is contaminated or not, a large sample number was
necessary to mitigate the effect of any contaminated
samples in the reference dataset. In our case we used
894 samples (total SNPs about 38000) to generate the
distribution of AR. The mean () and standard devia-
tion (o) of the distribution were obtained as shown in
Eq.1and Eq.2.To calculate the probability of contam-
ination, we proceeded as follows. The SNPs present in
the VCF file of the sample under investigation were
filtered as described in the Variant Selection section.
We then calculated the z-score of each filtered SNP
as in Eq.3 using the reference distribution parameter.
The z-score reflected the number of standard devia-
tions by which the AR of a SNP was above/below the
mean of our reference dataset. The CI95 of the refer-
ence dataset indicated the expected range of values of
AR in which 95% of SNPs should fall, enabling us to
determine how many SNPs of the study sample fell
outside this window. We counted how many SNPs had
a z-score outside the range -1.96/+1.96 and we divided
this number by the total number of SNPs in the sam-
ple to obtain the percentage of SNPs with unexpected
AR, namely the sample score. The higher the number
of SNPs with z-score outside this region, the higher
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the probability of the sample of being contaminated.
The threshold at which we consider the sample to be
contaminated can be set according to the lowest con-
tamination that we wish to detect and the number of
FPs we are willing to accept in the analysis.
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Preparing contaminated samples

Algorithm performance was tested on samples
contaminated artificially at different levels. To gener-
ate the contaminated samples, we used three Coriell

samples, NA20828, NA20582 and NA20763. First,

we measured the concentration of each sample us-

ing a BiospecNano Spectrophotometer system (Shi-
madzu Corporation, Japan) and we diluted them to a
concentration of 20 ng/pl. Then, we measured again
the concentration of each 20 ng/pl sample using a
dsDNA BR Assay Kit on a Qubit 2.0 Fluorometer
System (Invitrogen, Carlsbad, CA, USA) to have
the most accurate value. At the end, we diluted the
samples to the final desired concentration of 5 ng/pl
in 10 pl final volume according to Illumina Nextera
Rapid Capture Protocol. We prepared 5, 7 and 2 ali-
quots of NA20828, NA20582 and NA20763 at 5 ng/
pl, respectively, to have enough material to combine
for the contamination process. NA20828, NA20582
were used as principal samples and were contaminated
at different levels with NA20582 and NA20763 re-
spectively. A total of nine samples with known con-
taminations ranging from 2% to 20% were generated
(Table 1). The algorithm was tested on 12 samples,
the nine contaminated plus the three Coriell samples
as controls. All the final samples were at 5 ng/pl in 10
pl volume.

Table 1. Summary of artificially contaminated samples. Starting with three Coriell samples, we generated nine samples contaminated
at different levels. ‘Sample name’ indicates the name given to the sample generated, ‘Mixed samples’ indicates the Coriell sample used
to generate the contaminated sample, ‘Contamination %’ indicates the percentage of contamination, ‘Volume of principal sample’ and
‘Volume of contaminant’ indicate the proportion used to generate the contaminated sample

] L. Volume of principal | Volume of contaminant
9
Sample name Mixed samples % of contamination sample (l) sample (pl)

10 NA20828+NA20582 10 9 1
(contaminant)

C27 NA20828+NA20582 7 9.3 0.7
(contaminant)

C25 NA20828+NA20582 5 9.5 0.5
(contaminant)

2 NA20828+NA20582 2 9.8 0.2
(contaminant)

320 NA20582+NA20763 20 8 2
(contaminant)

310 NA20582+NA20763 10 9 1
(contaminant)

C37 NA20582+NA20763 7 9.3 0.7
(contaminant)

C35 NA20582+NA20763 5 9.5 0.5
(contaminant)

C32 NA20582+NA20763 2 9.8 0.2
(contaminant)
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Software

The algorithm and all the code used was written
in Python 3. The code developed for this publication
is intended to be executed in jupyter notebook (12).
The data structures were coded using pandas library
(13,14). The kernel density estimator came from the
statsmodels python library (15). The figures in this
paper and in the notebook were generated with mat-
plotlib (16). The code of the algorithm along with the
data used in this paper are publicly available on github
at “https://github.com/tizianoBS/dna-contamination-
detector.git”.

Results

Validation of our method was performed on a to-
tal of 12 samples with contamination ranging from 0
to 20% (Table 2).

Before proceeding with the analysis we wanted to
verify the hypothesis that the number of SNPs with
unexpected AR is higher in contaminated samples.
For this purpose we first compared the distribution of

AR in the reference dataset and in the contaminated
samples (Fig. 1). Interestingly, we noticed that the AR
distribution of non contaminated samples was normal
with a low standard deviation, while in contaminated
samples data tended to deviate from normality and
the standard deviation was much larger than for clean
samples due to imbalance in the AR of SNPs. As hy-
pothesized, the number of SNPs in the unexpected
AR region (beyond CI95 of the reference dataset) was
much higher in the contaminated samples.

Table 2 shows the percentage of SNPs with a
z-score outside the expected region for each sample.
These results show that the method readily detects
contamination around 20%, and seems to indicate a
limit of detection around 10%-7%, since two of the
non-contaminated samples used as control had scores
around those contamination percentages.

To better investigate the limit of detection of this
method we compared the score of the contaminated
samples with those of the 894 samples of the reference
dataset. Fig. 2 shows the score of the contaminated
samples (black and red line) compared to the mean
(dotted blue line) and CI95 (dotted green line) of the

reference dataset scores. The plot confirms that it is

Table 2. Summary of the z-score percentages of contaminated samples and controls used in validation. The z-score % of a sample
indicates the percentage of SNPs in the sample with a z-score outside the expected region of -1.96/+1.96. ‘Sample’ indicates the name
of the sample, ‘z-score %’ the sample score, ‘Contamination %’ the percentage of contamination in the sample, ‘Number of SNPs’ the
number of variants in the sample in the VCF file after filtering, and “Total SNPs outside threshold” indicates how many SNPs had

an unexpected Z-SCOore

Sample name Z-score % % of contamination Number of SNPs Total SNPs outside threshold
C320 393 20 346 136
C310 13.6 10 279 38
C210 12.6 10 294 37

C27 11.3 7 275 31
C37 9.9 7 262 26
NA20763 9.5 0 284 27
NA20828 9.2 0 271 25
C25 9.2 5 272 25
C35 8.8 5 263 23
C32 7.7 2 260 20
C22 6.9 2 274 19
NA20582 5.8 0 271 15
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Figure 1. Distribution of allele ratios AR in reference dataset and contaminated samples. (A) Distribution of AR in reference dataset.
The red line is the mean of the distribution, the violet the median and the blue lines define the 95% confidence interval (CI95). The
blue areas outside the CI95 define the region of unexpected AR: whatever falls outside the CI95 is considered unexpected. It can
be seen that the distribution is normal with minimal tails in the unexpected regions. (B) Distribution of AR in the artificially con-
taminated samples. The red line is the mean of the distribution, the violet the median, and the blue lines define the 95% confidence
interval of the reference dataset, the green dotted line defines the CI95 of the contaminated dataset. The distribution is no longer
normal and a greater percentage of data falls in the unexpected regions with respect to the reference dataset, showing the effects of

contamination on the AR of SNPs

easy to detect contamination as low as 20% without
the risk of calling a false positive, and suggests a limit
of detection around 10%, a threshold at which there
may be more FPs, since the upper limit of the CI95
of the reference dataset is between the score obtained
by samples with 7% and 10% contamination. The z-
score % threshold for calling a contaminated sample
should therefore be set according to the number of
FPs that can be tolerated. In order to estimate FPs at

the different contamination levels, more experiments
are needed. Fig. 3 shows the distribution of AR of the
samples used to generate contaminated samples and
the distribution of AR of the contaminated samples
for different contamination percentages. The line of
best fit shows that as the percentage of contamina-
tion decreases, it becomes more and more difficult to
distinguish contaminated and clean samples, since the
change in the distribution of AR is minimal for low
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Figure 2. Percentage of SNPs with z-score outside the defined thresholds (-1.96/+1.96) for samples of the validation set. In black
the score obtained by sample C3 (see Table 1) at different ratios of contamination. In red the score obtained by sample C2 (see Table
1) at different ratios of contamination. The blue line is the mean of the z-scores obtained by the reference dataset while the green
dotted line defines the upper limit of the CI95 of the z-scores of the reference dataset. The graph suggests that our method is able
to detect contamination down to 20-10%. The threshold for discriminating between contaminated/non contaminated sample should
be chosen depending on how many FPs can be tolerated. Contamination around 20% would probably generate no FPs. Detection
of lower contaminations is possible but with more FP calls. More experiments are needed to have an estimate of FPs for different

contamination percentages

contamination levels. At 5% contamination, the line of
best fit of contaminated samples almost matches that
of non-contaminated samples, making it impossible to
differentiate the two distributions.

Discussion

Being able to detect contamination in DNA sam-
ples is of primary importance in a diagnostic environ-
ment. The method described in this paper is designed
to determine from the VCF file of a sample, whether
the sample is contaminated. The results show that the
method is capable of clearly distinguishing contamina-

tion as low as 20% with high accuracy. Lower contami-
nations, down to 10%, can be detected as well, but with
a higher FP rate, since part of the reference dataset
showed a score similar to samples with 7-10% con-
tamination. Contamination below 7% cannot be effi-
ciently detected with this method, since at these levels,
the distribution of AR almost exactly matched that of
the reference dataset. However, for such low contami-
nation the impact on the sample is minimal (Fig. 3A),
making the probability of genotype misclassification
and false positives very low.

Our method has various features that make it ideal
for use as a quality control tool in diagnostic environ-
ments. It is very easy to implement, requiring only ba-
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Figure 3. Comparison of AR distributions of Coriell samples used to generate contaminated samples and the resulting contaminated
samples. In blue the sample used as principal, in orange the one used as contaminant and in green the resulting contaminated sample.
Black dotted line is the line of best fit of the reference sample and the red line is that of the contaminated sample. (A) Results for 5%
contamination. The best fit lines show that is difficult to distinguish the AR distributions, making it impossible for our method to
detect contamination at such a low percentage. (B) Results for 10% contamination. The algorithm is able to distinguish the two distri-
butions but since the score obtained by the non-contaminated sample is close to that of the 10% contaminated sample, we cannot ex-
clude the presence of FPs if the threshold is chosen to detect 10% contamination. (C) Results for 20% contamination. In this case the
contaminated sample has almost tri-modal distribution which makes it extremely easy to distinguish from the reference distribution
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sic knowledge of statistics and information technology
for correct implementation. It is also a fast algorithm
that can analyze hundreds of samples in minutes, mak-
ing it ideal for analysis of big datasets. Finally, since
only the VCF files of samples are used as input, the
method can easily be implemented in a NGS pipeline
with minimum impact on execution time and resource
consumption. It is an ideal tool for improving qual-
ity control of NGS data and the robustness of clinical
results.
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