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Abstract. Background and aim: Next generation sequencing (ngs) is becoming the standard for clinical diag-
nosis. Different steps of NGS, such as DNA extraction, fragmentation, library preparation and amplification, 
require handling of samples, making the process susceptible to contamination. In diagnostic environments, 
sample contamination with DNA from the same species can lead to errors in diagnosis. Here we propose a 
simple method to detect within-sample contamination based on analysis of the heterozygous single nucleo-
tide polymorphisms allele ratio (AR). Methods: A dataset of 38000 heterozygous snps was used to estimate 
the ar distribution. The parameters of the reference distribution were then used to estimate the contamination 
probability of a sample. Validation was performed using 12 samples contaminated to different levels. Results: 
Results show that the method easily detects contamination of 20% or more. The method has a limit of detec-
tion of about 10%, threshold below which the number of false positives increases significantly. Conclusions: 
The method can be applied to any type of ngs analysis and is useful for quality control. Being fast and easy to 
implement makes it ideal for inclusion in NGS pipelines to improve quality control of data and make results 
more robust. (www.actabiomedica.it)
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O r i g i n a l  a r t i c l e

Introduction

Since the development of the Sanger sequenc-
ing technique (1,2), DNA sequencing has become a 
fundamental approach for the study and diagnosis of 
an increasing number of genetic diseases (3,4). With 
the advent of NGS, the cost of sequencing decreased 
sharply, while output capacity showed an enormous 
increase (5). While NGS brought huge advantages in 
term of cost and sequencing capacity, it also has some 
drawbacks that need to be taken into account. When 
used for diagnostic applications, within-species sample 
contamination is a potential problem. Different stud-
ies (6-8) have demonstrated that the multiple handling 
steps required to set up NGS experiments, as well as 
multiple sample processing, often lead to sample con-

tamination. Contamination can produce an unusually 
large number of heterozygous SNPs with an unexpect-
ed allele ratio (AR), making the analysis susceptible 
to genotype misclassification and false positives (FPs). 
While different tools exist to verify the quality of NGS 
data, like fastQC or NGS QC Toolkit (9), little has 
been done to develop algorithms to detect within-spe-
cies contamination. There are tools to detect contami-
nation in prokaryotic genomes or microbial contami-
nation in eukaryotic genomes (10), but unfortunately 
there is little or nothing for within-species contamina-
tion of human samples. Here we propose a method 
for detecting within-sample contamination, based on 
analysis of the AR of heterozygous SNPs. The AR of 
a heterozygous SNP in a clean sample is usually about 
0.5, but in the presence of a contaminant we observe 



T. Dallavilla, G. Marceddu, A. Casadei, et al.2

more heterozygous SNPs with unexpected AR, very 
different from 0.5. The idea behind the method is that 
the higher the number of SNPs with unexpected AR 
in a given sample, the higher the probability that the 
sample is contaminated.

Materials and methods

Library preparation and sample sequencing

For this study we used 894 different samples which 
were analyzed following the NGS workflow described 
below. The detailed procedure is described in (11). In-
solution target enrichment was performed according 
to “Nextera Rapid Capture Enrichment Guide, Sep-
tember 2014” (Illumina, San Diego, CA, USA), with 
the exception of the quantity of Tagment DNA en-
zyme (5 μl in place of 15 μl specified in the protocol). 
Fifty nanograms of each genomic DNA were initially 
fragmented by Nextera enzymatic technology. Limit-
ed-cycle PCR was carried out to incorporate specific 
index adaptors to each sample library. PCR products 
were purified with beads, concentration measured with 
dsDNA BR assay kit on Qubit 2.0 Fluorometer Sys-
tem (Invitrogen, Carlsbad, CA, USA), while quality 
and average size of fragments assessed with DNA1000 
Kit on the Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Palo Alto, CA). Five hundred nanograms of 
each indexed DNA library were combined into the 
12-plex library pool, hybridized with target-specific 
biotinylated probes and captured using streptavidin 
magnetic beads. A second round of hybridization, 
capture, PCR amplification and PCR clean-up were 
performed. The final enriched pooled libraries were 
quantified using the dsDNA BR assay kit on Qubit 
2.0 Fluorometer System (Invitrogen, Carlsbad, CA, 
USA), quality and average size of fragments, mainly 
distributed between 500 and 600 bp, were verified us-
ing HS DNA Kit on the Agilent 2100 Bioanalyzer 
(Agilent Technologies, Palo Alto, CA).  The pool (12-
plex library) was sequenced on a MiSeq personal se-
quencer (Illumina, San Diego, CA) according to the 
manufacturer’s instructions (150 bp paired-end read 
sequencing, MiSeq kit V3).

Variant Selection

The reference dataset of SNPs was built from 
the annotated VCF files of 894 samples. The samples 
used for this study were filtered prior to use in DNA 
contamination analysis. For each sample we kept only 
heterozygous SNPs with a mapping quality superior 
to 18 and that were sequenced with a coverage of at 
least 10X. This procedure allowed us to discard poorly 
sequenced SNPs with unexpected ARs due to analyti-
cal artifacts.

Detecting contamination

Our method is based on the hypothesis that con-
taminated samples contain more heterozygous SNPs 
with unexpected AR (very different from 0.5) than 
non-contaminated samples. The first step consisted 
in determining the mean, standard deviation and 95% 
confidence interval (CI95) of the AR distribution of 
the reference dataset of SNPs. Since at this point we 
did not have a method to distinguish whether a sam-
ple is contaminated or not, a large sample number was 
necessary to mitigate the effect of any contaminated 
samples in the reference dataset. In our case we used 
894 samples (total SNPs about 38000) to generate the 
distribution of AR. The mean (μ) and standard devia-
tion (σ) of the distribution were obtained as shown in 
Eq.1 and Eq.2 . To calculate the probability of contam-
ination, we proceeded as follows. The SNPs present in 
the VCF file of the sample under investigation were 
filtered as described in the Variant Selection section. 
We then calculated the z-score of each filtered SNP 
as in Eq.3 using the reference distribution parameter. 
The z-score reflected the number of standard devia-
tions by which the AR of a SNP was above/below the 
mean of our reference dataset. The CI95 of the refer-
ence dataset indicated the expected range of values of 
AR in which 95% of SNPs should fall, enabling us to 
determine how many SNPs of the study sample fell 
outside this window. We counted how many SNPs had 
a z-score outside the range -1.96/+1.96 and we divided 
this number by the total number of SNPs in the sam-
ple to obtain the percentage of SNPs with unexpected 
AR, namely the sample score. The higher the number 
of SNPs with z-score outside this region, the higher 
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the probability of the sample of being contaminated. 
The threshold at which we consider the sample to be 
contaminated can be set according to the lowest con-
tamination that we wish to detect and the number of 
FPs we are willing to accept in the analysis.

(1)

(2)

(3)

Preparing contaminated samples

Algorithm performance was tested on samples 
contaminated artificially at different levels. To gener-
ate the contaminated samples, we used three Coriell 
samples, NA20828, NA20582 and NA20763. First, 
we measured the concentration of each sample us-

ing a BiospecNano Spectrophotometer system (Shi-
madzu Corporation, Japan) and we diluted them to a 
concentration of 20 ng/μl. Then, we measured again 
the concentration of each 20 ng/μl sample using a 
dsDNA BR Assay Kit on a Qubit 2.0 Fluorometer 
System (Invitrogen, Carlsbad, CA, USA) to have 
the most accurate value. At the end, we diluted the 
samples to the final desired concentration of 5 ng/μl 
in 10 μl final volume according to Illumina Nextera 
Rapid Capture Protocol. We prepared 5, 7 and 2 ali-
quots of NA20828, NA20582 and NA20763 at 5 ng/
μl, respectively, to have enough material to combine 
for the contamination process. NA20828, NA20582 
were used as principal samples and were contaminated 
at different levels with NA20582 and NA20763 re-
spectively. A total of nine samples with known con-
taminations ranging from 2% to 20% were generated 
(Table 1). The algorithm was tested on 12 samples, 
the nine contaminated plus the three Coriell samples 
as controls. All the final samples were at 5 ng/μl in 10 
μl volume.

Table 1. Summary of artificially contaminated samples. Starting with three Coriell samples, we generated nine samples contaminated 
at different levels. ‘Sample name’ indicates the name given to the sample generated, ‘Mixed samples’ indicates the Coriell sample used 
to generate the contaminated sample, ‘Contamination %’ indicates the percentage of contamination, ‘Volume of principal sample’ and 
‘Volume of contaminant’ indicate the proportion used to generate the contaminated sample

Sample name Mixed samples % of contamination Volume of principal 
sample (µl)

Volume of contaminant 
sample (µl)

C210
NA20828+NA20582 

(contaminant)
10 9 1

C27
NA20828+NA20582  

(contaminant)
7 9.3 0.7

C25
NA20828+NA20582  

(contaminant)
5 9.5 0.5

C22
NA20828+NA20582 

 (contaminant)
2 9.8 0.2

C320
NA20582+NA20763  

(contaminant)
20 8 2

C310
NA20582+NA20763  

(contaminant)
10 9 1

C37
NA20582+NA20763  

(contaminant)
7 9.3 0.7

C35
NA20582+NA20763  

(contaminant)
5 9.5 0.5

C32
NA20582+NA20763  

(contaminant)
2 9.8 0.2
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Software

The algorithm and all the code used was written 
in Python 3. The code developed for this publication 
is intended to be executed in jupyter notebook (12). 
The data structures were coded using pandas library 
(13,14). The kernel density estimator came from the 
statsmodels python library (15). The figures in this 
paper and in the notebook were generated with mat-
plotlib (16). The code of the algorithm along with the 
data used in this paper are publicly available on github 
at “https://github.com/tizianoBS/dna-contamination-
detector.git”.

Results

Validation of our method was performed on a to-
tal of 12 samples with contamination ranging from 0 
to 20% (Table 2).

Before proceeding with the analysis we wanted to 
verify the hypothesis that the number of SNPs with 
unexpected AR is higher in contaminated samples. 
For this purpose we first compared the distribution of 

AR in the reference dataset and in the contaminated 
samples (Fig. 1). Interestingly, we noticed that the AR 
distribution of non contaminated samples was normal 
with a low standard deviation, while in contaminated 
samples data tended to deviate from normality and 
the standard deviation was much larger than for clean 
samples due to imbalance in the AR of SNPs. As hy-
pothesized, the number of SNPs in the unexpected 
AR region (beyond CI95 of the reference dataset) was 
much higher in the contaminated samples.

Table 2 shows the percentage of SNPs with a 
z-score outside the expected region for each sample. 
These results show that the method readily detects 
contamination around 20%, and seems to indicate a 
limit of detection around 10%-7%, since two of the 
non-contaminated samples used as control had scores 
around those contamination percentages.

To better investigate the limit of detection of this 
method we compared the score of the contaminated 
samples with those of the 894 samples of the reference 
dataset. Fig. 2 shows the score of the contaminated 
samples (black and red line) compared to the mean 
(dotted blue line) and CI95 (dotted green line) of the 
reference dataset scores. The plot confirms that it is 

Table 2. Summary of the z-score percentages of contaminated samples and controls used in validation. The z-score % of a sample 
indicates the percentage of SNPs in the sample with a z-score outside the expected region of -1.96/+1.96. ‘Sample’ indicates the name 
of the sample, ‘z-score %’ the sample score, ‘Contamination %’ the percentage of contamination in the sample, ‘Number of SNPs’ the 
number of variants in the sample in the VCF file after filtering, and ‘Total SNPs outside threshold’ indicates how many SNPs had 
an unexpected z-score

Sample name Z-score % % of contamination Number of SNPs Total SNPs outside threshold

C320 39.3 20 346 136

C310 13.6 10 279 38

C210 12.6 10 294 37

C27 11.3 7 275 31

C37 9.9 7 262 26

NA20763 9.5 0 284 27

NA20828 9.2 0 271 25

C25 9.2 5 272 25

C35 8.8 5 263 23

C32 7.7 2 260 20

C22 6.9 2 274 19

NA20582 5.8 0 271 15
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easy to detect contamination as low as 20% without 
the risk of calling a false positive, and suggests a limit 
of detection around 10%, a threshold at which there 
may be more FPs, since the upper limit of the CI95 
of the reference dataset is between the score obtained 
by samples with 7% and 10% contamination. The z-
score % threshold for calling a contaminated sample 
should therefore be set according to the number of 
FPs that can be tolerated. In order to estimate FPs at 

the different contamination levels, more experiments 
are needed. Fig. 3 shows the distribution of AR of the 
samples used to generate contaminated samples and 
the distribution of AR of the contaminated samples 
for different contamination percentages. The line of 
best fit shows that as the percentage of contamina-
tion decreases, it becomes more and more difficult to 
distinguish contaminated and clean samples, since the 
change in the distribution of AR is minimal for low 

Figure 1. Distribution of allele ratios AR in reference dataset and contaminated samples. (A) Distribution of AR in reference dataset. 
The red line is the mean of the distribution, the violet the median and the blue lines define the 95% confidence interval (CI95). The 
blue areas outside the CI95 define the region of unexpected AR: whatever falls outside the CI95 is considered unexpected. It can 
be seen that the distribution is normal with minimal tails in the unexpected regions. (B) Distribution of AR in the artificially con-
taminated samples. The red line is the mean of the distribution, the violet the median, and the blue lines define the 95% confidence 
interval of the reference dataset, the green dotted line defines the CI95 of the contaminated dataset. The distribution is no longer 
normal and a greater percentage of data falls in the unexpected regions with respect to the reference dataset, showing the effects of 
contamination on the AR of SNPs
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contamination levels. At 5% contamination, the line of 
best fit of contaminated samples almost matches that 
of non-contaminated samples, making it impossible to 
differentiate the two distributions.

Discussion

Being able to detect contamination in DNA sam-
ples is of primary importance in a diagnostic environ-
ment. The method described in this paper is designed 
to determine from the VCF file of a sample, whether 
the sample is contaminated. The results show that the 
method is capable of clearly distinguishing contamina-

tion as low as 20% with high accuracy. Lower contami-
nations, down to 10%, can be detected as well, but with 
a higher FP rate, since part of the reference dataset 
showed a score similar to samples with 7-10% con-
tamination. Contamination below 7% cannot be effi-
ciently detected with this method, since at these levels, 
the distribution of AR almost exactly matched that of 
the reference dataset. However, for such low contami-
nation the impact on the sample is minimal (Fig. 3A), 
making the probability of genotype misclassification 
and false positives very low.

Our method has various features that make it ideal 
for use as a quality control tool in diagnostic environ-
ments. It is very easy to implement, requiring only ba-

Figure 2. Percentage of SNPs with z-score outside the defined thresholds (-1.96/+1.96) for samples of the validation set. In black 
the score obtained by sample C3 (see Table 1) at different ratios of contamination. In red the score obtained by sample C2 (see Table 
1) at different ratios of contamination. The blue line is the mean of the z-scores obtained by the reference dataset while the green 
dotted line defines the upper limit of the CI95 of the z-scores of the reference dataset. The graph suggests that our method is able 
to detect contamination down to 20-10%. The threshold for discriminating between contaminated/non contaminated sample should 
be chosen depending on how many FPs can be tolerated. Contamination around 20% would probably generate no FPs. Detection 
of lower contaminations is possible but with more FP calls. More experiments are needed to have an estimate of FPs for different 
contamination percentages
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Figure 3. Comparison of AR distributions of Coriell samples used to generate contaminated samples and the resulting contaminated 
samples. In blue the sample used as principal, in orange the one used as contaminant and in green the resulting contaminated sample. 
Black dotted line is the line of best fit of the reference sample and the red line is that of the contaminated sample. (A) Results for 5% 
contamination. The best fit lines show that is difficult to distinguish the AR distributions, making it impossible for our method to 
detect contamination at such a low percentage. (B) Results for 10% contamination. The algorithm is able to distinguish the two distri-
butions but since the score obtained by the non-contaminated sample is close to that of the 10% contaminated sample, we cannot ex-
clude the presence of FPs if the threshold is chosen to detect 10% contamination. (C) Results for 20% contamination. In this case the 
contaminated sample has almost tri-modal distribution which makes it extremely easy to distinguish from the reference distribution
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sic knowledge of statistics and information technology 
for correct implementation. It is also a fast algorithm 
that can analyze hundreds of samples in minutes, mak-
ing it ideal for analysis of big datasets. Finally, since 
only the VCF files of samples are used as input, the 
method can easily be implemented in a NGS pipeline 
with minimum impact on execution time and resource 
consumption. It is an ideal tool for improving qual-
ity control of NGS data and the robustness of clinical 
results.
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