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Abstract

Interactions among host, microbiota and viral pathogens are complex and poorly under-

stood. The goal of the present study is to assess the changes in the skin microbial commu-

nity of Atlantic salmon (Salmo salar L.) in response to experimental infection with salmonid

alphavirus (SAV). The salmon skin microbial community was determined using 16S rDNA

pyrosequencing in five different experimental groups: control, 7 days after infection with low-

dose SAV, 14 days after infection with low-dose SAV, 7 days after infection with high-dose

SAV, and 14 days after infection with high-dose SAV. Both infection treatment and time

after infection were strong predictors of the skin microbial community composition. Skin

samples from SAV3 infected fish showed an unbalanced microbiota characterized by a

decreased abundance of Proteobacteria such as Oleispira sp. and increased abundances

of opportunistic taxa including Flavobacteriaceae, Streptococcaceae and Tenacibaculum

sp. These results demonstrate that viral infections can result in skin dysbiosis likely render-

ing the host more susceptible to secondary bacterial infections.

Introduction

The mucosal surfaces of animals are at the interface between the host and the environment. At

these surfaces, millions of microorganisms form an intimate and successful relationship with

the host. Both environmental factors and host characteristics shape the composition of

microbiomes.

Teleost fish have diverse microbial communities associated with each mucosal body site.

Environmental factors known to influence teleost microbiomes include: diet, stress, water

quality, toxicants, and infection [1, 2, 3, 4, 5].

During the course of an infection, the relationships between the microbiota and the host

immune system are vulnerable to changes. Additionally, the microbiota-host immune system

interaction largely impacts the outcome of an infection [6]. Thus, three-way interactions

between pathogens, microbiota, and the animal host are complex and require a deep under-

standing of all three components. A number of studies have reported changes in the
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microbiome of farmed teleost fish as a result of parasitic [7] or bacterial infection [8, 9], but

how viral infections affect teleost microbiota is unknown.

The microbiota is known to protect mammalian hosts from viral infections [10]. However,

in some cases, microbiota can also facilitate viral infection and propagation [11, 12, 13, 14].

Very little is known about the effects of viral infections on the microbiota of any animal host.

HIV-infected humans show a state of dysbiosis in their gut microbiota [15] and Influenza-

virus infection alters the intestinal microbial community of mice [16].

Atlantic salmon (Salmo salar L.) is one of the most important commercial aquaculture fish

species. Atlantic salmon are susceptible to a number of disease agents including parasites, bac-

teria and viruses. Currently, one of the major threats to salmonid culture in Europe is pancreas

disease caused by salmon alphavirus (SAV). There are six different SAV subtypes (SAV1-6)

that are all members of the genus Alphavirus within the family Togaviridae [17, 18], and the

subtype SAV3 has only been shown to cause pancreas disease outbreaks in Norway in seawater

phase of the salmon life-cycle. SAV targets several internal organs including the pancreas,

heart and muscle. Impact of infection on haematopoetic tissue has also been reported [18].

Importantly, infected salmon shed viral particles via their feces and skin mucus [19, 20]. Thus,

the goal of this study was to investigate the changes in the bacterial microbial community pres-

ent in the skin of Atlantic salmon experimentally infected with SAV3 by bath immersion.

Materials and methods

Animals

Samples used in this study were derived from a recently published study [21]. The experiment

was carried out at the Industrial and Aquatic Laboratory (ILAB), Bergen High Technology

Centre, Bergen, Norway using unvaccinated post-smolts raised by ILAB. The fish strain was

from SalmoBreed, Osterøy, Norway. The experimental fish with an average weight of 50.6 ±
6.8 g and an average length of 16.3 ± 0.8 cm were kept in seawater (34‰) at 12˚C. The seawa-

ter flow rate and oxygen saturation were maintained at 300L h−r and>80%, respectively. All

handling procedures were performed under metomidate (10 mg L−1) and benzocaine (60 mg

L−1) anaesthesia, or metomidate (10 mg L−1) and benzocaine (160 mg L−1) were used for

euthanasia.

Virus, experimental infection, and sampling

The bath challenge model with SAV3 in seawater was carried out as described previously [22]

with some modifications. Briefly, one hundred and eighty fish were injected intra-muscularly

with 100 μl SAV3 containing 103 TCID50 and divided equally into three rectangular 150-L

tanks for production of virus into the seawater. On the day of the bath challenge, the water

flow to the three shedder tanks was stopped for 1 hour with a supply of aeration, after which

the shedder fish were removed and euthanized. The seawater containing SAV3 (SAV3-sea-

water) from all three shedder tanks was mixed to prepare each of the dilutions of SAV3-sea-

water and the fish were bathed for 6 h in 120 L of the respective SAV3 doses. Fish exposed to

either a 1:75 dilution of SAV3-seawater (low-dose) or undiluted SAV3-seawater (high-dose)

corresponding to 7 and 139 TCID50 SAV3 L-1 of seawater, respectively were used in the pres-

ent study [21]. To check the prevalence of SAV3 in the exposed individuals, half the heart of

each individual was collected and snap frozen in liquid nitrogen as explained below. In addi-

tion, viral shedding into the seawater from the exposed groups was measured confirming the

presence of infection and viraemic period in these groups [21]. A triangle of skin approxi-

mately 2 cm2 was collected from above the lateral line and below the dorsal fin into 1 ml of

selective lysis buffer (SLB buffer) [23]. Skin samples from eight fish exposed to low and high
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doses were sampled at 7 and 14 days post-exposure and stored immediately on dry ice. This

study was approved by the Norwegian Animal Research Authority (NARA) and carried out in

strict accordance with the guidelines.

RNA extraction, cDNA synthesis and RT-qPCR analysis for SAV nsP1

Total RNA was extracted from heart tissue with TRIzol1 reagent (Ambion) and an iPrep™
PureLink™ Total RNA Kit (Invitrogen, USA) according to the manufacturer’s instructions and

quantified using a NanoDrop ND-1000 spectrophotometer (Thermo Scientific). Two hundred

ng of total RNA isolated from heart samples was used in cDNA synthesis in a 10 μL reaction

volume (SuperScript VILO cDNA Synthesis Kit). A 1:10 dilution of cDNA was then used in a

qPCR assay targeting the SAV nsP1 gene for detection of SAV3 [24]. The 2 μL of diluted

cDNA was used in qPCR reaction mixture (TaqMan1 Fast Universal Master Mix (Applied

Biosystems1) with 900 nM each of forward and reverse primers, and 250 nM of probe in a

total volume of 10 μL on 384 well-plates. The qPCR assay was performed using ABI 7900HT

Fast Real-Time PCR system (Applied Biosystems) and the temperature profile was adjusted as

follows; activation at 95˚C for 20 s followed by 40 cycles of denaturation at 95˚C for 10 s, and

annealing and extension at 60˚C for 20 s. A threshold value of 0.1 was applied to all samples.

DNA isolation, bacterial 16S rRNA gene PCR amplification, and

pyrosequencing

Total genomic DNA was extracted from skin samples, including both fish and bacterial DNA.

Sterile 3-mm tungsten carbide beads (Qiagen) were used to homogenize the tissue samples in

a TissueLyser II (Qiagen). For extraction, we followed the cetyltrimethylammonium bromide

(CTAB) buffer method as previously described [23]. DNA pellets were then resuspended in

30 μl of DNase- and RNase-free molecular biology grade water. Sample DNA concentration

and purity was measured in in a NanoDrop ND 1000 (Thermo Scientific).

Bacterial community composition in skin samples was determined by pyrosequencing of

prokaryotic16S rRNA genes. Total genomic DNA for each sample was diluted 1 in 10 or 1 in

100 in RNAse free water and amplified in triplicate using Illumina adapter fused primers that

target V1-V3 variable regions of the prokaryotic 16S rRNA sequences. Gene specific primer

sequences used were: 28F 5’-GAGTTTGATCNTGGCTCAG-3’ and 519R, 5’-GTNTTACNGC
GGCKGCTG-3’ (where N = any nucleotide, and K = T or G). All DNA samples were diluted

1:100 or 1:10 for PCR amplification. The amplification was carried out with initial activation

of the enzyme at 94˚C for 90s followed by 33 cycles of the following: 94˚C for 30s, annealing at

52˚C for 30s, and 72˚C for 90s, and a 7 min extension cycle at 72˚C with a final holding tem-

perature of 4˚C. PCR amplicons were purified using Axygen AxyPrep Mag PCR Clean-up Kit

(Fisher Scientific) as per manufacturer’s instructions. Samples were then indexed by ligating

index barcode to Illumina adapters onto the PCR amplicon using the Nextera XT Index Kit v2

Set A (Illumina). DNA concentrations in each sample were quantified, pooled and adjusted to

a DNA concentration of 200ng/μl. Pooled samples were purified again using the Axygen Axy-

Prep Mag PCR Clean-up Kit and sequenced in Illumina MiSeq platform using the MiSeq1

Reagent Kit v3 (600 cycle) at the Clinical Translational Science Center at University of New

Mexico Health Sciences Center.

Sequence analysis

Sequence data was analysed using Quantitative Insights Into Microbial Ecology (QIIME 1.9)

pipeline [25] within the web-based platform Galaxy at the University of New Mexico [26].

Operational Taxonomic Units (OTUs) were selected by open reference picking using
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sumaclust method. OTUs were aligned to the version 123 (last updated May, 20 2016) of the

SILVA 16S/18S database with a 97% identity level. In order to generate rarefaction curves

and assess sampling depth, rarefaction analysis was performed in QIIME using several alpha

diversity metrics (PD_whole_tree, chao1, and observed_otus). Four samples were discarded

due to low sampling depth. Core diversity analysis was run on the remaining samples with a

normalized sampling depth of 5,800 sequences. Alpha diversity metrics included Shannon

diversity index, chao1, PD, Good’s coverage, and number of OTUs. Non-phylogenetic and

phylogenetic beta-diversity analyses were performed in QIIME using the Bray Curtis metric

or the unweighted and weighted UniFrac, respectively. Principal coordinate analysis and tax-

onomic summaries were produced in QIIME to compare the bacterial community in all five

experimental groups.

Statistical analysis

Two-way analysis of variance (ANOSIM) was performed in R using treatment and time after

infection as the variables. Differences were considered statistically significant when P<0.05.

Results

Sequencing results

All samples were run in a single Illumina MiSeq run. We obtained a total of 18314985 sequenc-

ing reads for the original 40 samples. After removal of samples with low read numbers, the 36

samples use for downstream analysis had a total of 9688827 reads with a mean read number

per sample of 269134 ± 268730. Pair end merging and quality trimming resulted in a total of

7192382 post-filter sequencing reads. The mean number of post-filter reads per sample was

199788 ± 197425 and the amplicon size was 301 bp.

SAV infection results in changes in the alpha-diversity of salmon skin

microbial community

The total number of different OTUs detected in the low-dose infected experimental groups

day 7 and day 14 was lower than in control group skin samples (Fig 1A, Table 1). Similarly, the

Chao1 diversity index of both low dose infected groups was significantly lower than the rest of

the treatments (Fig 1B). For Shannon diversity index, the low dose day 7 group had a lower

value than the rest of the treatments. Overall, the high-dose day 7 infected group had increased

alpha diversity values (Fig 1A–1C) than the rest of the experimental groups. None of these dif-

ferences were statistically significant.

SAV infection results in skin microbial dysbiosis

In order to identify bacteria contributing to the changes in alpha diversity in the SAV-infected

groups, we classified the phylum, order, family, and genus of the sequences in control and

infected groups. A total of 18 OTUs showed significantly different abundances among treat-

ments (Table 2).

At the phylum level, the mean abundance of Proteobacteria dropped from 41.2% in con-

trols to 11–22% in infected individuals. The lowest abundance of this phylum was found in the

low-dose day 7 experimental group (Fig 2). Additionally, the abundance of Firmicutes present

dropped from 15% in controls to 6–7% in all infected groups. Bacteroidetes abundance, in

turn, increased from 3% in controls to 16–18% in the high-dose infected groups. In the low-

dose infected groups, an increase in Bacteroidetes abundance was observed on day 7, but not

on day 14. Fusobacteria abundance also increased as a result of infection from ~ 20% in

SAV dysbiosis in salmon skin
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Fig 1. Changes in the alpha diversity of the Atlantic salmon skin microbial community in response to

SAV3 infection. A) Total number of OTUs. B) Chao1. C) Shannon diversity index. LD_D7: low-dose infected

day 7; LD_D14: low-dose infected day 14; HD_D7: high-dose infected day 7; HD_D14: high-dose infected day

14.

doi:10.1371/journal.pone.0172856.g001
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controls to ~ 46% and ~ 30% in the low-dose and high-dose day 14 groups, respectively.

Finally, Actinobacteria abundance also increased as a result of SAV infection with the greatest

increases occurring on day 7 in both infected groups.

These changes were further examined in beta diversity analyses using Bray Curtis distance

(Fig 3A and 3B) and weighted Unifrac (Fig 3C and 3D). Principal coordinate analysis (PCoA)

Table 1. Alpha diversity metrics (mean ± standard deviation) of the salmon skin microbial community of the five experimental groups in this

study.

Group observedOTUs Chao1 Shannon PDwhole tree Goods coverage

Control 34.66 ± 8.93 40.62 ± 9.42 3.42 ± 0.41 3.42 ± 0.71 0.999 ± 0.000212

LD_D7 27.61 ± 9.57 36.97 ± 9.62 2.95 ± 0.33 3.42 ± 0.38 0.998 ± 0.000662

LD_D14 28.26 ± 11.54 34.79 ± 13.75 2.93 ± 0.63 3.22 ± 0.69 0.999 ± 0.000309

HD_D7 42.82 ± 19.70 54.58 ± 25.1 3.66 ± 0.61 4.26 ± 1.41 0.998 ± 0.000662

HD_D14 28.17 ± 6.81 37.38 ± 13.21 3.21 ± 0.41 3.51 ± 1.15 0.999 ± 0.000425

doi:10.1371/journal.pone.0172856.t001

Table 2. List of OTUs with significantly different abundances among experimental groups in this study.

OTU Test-

Statistic

P FDR_P Bonferroni_P control LD_D7 LD_D14 HD_D7 HD_D14 Taxonomy

New.ReferenceOTU13 20.084 0.0005 0.185 0.198 445.833 0.250 0.000 35.143 0.000 Proteobacteria; Gammaproteobacteria;

Oceanospirillales; Oceanospirillaceae;

New.ReferenceOTU22 18.585 0.001 0.185 0.390 0.000 155.875 0.000 540.143 462.857 Bacteroidetes; Flavobacteriia; Flavobacteriales;

Flavobacteriaceae; Ulvibacter;

4458669 17.806 0.001 0.185 0.554 3.500 0.000 0.000 0.143 0.000 Proteobacteria; Gammaproteobacteria;

Oceanospirillales; Oceanospirillaceae;

835189 15.873 0.003 0.263 1.000 212.500 0.000 0.000 0.000 0.000 Proteobacteria; Gammaproteobacteria;

Oceanospirillales; Oceanospirillaceae; Oleispira;

New.ReferenceOTU37 15.873 0.003 0.263 1.000 60.500 0.000 0.000 0.000 0.000 Proteobacteria; Gammaproteobacteria;

Alteromonadales; Alteromonadaceae; BD2-13;

4396362 15.124 0.004 0.305 1.000 467.167 0.125 0.000 2.286 0.000 Proteobacteria; Gammaproteobacteria;

Oceanospirillales; Oceanospirillaceae; Oleispira;

New.ReferenceOTU1 12.727 0.013 0.583 1.000 568.667 0.125 0.125 6.714 0.000 Proteobacteria; Gammaproteobacteria;

Oceanospirillales; Oceanospirillaceae; Oleispira;

547302 11.554 0.021 0.583 1.000 144.833 0.000 0.000 6.429 0.000 Proteobacteria; Gammaproteobacteria;

Oceanospirillales; Oceanospirillaceae;

Marinomonas;

830290 11.114 0.025 0.583 1.000 41.833 0.000 0.000 38.143 0.000 Proteobacteria; Gammaproteobacteria;

Vibrionales; Pseudoalteromonadaceae;

Pseudoalteromonas;

806640 10.764 0.029 0.583 1.000 7.833 0.000 0.000 110.286 0.000 Proteobacteria; Gammaproteobacteria;

Alteromonadales; Colwelliaceae;

New.ReferenceOTU38 10.294 0.036 0.583 1.000 1.667 0.000 0.000 0.000 0.000 Proteobacteria; Gammaproteobacteria;

Oceanospirillales; Oceanospirillaceae; Oleispira;

197286 10.286 0.036 0.583 1.000 54.333 0.000 0.000 0.000 0.000 Proteobacteria; Gammaproteobacteria;

Enterobacteriales; Enterobacteriaceae;

4376233 10.286 0.036 0.583 1.000 0.500 0.000 0.000 0.000 0.000 Proteobacteria; Gammaproteobacteria;

Enterobacteriales; Enterobacteriaceae;

166927 10.286 0.036 0.583 1.000 1.833 0.000 0.000 0.000 0.000 Proteobacteria; Alphaproteobacteria;

Rhodobacterales; Rhodobacteraceae;

New.ReferenceOTU48 10.286 0.036 0.583 1.000 43.667 0.000 0.000 0.000 0.000 Proteobacteria; Alphaproteobacteria;

Rhodobacterales; Rhodobacteraceae;

509773 9.985 0.041 0.583 1.000 0.000 0.000 0.500 7.143 0.000 Firmicutes; Bacilli; Lactobacillales;

Streptococcaceae; Streptococcus;

New.ReferenceOTU61 9.958 0.041 0.583 1.000 0.000 0.125 0.000 3.571 4.857 Bacteroidetes; Flavobacteriia; Flavobacteriales;

Flavobacteriaceae; Tenacibaculum;

4306177 9.475 0.050 0.583 1.000 0.000 0.000 0.250 3.857 0.000 Firmicutes; Bacilli; Lactobacillales;

Streptococcaceae; Streptococcus;

doi:10.1371/journal.pone.0172856.t002

SAV dysbiosis in salmon skin

PLOS ONE | DOI:10.1371/journal.pone.0172856 March 6, 2017 6 / 17



shows that, despite inter-individual variability within the control group (a common finding in

teleost skin microbial communities [27, 28]), SAV3-infected samples clustered closer to each

other, and that the distances between control and infected groups were greater at day 7 (Fig

3A) than at day 14 (Fig 3B).

Both infection dose and time after infection determine the composition of

the skin microbial community

ANOSIM statistical analyses revealed that infection treatment (control, low-dose, high-dose)

(P value = 0.047) as well as time after infection (day 7 and day 14) (P value = 0.04) were signifi-

cant factors determining the composition of the salmon skin microbial community.

SAV-induced skin dysbiosis is characterized by loss of beneficial

bacteria

We next determined whether SAV infection resulted in the absence of protective or physiologi-

cally important bacteria. A heat map of the 18 OTUs with significantly different abundances in

each experimental group is shown in Fig 4. Out of these 18 OTUs, 14 belonged to the phylum

Proteobacteria, 2 belonged to the phylum Firmicutes and 2 to the phylum Bacteroidetes.

Among the OTUs that showed high abundance in controls, and low abundance in SAV-infected

groups, we observed that the Oceanospirillaceae family, which represented ~ 32% of the bacterial

community in controls, was practically absent in infected samples (Fig 5A and Table 2). Within

this family, the genus Oleispira sp., known to be involved in the smoltification process of salmon

[29], contributed to ~ 21% of the skin bacterial community in controls but was absent in all

infected groups (Fig 5B and Table 2). Additionally, the abundances of Enterobacteriaceae and

Pseudoalteromonas sp., both members of Gammaproteobacteria were present in controls, while

were absent in the SAV-infected groups except for the high-dose day 7 group which had a simi-

lar abundance of Pseudoalteromonas sp. to the control group (Table 2 and Fig 4).

SAV-induced skin dysbiosis is characterized by expansion of potentially

pathogenic taxa

Among the 18 OTUs with abundances that were significantly different among experimental

groups, we found significantly increased abundances of members of the families Vibrionaceae,

Fig 2. Bacterial community composition of Atlantic salmon skin in each experimental group. Bar chart

of the mean relative abundance of phyla present in the salmon skin from the five different experimental

groups. LD_D7: low-dose infected day 7; LD_D14: low-dose infected day 14; HD_D7: high-dose infected day

7; HD_D14: high-dose infected day 14. Number represent the relative percentage of each phyla that had

abundances greater than 7.6%.

doi:10.1371/journal.pone.0172856.g002
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Flavobacteriaceae and Streptococcaceae sp. (Table 2, Fig 6A–6C). Among Flavobacteriaceae
members, Tenacibaculum sp. abundance increased from 2.5% of the skin microbial commu-

nity in controls to 3.9% of in the high-dose day 14 group (Fig 7A). Additionally, examining the

number of Tenacibaculum sp. positive individuals per experimental group, we found an

increasing presence of this pathogen with viral infection dose and time. While only one of 6

(16.7%) individuals was positive for Tenacibaculum sp. in the control group, 2 out of 8 (25%)

and 3 of 8 (37.5%) individuals were positive in the low-dose at day 7 and 14 respectively.

Finally, 5 out of 7 (71.4%) and 2 of 7 (28.6%) individuals were positive for Tenacibaculum sp.

in the high-dose group at day 7 and 14, respectively (Fig 7E). We did not observe any changes

in the health status of animals that were Tenacibaculum sp. positive within the experimental

period. A BLAST search of the Tenacibaculum OTU sequence revealed the highest level of sim-

ilarity (100% identity) with the 16s rRNA gene sequence of Tenacibaculum ovolyticum strain

Fig 3. Three-dimensional principal coordinate analysis obtained with Bray Curtis distances (A and B) or weighted UniFrac distance matrix (C

and D) of the salmon skin bacterial communities from day 7 infection (A and C) and day 14 infection (B and D). Each dot represents one

individual fish. LD_D7: low-dose infected day 7; LD_D14: low-dose infected day 14; HD_D7: high-dose infected day 7; HD_D14: high-dose infected day

14.

doi:10.1371/journal.pone.0172856.g003
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Fig 4. Heat map showing the mean relative abundances of OTUs that were found to be significantly

different in control and SAV3 infected experimental groups. The taxonomic classification of each OTU

number is shown in Table 2. LD_D7: low-dose infected day 7; LD_D14: low-dose infected day 14; HD_D7:

high-dose infected day 7; HD_D14: high-dose infected day 14.

doi:10.1371/journal.pone.0172856.g004

Fig 5. SAV3 infection results in losses of beneficial bacteria in Atlantic salmon skin. Percentage of total

OTUs respresented by Oceanospirillaceae (A) and Oleispira sp. (B) in control and SAV-infected groups. The P

values obtained in the statistical analysis are shown in Table 2. LD_D7: low-dose infected day 7; LD_D14: low-

dose infected day 14; HD_D7: high-dose infected day 7; HD_D14: high-dose infected day 14.

doi:10.1371/journal.pone.0172856.g005
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Fig 6. SAV3 infection results in increased abundance of opportunistic pathogens. Percentage of total

OTUs respresented by Vibrionaceae (A), Flavobacteriaceae (B) and Streptococcaceae (C) in control and

SAV-infected groups. The P values obtained in the statistical analysis are shown in Table 2. LD_D7: low-dose

infected day 7; LD_D14: low-dose infected day 14; HD_D7: high-dose infected day 7; HD_D14: high-dose

infected day 14.

doi:10.1371/journal.pone.0172856.g006
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da5A-8, a deep-sea fish pathogen with virulence factors similar to other Tenacibaculum sp.

[30].

Salmon skin dysbiosis is not correlated with SAV3 viral copy numbers in

the heart

In order to know if there was a correlation between skin microbial community composition

and viral load in infected individuals, we quantified SAV loads in the salmon heart by qPCR.

We detected SAV in heart of one fish from the low-dose day 7 group, two fish in the high-dose

day 7 group and 6 fish in the high-dose day 14 group (Table 3). The highest viral loads were

present in the high-dose day 14 group with three fish with>1.7 x 105 viral copy numbers

(Table 3). We next examined whether all infected samples clustered together in the PCoA anal-

ysis, however, infected samples did not cluster together (S1 Fig). Further examination of the

individual OTUs in specimens that tested positive for SAV in the heart did not reveal any

trends or specific bacterial taxa. These results indicated that presence of SAV in the heart

could not be correlated to skin dysbiosis in Atlantic salmon.

Discussion

Animal mucosal surfaces coexist with millions of microorganisms including bacteria, fungi

and viruses. The harmonious relationship between host and microbiota can be disrupted by

several environmental factors as well as host-intrinsic factors leading to dysbiosis. Pathogens

are one of the factors that can tip the balance of host-microbiota relationships. Yet, how viral

infections influence host microbial communities is still poorly understood.

The present study reveals important shifts in the skin bacterial community composition of

Atlantic salmon in response to infection with SAV3. SAV poses serious economic losses to the

salmon farming industry worldwide [17, 31, 32, 33, 34, 35]. Although the route of entry of

SAV is currently unknown, previous studies have successfully infected salmon post-smolts

Fig 7. SAV3 infection results in increased abundance of Tenacibaculum sp. A) Percentage of total OTUs represented by

Tenacibaculum sp. in control and SAV-infected groupsB) Percentage of fish containing Tenacibaculum sp. in their skin

bacterial community in control and SAV-infected groups. LD_D7: low-dose infected day 7; LD_D14: low-dose infected day 14;

HD_D7: high-dose infected day 7; HD_D14: high-dose infected day 14.

doi:10.1371/journal.pone.0172856.g007
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with SAV by immersion challenge [21], mimicking natural infections in seawater salmon

cages. As SAV is shed from infected individuals via the feces and skin mucus [20]. the skin of

SAV-individuals was exposed to the virus not only on the day of the experimental infection,

but potentially in a continuous fashion throughout the length of the experiment. SAV shed-

ding has been shown to last for a period of 4 to 21 days [21]. Thus, shedding of infective viral

Table 3. Presence of SAV-3 in the heart tissue of Atlantic salmon used in the present study. SAV-3

copy numbers were estimated by qPCR using the nsP1 gene.

Treatment Day Raw Ct value Copy number of nsP1

Control 8 Undetermined 0

Control 8 Undetermined 0

Control 8 Undetermined 0

Control 8 Undetermined 0

Control 8 Undetermined 0

Control 8 Undetermined 0

Control 8 Undetermined 0

Control 8 Undetermined 0

Low dose 7 Undetermined 0

Low dose 7 Undetermined 9

Low dose 7 Undetermined 0

Low dose 7 Undetermined 0

Low dose 7 Undetermined 0

Low dose 7 Undetermined 0

Low dose 7 Undetermined 0

Low dose 7 Undetermined 0

Low dose 14 Undetermined 0

Low dose 14 Undetermined 0

Low dose 14 Undetermined 0

Low dose 14 Undetermined 0

Low dose 14 33.8 78

Low dose 14 Undetermined 0

Low dose 14 Undetermined 0

Low dose 14 Undetermined 0

High dose 7 Undetermined 0

High dose 7 Undetermined 0

High dose 7 33.4 104

High dose 7 34.6 45

High dose 7 21.8 312000

High dose 7 28.6 2880

High dose 7 19.1 1990000

High dose 7 24.9 38000

High dose 14 Undetermined 0

High dose 14 30.2 985

High dose 14 34.8 40

High dose 14 Undetermined 0

High dose 14 35.4 26

High dose 14 25.8 19700

High dose 14 Undetermined 0

High dose 14 22.7 172000

doi:10.1371/journal.pone.0172856.t003
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particles into the water from individuals that were infected at the first exposure (onset of the

experiment) raises the possibility of one initial exposure followed by several cycles of re-expo-

sure to the virus. The latter may partially explain the lack of a direct correlation between SAV

load in the heart and the composition of the skin microbiome. Nevertheless, our findings are

in line with previous research showing that SAV viral loads in target organs such as the heart

do not correlate with viral loads in non-target organs [24].

The states of dysbiosis identified in the low- and high-dose infected groups were not identi-

cal. Whereas the low-dose infected groups showed an overall loss of bacterial diversity, the

high-dose infected groups had a more diverse (although not significant) skin microbiome.

Very little is known about SAV viral loads at mucosal sites such as the skin or how the host

mucosal immune system responds to SAV experimental infections. Our results suggest that

different magnitudes in the mucosal immune response of the host to the virus may result in

different skin microbial compositions, although this hypothesis needs to be tested. We specu-

late that the high-dose group mounted a stronger skin mucosal immune response that may

have led to undesired skin colonization of taxa present in the water, including potential patho-

gens. Additionally, high-dose infected individuals may shed more SAV particles through the

skin, which in turn, likely causes more tissue damage and altered local immune responses that

in low-dose infected individuals. Our data further support the previously suspected complexity

of the interactions between pathogens, host and the microbiota [36]. Future studies should

address whether viral load in the skin correlates with the state of skin dysbiosis reported in this

study and whether skin immune responses against the virus correlate with the observed

changes in the skin microbiome of infected fish.

We found that both SAV3 infection dose and time of infection are strong predictors of the

skin salmon microbiota. We did not perform microbiome analysis of tank water samples, and

therefore we cannot rule out that the microbial composition of the seawater varied among

treatment tanks and impacted the salmon skin microbiome. However, since the inlet water

was mixed to the right temperature in one tank in the same room and then further distributed

to all tanks, it is very unlikely that there were any external environmental factors or differences

in the microbial composition of the water supplied to the treatment groups.

One the most notable changes in SAV infected skin microbial communities was the loss of

Proteobacteria abundance. Proteobacteria are the predominant phylum in the skin micro-

biome of teleosts [28, 37, 38]. Importantly, several skin Proteobacteria isolates from salmonids

have been shown to have inhibitory effects against bacterial and fungal pathogens [28, 38].

Moreover, Proteobacteria also dominate the human skin microbiome [39] and have been

suggested to play a role in managing opportunistic bacteria and regulating host-environment

relationships [40]. This information is in agreement with the observed expansions of Flavobac-
teriaceae and other known opportunistic taxa [41] in SAV-infected fish with lowered Proteo-

bacteria abundance.

The loss of Proteobacteria abundance was primarily the result of a complete loss of Oleispira
sp., a genus known to dominate the skin microbial community of salmon [29]. Importantly,

Oleispira sp. abundance was found to increase dramatically in salmon skin as a result of smolti-

fication [29]. Salmon are particularly susceptible to SAV at the time of transfer from freshwater

to seawater. Stress induced by smoltification has long been linked to suppressed immune

responses and increased disease susceptibility [42, 43]. We recorded absence of Oleispira sp. in

all SAV-infected groups regardless of infection dose or time, indicating that this bacterial spe-

cies was not able to recolonize the host during the duration of the experiment. Although the

specific physiological contribution of Oleispira sp. to the salmon smoltification process is cur-

rently unknown, our findings suggest important inhibitory effects on SAV3 by Oleispira sp.
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present in the skin. Further studies should investigate if decreased Oleispira sp. abundances

can contribute towards differences in disease susceptibility of salmon upon seawater transfer.

Previous studies have identified correlations between bacterial or parasitic infection and the

microbiota in fish. Our results are in line with those found in a study in which Aeromonas sal-
monicida infection was associated with dominance shifting to opportunistic pathogens on the

skin and mucus of Atlantic salmon [9]. On the other hand, metazoan parasite loads in the gut

of tropical reef fish are negatively correlated with the presence of opportunistic bacteria in

their gut microbiota, suggesting a protective role for metazoan parasites against occurrence of

pathogenic bacteria in the fish gastrointestinal tract [7]. In the present study, we observed

increased incidence and intensity of Tenacibaculum sp. in the skin of SAV3-infected post-

smolts, particularly in the high-dose experimental groups. Tenacibaculum sp. has been

described as a member of the salmon skin microbial community [29]. Tenacibaculum sp. is

also the causative agent of winter ulcers in Atlantic salmon [44]. Although it has been identi-

fied as a primary pathogen of fish, this bacterium generally infects fish with mechanically

abraded skin [45]. Viruses can augment the adhesion of secondary pathogenic bacteria to epi-

thelial surfaces by increasing the expression of receptors for bacterial pathogens [46]. Thus, it

is possible that SAV infection changes the expression of receptors for Tenacibaculum sp. in

salmon skin epithelial cells. This finding suggests a possible link between SAV infection and

Tenacibaculum sp. skin infections in salmon. Since our observations show a higher presence of

Tenacibaculum in SAV infected fish in a dose-dependent fashion, this link deserves to be fur-

ther investigated for a better understanding of the dynamics of disease outbreaks in salmon

farms.

Conclusions

SAV3 infection results in skin dysbiosis in Atlantic salmon characterized most prominently by

the loss of Proteobacteria. The loss of microbial balance caused by viral infections such as

SAV3 likely impacts the health of the fish host, rendering the fish more susceptible to second-

ary infections by opportunistic bacterial pathogens present in the environment or within the

host indigenous microbial reservoir.
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38. Boutin S, Bernatchez L, Audet C, Derôme N. Antagonistic effect of indigenous skin bacteria of brook

charr (Salvelinus fontinalis) against Flavobacterium columnare and F. psychrophilum. Vet Microbiol.

2012; 155(2–4): 355–61. doi: 10.1016/j.vetmic.2011.09.002 PMID: 21958747

39. Cosseau C, Romano-Bertrand S, Duplan H, Lucas O, Ingrassia I, Pigasse C, et al. Proteobacteria from

the human skin microbiota: Species-level diversity and hypotheses. One Health. 2016; 2: 33–41.

40. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011; 9(4): 244–253. doi: 10.1038/

nrmicro2537 PMID: 21407241

41. Derome N, Gauthier J, Boutin S, Llewellyn M. Bacterial opportunistic pathogens of fish. In: Hurst CJ,

editor. The Rasputin effect, when commensals and symbionts become parasitic. Switerland: Springer

International Publishing; 2016. pp. 81–108.

42. Eggset G, Mortensen A, Johansen L, Sommer A. Susceptibility to furunculosis, cold water vibriosis, and

infectious pancreatic necrosis (IPN) in post-smolt Atlantic salmon (Salmo salar L.) as a function of smolt

status by seawater transfer. Aquaculture. 1997; 158 (3–4): 179–191.

43. Mesa MG, Maule AG, Poe TP, Schreck CB. Influence of bacterial kidney disease on smoltification in

salmonids: is it a case of double jeopardy? Aquaculture. 1999; 174: 25–41.

44. Olsen AB, Nilsen H, Sandlund N, Mikkelsen H, Sørum H, Colquhoun DJ. Tenacibaculum sp. associated

with winter ulcers in sea-reared Atlantic salmon Salmo salar. Dis Aquat Org. 2011; 94: 189–199. doi:

10.3354/dao02324 PMID: 21790066

45. Rahman T, Suga K, Kanai K, Sugihara Y. Infection kinetics of Tenacibaculum maritimum on abraded

skin of Japanese flounder Paralichthys olivaceus. Fish Pathol. 2015; 50 (2): 44–52.

46. Avadhanula V, Rodriguez CA, DeVincenzo JP, Wang Y, Webby RJ, Glen C. Ulett GC, et al. Respiratory

viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species-and cell

type- dependent manner. J Virol. 2006; 80 (4): 1629–1636. doi: 10.1128/JVI.80.4.1629-1636.2006

PMID: 16439519

SAV dysbiosis in salmon skin

PLOS ONE | DOI:10.1371/journal.pone.0172856 March 6, 2017 17 / 17

http://dx.doi.org/10.1111/j.1365-2761.2007.00826.x
http://dx.doi.org/10.1111/j.1365-2761.2007.00826.x
http://www.ncbi.nlm.nih.gov/pubmed/17718711
http://dx.doi.org/10.3354/dao02766
http://www.ncbi.nlm.nih.gov/pubmed/25266904
http://dx.doi.org/10.1371/journal.pone.0084772
http://dx.doi.org/10.1371/journal.pone.0084772
http://www.ncbi.nlm.nih.gov/pubmed/24376845
http://dx.doi.org/10.1111/1574-6941.12136
http://www.ncbi.nlm.nih.gov/pubmed/23607777
http://dx.doi.org/10.1016/j.vetmic.2011.09.002
http://www.ncbi.nlm.nih.gov/pubmed/21958747
http://dx.doi.org/10.1038/nrmicro2537
http://dx.doi.org/10.1038/nrmicro2537
http://www.ncbi.nlm.nih.gov/pubmed/21407241
http://dx.doi.org/10.3354/dao02324
http://www.ncbi.nlm.nih.gov/pubmed/21790066
http://dx.doi.org/10.1128/JVI.80.4.1629-1636.2006
http://www.ncbi.nlm.nih.gov/pubmed/16439519

