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Abstract: The study of the interaction of persistent organic pollutants with biosubstrates helps to
unravel the pathways for toxicity, however, few mechanistic data are present in the literature for these
systems. We analyzed the binding of paraquat (PQ) and diquat (DQ) herbicides to natural calf thymus
DNA and a DNA G-quadruplex by spectrophotometric titrations, ethidium bromide exchange tests,
viscometry, and melting experiments. The interaction with bovine serum albumin (BSA) protein was
studied spectrofluorimetrically at different temperatures. The retention of the targets on positive,
negative, and neutral micellar aggregates and liposomes was analyzed by ultrafiltration experiments.
Despite some favorable features, PQ and DQ only externally bind natural DNA and do not interact
with DNA oligonucleotides. Both herbicides bind bovine serum albumin (BSA). PQ binds BSA
mainly according to an electrostatics-driven process. However, ultrafiltration data also show that
some hydrophobic contribution participates in the features of these systems. The practical problems
related to unfavorable spectroscopic signals and inner filter effects are also discussed. Overall, both
herbicides show a low affinity for nucleic acids and weak penetration into liposomes; in addition,
the equilibrium constants values found for BSA system suggest optimal conditions for transport in
the body.

Keywords: intercalation; external binding; transport; inner filter effect; micelles; liposomes; hy-
drophobicity; enthalpy-entropy compensation

1. Introduction

Among the copious classes of pesticides, bipyridyl herbicides deserve high interest
due to their widespread application: they are quaternary ammonium compounds (also
known as “quats”) marketed as contact herbicides and desiccants [1]. The paraquat (PQ)
and diquat (DQ) molecules that are the focus of the current study (Figure 1) are major
components of this family, and both show significant toxicity [2–4].
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Figure 1. Molecular structures of (a) paraquat (PQ) and (b) diquat (DQ) herbicides [1]. 

Quat herbicides have high soil adsorption coefficients, suggesting the presence of 
significant immobilization in this media [5]. In this sense, bioavailability and long-term 
exposure are not likely to occur. Nonetheless, the retention of cationic herbicides may be 
modulated by a strongly competitive ion such as copper and other factors which may 
non-negligibly affect adsorption in soils [5] and the transfer of pesticides to food (as oils) 
is a matter of study [6]. PQ residues in food are usually not easily detectable and some 
foods have been reported to have levels of up to 0.2 mg/kg, whereas the acceptable daily 
intake is 0.004 mg/kg [7]. In addition, different papers evidence human illnesses 
associated with PQ/DQ acute exposure and poisoning [8–11]. Other studies enlighten the 
effect of an exposure associated with multiple pesticide application events resulting in 
multiple short-term or pulse exposures. For instance, data on early-life stage rainbow 
trout demonstrated the acute toxicity of DQ on aquatic organisms and enlightened a 
complex toxicity pathway which significantly changes protein cellular levels, involving 
proteins related to many different themes, including DNA/RNA polynucleotide 
processes [12]. In addition to the research connected to the concerns for the detrimental 
effects of PQ and DQ, it may be cited that they also find use as reference toxic species to 
test the pharmaceutical effects of plant extracts and medicines [13]. For instance, 
PQ-induced neurotoxicity is lowered in the presence of extracts of Bougainvillea glabra 
leaves which exert a significant in vivo neuroprotective activity [14], whereas the 
broad-spectrum anti-fibrotic drug pirfenidone was tested to reduce liver damage by PQ 
poisoning [15]; furthermore, the polyphenol resveratrol attenuated intestinal damage 
induced by oxidative stress in DQ-challenged piglets [16]. On that basis, the detailed 
analysis of PQ and DQ interaction with biosubstrates deserves interest to better 
understand their effects and their toxicity [17]. 

PQ was found to be not only toxic but genotoxic [18,19]. It can be bioaccumulated, 
for instance in kidneys [20] and lungs [21], and its bioaccumulation/chronic use is also 
supposed to be related to the onset of Parkinson’s disease [7,14]. PQ toxic effects are 
principally due to redox reactions that convert the herbicide into active free radicals [22]. 
The fast oxidation of these species leads the cells to death, through the formation of 
superoxide ions O2− whose detrimental action is widely discussed [23]. PQ-induced 
oxidative stress was found to induce DNA methylation variations through reactive 
oxygen species (ROS) production [24]. DQ herbicidal action on plant cells is also due 
primarily to the initiation of ROS formation, lipoperoxidation, and apoptotic cell death 
[25,26]. DQ may have teratogenic effects [27] and prolonged exposure to DQ affects 
kidneys, brain, and the gastrointestinal tract [28]. 

The damage generated by free radicals/ROS affects DNA molecules, proteins, and 
membrane phospholipids [7]: a careful check if PQ and DQ quats may interact with these 
biosubstrates, not only via ROS but by some direct effect, deserves interest. Note that 
binding to polynucleotides is also interesting from the point of view of herbicide 
detection: addressing the need for accurate quantification of persistent pollutants in 
environmental samples, sensitive biosensors constructed using DNA molecules exhibited 
an ultrasensitive response to DQ [29,30]. In addition, the interaction with golden 
standard reference proteins as the abundant serum albumins needs to be tested because 
the correlation between albumin’s binding and biodistribution has been highlighted by 
several studies [31]. Methyl parathion/albumin interaction has crucial importance in the 
pesticide’s toxic activity [32] and the reversible binding to bovine serum albumin can be 
exploited to enhance a pesticide’s performance [33]. To the best of our knowledge, only 
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significant immobilization in this media [5]. In this sense, bioavailability and long-term
exposure are not likely to occur. Nonetheless, the retention of cationic herbicides may
be modulated by a strongly competitive ion such as copper and other factors which may
non-negligibly affect adsorption in soils [5] and the transfer of pesticides to food (as oils)
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is a matter of study [6]. PQ residues in food are usually not easily detectable and some
foods have been reported to have levels of up to 0.2 mg/kg, whereas the acceptable daily
intake is 0.004 mg/kg [7]. In addition, different papers evidence human illnesses associated
with PQ/DQ acute exposure and poisoning [8–11]. Other studies enlighten the effect of an
exposure associated with multiple pesticide application events resulting in multiple short-
term or pulse exposures. For instance, data on early-life stage rainbow trout demonstrated
the acute toxicity of DQ on aquatic organisms and enlightened a complex toxicity pathway
which significantly changes protein cellular levels, involving proteins related to many
different themes, including DNA/RNA polynucleotide processes [12]. In addition to the
research connected to the concerns for the detrimental effects of PQ and DQ, it may be
cited that they also find use as reference toxic species to test the pharmaceutical effects
of plant extracts and medicines [13]. For instance, PQ-induced neurotoxicity is lowered
in the presence of extracts of Bougainvillea glabra leaves which exert a significant in vivo
neuroprotective activity [14], whereas the broad-spectrum anti-fibrotic drug pirfenidone
was tested to reduce liver damage by PQ poisoning [15]; furthermore, the polyphenol
resveratrol attenuated intestinal damage induced by oxidative stress in DQ-challenged
piglets [16]. On that basis, the detailed analysis of PQ and DQ interaction with biosubstrates
deserves interest to better understand their effects and their toxicity [17].

PQ was found to be not only toxic but genotoxic [18,19]. It can be bioaccumulated,
for instance in kidneys [20] and lungs [21], and its bioaccumulation/chronic use is also
supposed to be related to the onset of Parkinson’s disease [7,14]. PQ toxic effects are
principally due to redox reactions that convert the herbicide into active free radicals [22].
The fast oxidation of these species leads the cells to death, through the formation of
superoxide ions O2− whose detrimental action is widely discussed [23]. PQ-induced
oxidative stress was found to induce DNA methylation variations through reactive oxygen
species (ROS) production [24]. DQ herbicidal action on plant cells is also due primarily to
the initiation of ROS formation, lipoperoxidation, and apoptotic cell death [25,26]. DQ may
have teratogenic effects [27] and prolonged exposure to DQ affects kidneys, brain, and the
gastrointestinal tract [28].

The damage generated by free radicals/ROS affects DNA molecules, proteins, and
membrane phospholipids [7]: a careful check if PQ and DQ quats may interact with these
biosubstrates, not only via ROS but by some direct effect, deserves interest. Note that
binding to polynucleotides is also interesting from the point of view of herbicide detection:
addressing the need for accurate quantification of persistent pollutants in environmental
samples, sensitive biosensors constructed using DNA molecules exhibited an ultrasensitive
response to DQ [29,30]. In addition, the interaction with golden standard reference pro-
teins as the abundant serum albumins needs to be tested because the correlation between
albumin’s binding and biodistribution has been highlighted by several studies [31]. Methyl
parathion/albumin interaction has crucial importance in the pesticide’s toxic activity [32]
and the reversible binding to bovine serum albumin can be exploited to enhance a pes-
ticide’s performance [33]. To the best of our knowledge, only an example of a PQ/DNA
binding study is reported in the literature [34] where PQ is proposed to weakly bind the
DNA groove. However, the authors do not seem to consider the superimposition of the
spectroscopic signals, which strongly affect and limit the investigation. No mechanistic
study on DQ/DNA interaction is available, and information on cytotoxicity comes from
biological analyses only [35,36]. PQ and DQ have been tested for affinity to human serum
albumin (HSA) [37,38]. Notwithstanding this previous research, the crucial importance
of the inner filter effects and the bias produced by their presence does not always emerge
from these few studies and some binding details, in addition to the preferential binding
site, have not been discussed. Finally, regarding the point of view of the lipid target, there
is a need to investigate the interaction of polar pesticides with cell membranes to help to
determine their toxicity mechanism. Recent studies showed the interest in testing the affin-
ity to liposomes because these data may also complete information on bioaccumulation,
which should not only be based on the hydrophobic nature of the compounds (partition
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octanol-water) [39]. Indeed, biophysical studies on the lipid model system which mimics
some of the features of natural membranes and on membrane interactions by exogenous
species provide important information on the possible mode of action of both healthy
and toxic species [40]. For instance, antimicrobial peptides are found to strongly alter
the characteristics of lipid bilayers: these interactions are crucial for the activity of the
antibiotics and studies aimed at enlightening the details of these processes are crucial for
developing improved pharmaceuticals [41,42].

Overall, despite the long-lasting high interest in the persistent interaction of organic
pollutants with biosubstrates, a detailed chemical analysis of the mechanism of binding
to possible direct biotargets, such as polynucleotides, proteins, and lipid membranes,
is still uncomplete. Within the context of the national project of research in Antarctica
(PNRA), the current study followed previous work on pesticides [43] and was devoted to
investigating the interaction between PQ and DQ herbicides and biosubstrates to provide
mechanistic details on their possible toxic pathways. The spectroscopic experimental setup
was carefully designed to ensure the reliability of the results under unfavorable conditions,
a crucial aspect that is sometimes underestimated. Moreover, the retention percentage on
micelles and liposomes was evaluated for PQ and DQ; these tests constitute a first basis for
the estimation of the affinity for the cellular membrane.

Therefore, the aim of the experiments reported here was both to discuss a robust proce-
dure to analyze the details of the binding mechanism and provide further insight into whether,
parallel to ROS production, the toxicity of these species may be connected to some direct
binding or affinity for polynucleotide, oligonucleotide, protein, or membrane interactions.

2. Materials and Methods
2.1. Materials

Paraquat dichloride hydrate (PQ, purity ≥ 98%) and diquat dibromide monohydrate
(DQ, purity ≥ 95%) were supplied by Sigma. Stock solutions (ca. 1 mM) were obtained
by dissolving known amounts of the solid in water. Their molar concentration will be
indicated as CD (dye).

The DNA used is that extracted from calf thymus (from now on ct-DNA) and consists
of 41.9 mol% G–C and 58.1 mol% A–T base pairs. Lyophilized sodium salt from Sigma
was dissolved in water and sonicated (MSE-Sonyprep sonicator, 7 cycles of 10 s sonication
+20 s pause at an amplitude of 14 µm, solution kept in an ice bath) [44]. Gel electrophoresis
was used to determine the length of the fragments, being approximately 500 base pairs
(100 bp DNA ladder is used as the reference). Stock solutions of ct-DNA were standardized
spectrophotometrically (ε = 13,200 M−1 cm−1 at λ = 260 nm, I = 0.10 M, pH = 7.0—for
the molar extinction coefficients see [45] and references therein); concentrations of ct-
DNA are expressed in molarity of base pairs as CP (polynucleotide). The dried DNA
oligonucleotide 5′-TAGGGTTAGGGTTAGGGTTAGGG-3′ (Tel23—hybrid, telomeric) was
purchased from Metabion; its stock solution was prepared in aqueous buffer, and the molar
concentration (in strands) was calculated according to the weight/content provided by
the sample certificates. The formation of the G-quadruplex (G4) structure was carried
out by heating oligonucleotide solutions to 90 ◦C for 6 min and slowly cooling to room
temperature. Bovine serum albumin (BSA) was provided by Sigma as a crystallized and
lyophilized powder (≥98%, agarose gel electrophoresis and ≤0.005% fatty acids). Known
amounts of lyophilized solid were dissolved in water, and the molar concentration of the
protein (ca. 0.1 mM) was determined by measuring light absorption using absorptivity
(ε = 44,000 M−1 cm−1 at λ = 278 nm), also herein indicated as CP (protein).

Ethidium bromide (EB), solid (purity > 99%) was from Sigma; its stock solutions
were prepared by weight but the concentration was spectrophotometrically checked
(ε = 5700 M−1 cm−1 at λ = 480 nm, I = 0.10 M, pH = 7.0). Surfactant solutions in con-
centrations higher than their critical micellar concentrations (CMC) were used to ensure
the presence of the micellar structures. Stock solutions of sodium dodecylsulphate (SDS)
(0.2 M, Sigma Aldrich, St. Louis, MI, USA, CMC = 8 × 10−3 M), dodecyltrimethylam-
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monium chloride (DTAC) (0.2 M, Sigma Aldrich, CMC = 1 × 10−2 M) and Triton X-100
(0.02 M, Sigma Aldrich, CMC = 2 × 10−4 M) [46] in ultra-pure H2O were suitably di-
luted to obtain the working solutions. The monomer 2-oleoyl-1-palmitoyl-sn-glycero-
3-phosphocholine (POPC, Sigma Aldrich, purity 95.5%) was used for the formation of
the liposomes. A stock solution of about 5 × 10−4 M was prepared by the procedure
described below, and working solutions were obtained from its dilution. About 5 mg
POPC was solubilized in 10 mL of absolute MeOH, obtaining a clear solution. The solution
was then subjected to drying under nitrogen flow until the complete evaporation of the
organic solvent. The vial was further connected to a water pump to ensure the removal
of any solvent residues. A thin film was obtained: the addition of an aqueous medium
(10 mL of aqueous buffer plus stirring for a few minutes) caused the swelling of the film
and the consequent detachment from the surface of the vial. The spontaneous aggregation
of POPC in the aqueous phase leads to the formation of multi-lamellar vesicles (Large
Multi-lamellar Vesicle, LMV), in which concentric phospholipid bilayers are separated by
water. The solutions were stored in a refrigerator at 4 ◦C.

All the tests were carried out in aqueous solution buffered with sodium dimethylarse-
niate (NaCac, sodium cacodylate) 2.5 mM for pH 7.0. The used buffer also contained NaCl,
which was used as the salt medium (exception for DNA melting); for the G-quadruplex
LiCac and KCl were used in place of NaCl and NaCac respectively (LiCac was obtained by
mixing suitable amounts of LiOH and HCac, both from Sigma). All of the solutions used
were made in ultra-pure grade water, obtained from distilled water further subjected to
deionization and sterilization using the AriumPro system (Sartorius).

2.2. Methods

A Shimadzu UV-2450 (Shimadzu Corporation, Kyoto, Japan) double ray spectropho-
tometer was used to record absorption spectra and to perform spectrophotometric titrations.
The fluorescence experiments were carried out by employing a Perkin Elmer LS55 spec-
trofluorometer (Perkin Elmer, Waltham, MA, USA) [47]. The excitation light is provided
by a pulsed Xenon lamp (50 Hz). The instruments are equipped with temperature control
within ± 0.1 ◦C. The measurements were performed by employing quartz cells of mini-
mum content needed equal to 500 or 1000 µL, with an optical path length of 1.0 cm. In
the spectrophotometric titrations, increasing amounts of the titrant were added directly
in the cuvette containing the titrand and a spectrum was recorded upon each addition.
The precise and accurate addition of very small volumes was done using a glass syringe
connected to a Mitutoyo (Mitutoyo Italy, Milan, Italy) micrometric screw (one complete
turn of the screw is 8.2 µL, 1/50 of a turn is the minimum addition possible). In the case of
fluorescence, inner-filter effects were corrected according to the procedure detailed in the
text (see Equation (2) below); for these corrections we used the values of molar extinction
coefficient εPQ = 1548 M−1 cm−1 at λex = 295 nm and the εPQ at each of the emission
wavelengths extracted by the experiment shown in Figure 2a.

The viscosity of the solutions was measured with a Ubbelohde viscometer (Merck,
Darmstadt, Germany) immersed in a controlled temperature bath. The temperature was
kept constant at T = 25 ± 0.1 ◦C. A quantity of 3.0 mL of ct-DNA solution of approximately
2.0× 10−4 M was used. Flow times of ligand/DNA mixtures at different CD/CP ratios were
recorded by adding increasing volumes of ligand directly to the polynucleotide solution.
The systems were carefully mixed by sucking and blowing the liquid inside the capillary.
Control experiments were performed by adding the same volumes of buffer solution to
take into account possible dilution contributions on the DNA viscosity. The flow time of
the solvent was also measured. All of the measurements were repeated at least 5 times.
The relative viscosity of the polynucleotide was calculated as follows (Equation (1)):

ηsample

ηreference
=
η

η0
=

tsample−tsolvent

treference−tsolvent
(1)
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where tsample, treference, and tsolvent are respectively the observed flow times for the her-
bicide/DNA mixtures, DNA alone, and the buffer solution. The relative viscosity is
connected to the polynucleotide elongation as L/L0 = (η/η0)1/3, where L is the length of
the bound polynucleotide and L0 is the length of the free one.

The melting experiments were undertaken spectrophotometrically on the Shimadzu
UV-2450 (Shimadzu Corporation, Kyoto, Japan) double ray apparatus, by heating the
sample from 25 ◦C to 90 ◦C with a scan rate of +5 ◦C/min every 6.5 min. After keeping
the temperature constant for 6.5 min to allow the system to reach the equilibrium, an
absorbance spectrum was recorded. Thermal denaturation curves were obtained by mon-
itoring absorbance changes at λ = 260 nm for DNA and 295 nm for Tel23 G-quadruplex.
They are plotted as the percentage of the absorbance change%∆A = 100 × (A − Ain)
/(Afin − Ain), where Ain and Afin represent the absorbance values at the initial (low temper-
ature) and final (high temperature) plateau. The melting temperature (Tm) was extrapolated
as the inflexion point of the resulting sigmoidal trend, and the difference between the Tm
of ligand + polynucleotide and the Tm of the polynucleotide represents the ∆Tm value.

In this work, the fraction of pollutants retained on the surfaces of micellar structures
(SDS, DTAC, TritonX) and liposomes (POPC) was evaluated by ultrafiltration experiments
undertaken using an Amicon 8050 (Merck Millipore, Darmstadt, Germany) stirred ultrafil-
tration cell (capacity 50 mL). The analyzed mixture was forced to pass through an Amicon
cellulose membrane (9 mL over initial 10 mL inserted in the cell; membrane diameter
4.45 cm, surface 13.4 cm2) with a 3000 Dalton cut-off at a constant pressure of 40 psi and
300 rpm. Comparison between the spectrophotometrically quantified pollutant content
before (Ain) and after (Afin) filtration (at the wavelength which corresponds to the max-
imum absorbance of the dye) enables the evaluation of the percentage of retention as
R% = 100 × (Ain − Afin)/Ain). All measurements were performed in triplicate.

The density functional theory (DFT) calculations were performed using the Gaussian
16 package [48]. The Integral Equation Formalism (IEF) version [49] of the Polarizable
Continuum Model (PCM) [50] was used to describe the implicit effects of the solvent (water).
The ground state geometry optimizations were performed using the B3LYP functional and
the 6-31G(d) basis set. For the docking calculations, the binding sites were constructed on
the actual position of the selected markers. For binding site I, PDB id 2BXC was employed
as starting structure, whereas PDB id 2BXG was used for binding site II. Spheres of radius
0.14–0.4 nm were created in the place of the ligands in a 0.7 nm large box. The grid-based
score depends on the non-bonded terms of the molecular mechanics force field. The ligand
charge for the docking was calculated using the AM1-BCC method.

3. Results and Discussion
3.1. Spectroscopic Characterization

The optical properties of PQ and DQ molecules were characterized under physio-
logical conditions (NaCl 0.1 M, NaCac 2.5 mM, pH 7.0). Absorbance spectra at different
concentrations were recorded for both of the herbicides (Figure 2a,b). The unaltered spec-
tral profile (Figure 2a,b) and the linearity of the Lambert and Beer plots (Figure 2c) indicate
that the molecules do not aggregate under the explored conditions. The possible presence
of aggregates was checked by inspecting absorbance ratio plots which may evidence a
more subtle change in the profiles (Figure 2d).
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(a) PQ from 4.08 × 10−7 to 1.09 × 10−4 M; (b) DQ from 2.26 × 10−7 to 6.47 × 10−5 M; (c) relevant
Lambert–Beer plots (full mark is PQ at 258 nm ε = 1.07 × 104 M−1 cm−1; open mark is DQ at 309 nm
ε = 1.82 × 104 M−1 cm−1; (d) absorbance ratio plots (PQ full mark, A258 nm/A280 nm; DQ open
mark, A297 nm/A324 nm.

The constancy of the plotted values further confirms the absence of self-aggregation
processes. The lower aggregation tendency shown here with respect to the previously
analyzed pollutants [43] agrees with the +2 charge borne by PQ and DQ.

3.2. ct-DNA Binding

In principle, the non-aggregation of the dye is a highly favorable aspect for the further
analysis of its interaction with the target. Nonetheless, the analysis of the binding of PQ
and DQ to nucleic acids and proteins unfortunately still remained highly complex. The
main obstacle to the spectroscopic investigation was the superimposition of the pollutants’
signals with those of the biosubstrates (Figure 3).
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Under these circumstances, in the case of absorbance experiments, differential titra-
tions may be performed: the same amount of the titrant (DNA) is added to both the
measuring and the reference cell. Figure S1 (Supplementary Materials) shows an example
of the spectra recorded for differential titrations. As far as the DNA content is raised and
therefore high values of DNA absorbance are reached, this approach may be biased and
thus not highly reliable. However, neither PQ nor DQ showed significant absorbance
profile changes or bathochromic effects, even for the first steps of DNA additions. This
finding may be the first hint of a scarce interaction between the herbicides and DNA.

To overcome the problem, fluorescence exchange titrations with EtBr were performed
where known amounts of herbicides were added directly to EtBr-saturated DNA. A de-
crease in emitted fluorescence at the excitation and emission wavelengths typical of interca-
lated EtBr would have indicated its displacement from the helix [51]. Although the selected
herbicides present suitable features to be considered as DNA binders, the tests do not
demonstrate any significant interaction (example in Figure S2), meaning that intercalation
is excluded. Groove binding also seems unlikely, because the penetration within the groove
(and even more of a charged species) is usually still able to produce some change in the
EtBr probe environment which is reflected by a signal change [52].

The same conclusion emerges from the viscosity measurements carried out for the two
herbicide/DNA systems at different herbicide/DNA (CD/CP) ratios. The flow times (t)
were used to calculate the relative viscosity according to Equation (1). For both herbicides,
the relative viscosity remained almost constant upon the addition of increasing amounts
of herbicide (Figure 4), indicating no significant elongation of the DNA helix. This result
underlines the absence of intercalation between the DNA base pairs for both PQ and DQ.
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mark); CDNA = 1.77× 10−4 M, CPQ from 0 to 1.92× 10−4 M, CDQ from 0 to 2.0× 10−4 M, NaCl 0.1 M,
NaCac 2.5 mM, pH 7.0, 25.0 ◦C.

Thermal denaturation studies revealed that the stability of DNA is affected by the
presence of the ligands (Figure 5a): a stabilizing effect on the melting temperature of the
polynucleotide is observed upon the addition of the herbicides (∆Tm ca. +6 ◦C for both PQ
and DQ). This result indicates that some non-negligible interaction is involved. However,
based on the previous results, an external interaction between the +2 charged PQ and DQ
and the negatively charged external helix backbone may be considered as the most probable
option. Note that this, even weak, interaction is found to be present for double-stranded
DNA only. Absorbance titrations performed on a G-quadruplex forming oligonucleotide
gave negative results for binding (no signal change, Figure S3). In addition, melting tests
do not evidence any stabilizing effect (Figure 5b).

These systems could, in principle, fit those of common DNA binders: the small,
aromatic geometry and the presence of +2 positive charges suggests possible intercalation
into the DNA pocket. To refine the results which indicate the non-intercalation between
DNA base pairs, DFT calculations were performed on both PQ and DQ to obtain their
geometrical structure (Figure 6). The two aromatic rings are tilted (Table 1), producing
some steric hindrance: an energy penalty would be paid to reach the planarization needed
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for a better accommodation in the helix core (for natural DNA base pairs planes are at
a 3.4 Å distance [53], each of the bonds of Figure 6 lies in the 1.4–1.5 Å range). This
might contribute to the low affinities observed; note that a series of DQ derivatives with
substituents which widen the species’ planarity were found to switch their binding mode
from electrostatic to intercalation [17].
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Table 1. Values of some dihedral angles for paraquat (PQ) and diquat (DQ) molecular structure
according to density functional theory (DFT) calculations.

Label Value (◦)

PQ 1-2-3-4 39.4
DQ 1-2-3-4 −22.8
DQ 3-8-7-6 39.9
DQ 2-5-6-7 39.5
DQ 5-6-7-8 −58.3

3.3. BSA Binding
3.3.1. Spectrofluorometric Titrations

For testing of the binding of the herbicides to proteins, absorbance approaches have
to be avoided due to the already discussed experimental issues. Concerning fluorescence
techniques, the superimposition of the emission signals of DQ and BSA significantly
complicates the spectroscopic analysis of the DQ/BSA system and prevents it from being
performed with high accuracy.

Correction for the emission intensity of DQ is not straightforward because the cor-
responding equation (see Equation (2) below) holds only for not-too-distorted signals
(A < 0.05–0.1; [54,55]). The bias is enhanced by the fact that DQ emission overlaps the
spectral range where BSA quenching is followed. Therefore, during a titration where DQ
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is added to BSA and for DQ excess (which will hold even more as the titration proceeds),
the fluorescence read will be the sum of the emission free BSA, free DQ, and DQ/BSA
adduct (Figure S4). Any attempt to deconvolute the different contributions produces highly
biased results. However, data robustly demonstrate that the binding does indeed take
place (Figure 7). To limit the problems cited above, the first points only of the titration may
be used and analyzed (with HypSpec2014® software (Hyperquad, Leeds, UK). See below
PQ for additional details, data treatment for DQ is provided in Figure S5. This procedure
yields a binding constant of the magnitude order of 106 M−1 for the DQ/BSA system.
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CBSA = 1.50 × 10−6 M, NaCl 0.1 M, NaCac 2.5 mM, pH 7.0, 37.0 ◦C, λex = 295 nm, λem = 345 nm.

Differently, in the case of PQ, the spectrofluorometric titrations could be carried out
under more favorable conditions that enabled analysis of the details of the interaction with
BSA. Note that inner filter effects still affected the measurements: we carefully optimized
the experiments and corrected the signals according to:

Fcorr = Fobs × 10(Aex+Aem)/2 (2)

where Fcorr and Fobs are, respectively, the corrected and the observed fluorescence intensi-
ties, and Aex and Aem are the absorbance values, respectively, at the excitation and emission
wavelengths [54]. In particular, Aex is the optical density of PQ at the excitation wavelength
(295 nm) and Aem is its value at λem, which will change point by point of the spectrum
to yield the corrected one. In principle, the total absorbance of the mixture should be
considered. However, because BSA absorbance is negligible in the spectral range studied
and PQ is present in excess (bound PQ minority), the correction can be done using the
molar extinction coefficients of free PQ in the buffer (Figure 2a). Figure 8a shows the
BSA emission spectral changes observed upon the addition of increasing amounts of PQ;
Figure 8b indicates evident deviations in the recorded binding isotherm (λem = 345 nm) in
comparison to that corrected for the inner filter effect. Taking into account this evidence,
the intensities of the BSA fluorescence were corrected for inner filter effects before any
further data analysis.

To ensure that the fluorescence decrease was not due to collisional quenching only,
data recorded at different temperatures were fitted using the Stern–Volmer equation
(Equation (3)):

F0

F
= 1 + kqτ0 = 1 + KSV[Q] (3)

where F0/F corresponds to the ratio between the BSA fluorescence intensity in the absence
and the presence of the quencher (PQ), respectively, KSV represents the Stern–Volmer
constant, [Q] is the molar concentration of the quencher, kq is the bimolecular quenching
constant, and τ0 corresponds to the average lifetime of the protein in the absence of
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quencher. Note that the F values must be corrected for dilution and inner filter before use.
For static quenching, KSV will be equal to the binding constant for complex formation (if the
complex is non-fluorescent). Note that [Q] corresponds to [Qfree] (the molar concentration
of free quencher). Therefore, just the points under quencher excess ([Qfree] ∼= Qtot) were
considered in the data analysis. KSV is equal to (6.5 ± 0.8) × 103 M−1 at 25.0 ◦C. Because
τ0 = 7 ns for protein BSA [56], kq results are beyond the upper limit for collisional quenching
(kq = 3 × 1010 M−1 s−1) and should be necessarily related to the presence of some non-
collisional quenching (complex formation) [55]. Moreover, the lack of dependence on
temperature (Figure 9a) also confirms the non-collisional nature of the quenching process.
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Figure 8. (a) Spectrophotometric titration of PQ/BSA and (b) corresponding binding isotherm at λem = 345 nm;
CBSA = 1.50× 10−6 M, CPQ from 0 (solid) to 5.43× 10−5 M (dash), NaCl 0.1 M, NaCac 2.5 mM, pH 7.0, 25.0 ◦C, λexc = 295 nm;
squares refer to uncorrected fluorescence values, circles define the trend corrected according to the equation in the text.
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system; NaCl 0.1 M, NaCac 2.5 mM, pH 7.0.

The binding constants at the different temperatures were calculated using HypSpec2014®

software, which enables, through a least squares procedure, fitting the data over a wave-
length range according to multiple equilibria models (Figure S6). Note that all of the
spectra were previously corrected for the inner filter effect over the whole explored range at
each of the Aλex and Aλem appropriate for each point of each spectrum. Tests for different
models and factor analysis of the data suggest that a 1:1 binding is sufficient to describe
the data set. At 25.0 ◦C a binding constant (K) of (6.2 ± 0.8) × 104 M−1 was measured.
Figure 9b shows that the obtained K values do not significantly change with temperature,
indicating that the enthalpy variation (∆H) is negligible; on the other hand, the entropy
variation (∆S) was equal to 85 J/mol·K. Therefore, the driving force for binding is due
to the entropic term with a negligible enthalpy contribution to the process. The sign and
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the order of magnitude of the thermodynamic parameters constitute a signature for the
binding type [55]: in our case the binding is supposed to be mainly driven by electrostatic
forces, even if some contribution of a hydrophobic interaction cannot be completely ruled
out (see retention tests below). Interestingly, the thermodynamic parameters extracted
from the literature lie on a common line [55]. This correlation is called enthalpy–entropy
compensation (EEC). EEC is a phenomenon which has also been attributed to experimental
bias or intended as a simple result of thermodynamic laws [57]. Currently, most researchers
agree on EEC which is connected to the fact that, if a small molecule undergoes more
and/or tighter van der Waals contacts and H-bonds with the substrate (a process related to
a more negative ∆H), this will produce a decrease in the flexibility in one or both ligand-
substrates. Overall, the reduction in the overall conformational entropy will compensate for
the enthalpy decrease [58]. Note that hydration also plays a major role: the rearrangement
in the coordinated solvent molecules strongly influences, in particular, ∆S [58,59]. The
correlation plot of Figure S7 for ligand-BSA systems yields a linear relationship with a
slope close to one. This means that the enthalpy gain is compensated for the entropic loss.
This compensation is always found in the case of flexible macromolecules, but significantly
lower slopes can be found for stiff hosts [60]. The thermodynamic values obtained for the
PQ/BSA system agree with an electrostatics-driven process, in agreement with the charged
nature of the host.

3.3.2. BSA Binding Site

BSA possesses two main binding sites [61] and the evaluation of the preferential bind-
ing position is usually obtained through fluorescence competitive studies. Phenylbutazone
(PB) and ibuprofen (IB) are species employed, respectively, as site I and II markers, and
were chosen for the current study. Figure 10 shows the binding isotherms for PQ obtained
by titrating BSA alone, BSA saturated with PB, and BSA saturated with IB. The negligible
difference observed in the trends suggests that the binding is not selective.
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Figure 10. Binding isotherm for free bovine serum albumin (BSA) and BSA/marker titrated with PQ
(FB = phenylbutazone, IB = ibuprofen); CBSA = 1.5 × 10−6 M, Cmarker = 1.5 × 10−5 M, CPQ from 0 to
4.6 × 10−5 M, NaCl 0.1 M, NaCac 2.5 mM, pH 7.0, 25.0 ◦C, λexc = 295 nm, λem = 345 nm.

The same picture was also evidenced by the docking analysis (Figure 11): no relevant
difference was observed by docking the ligand into the two different binding sites (grid
score for binding site I = −26.16; grid score for binding site II = −26.46).
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Overall, it appears that PQ, which is a small charged species, is bound by BSA by an
electrostatic, non-specific process as for the preference between site I or site II.

3.4. Micellar Enhanced Ultra-Filtration (MEUF) Tests on Surfactants and Liposomes

The retention of PQ and DQ on micelles of different nature (positive, negative, or
neutral surface) and liposomes was studied as an indication of lipophilicity and affinity for
cellular membranes. Sodium dodecyl sulphate (SDS) and dodecyl trimethyl ammonium
chloride (DTAC) were used respectively for the positively and negatively charged mi-
celles. TritonX-100 was employed for the neutral micelles, whereas 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) molecules composed the liposomes. Micellar Enhanced
Ultra-Filtration (MEUF) coupled with absorbance spectroscopy enables the percentage of
retention (R%) on the micelles/liposomes to be measured (see Section 2). Figure S8 shows
an example of the absorbance spectra of PQ/SDS and DQ/DTAC solutions recorded before
and after the ultrafiltration process. The analysis was performed at two different ionic
strengths (NaCl 0.1 or 0.5 M, NaCac 2.5 mM, pH 7.0) and the obtained results are reported
in Table 2.

Table 2. Retention percentage (R%) of the analyzed herbicides on micelles and liposomes
(NaCac 2.5 mM, pH 7.0, 25.0 ◦C, CSDS = CDTAC = CTritonX = 0.01 M, CPOPC = 5 × 10−6 M). Tests
were performed in triplicate, errors are ±SD.

PQ DQ

NaCl 0.1 M 0.5 M 0.1 M 0.5 M

SDS 90 ± 1 41 ± 5 91 ± 1 34 ± 5
DTAC 8 ± 1 6 ± 1 3 ± 1 6 ± 1

TritonX 11 ± 2 18 ± 2 15 ± 1 15 ± 1
POPC 5 ± 1 4 ± 2 5 ± 2 6 ± 1

The positively charged herbicides are strongly retained on the negative surface of the
SDS micelles but the increase in the salt content strongly affects the electrostatic nature
of the binding, resulting in a significant decrease in R%. Based on electrostatics, PQ and
DQ should not interact with the positive surface of DTAC. On the contrary, even with
low R%, PQ and DQ are both still retained on DTAC micelles and the retention is scarcely
affected by the variation of the ionic strength. This evidence suggests the presence of some
hydrophobic forces also involved in the binding which, even if minor (+2 charged species),
would be related to the aromatic rings present in the molecular structure.

The same hint is provided by the R% values obtained for the neutral TritonX micelles.
The low hydrophobicity of the systems, octanol-water partition coefficient logPow = −4.22
for PQ [62] and logPow = −4.6 for DQ, [63] prevents any strong affinity, but interaction is
observed nonetheless. Regardless of the salt content, the adsorption on POPC liposomes
results are similar to those obtained for DTAC. It may be speculated that the common
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terminal –N–(CH3)3
+ residue in DTAC and POPC plays an important role in driving these

similarities. However, ultrafiltration experiments alone are not sufficient to robustly extract
this information and are only preliminary tests. Future development of these aspects should
consider studies using different liposomes (differently charged, zwitterionic, or even lipid
mixtures and supported lipid bilayers). Such detailed studies on lipid model systems
mimicking the cellular membrane would allow various information to be obtained, such
as the affinity towards regions with different degrees of hydrophobicity, the role played
by the different charges, and the binding-induced changes of the membrane mechanical
properties [40–42].

4. Conclusions

In this study, we tried to provide evidence that, for systems with no significant visible
absorption, a careful evaluation of the superimposition with biosubstrate signals is needed
to yield a robust description of the mechanistic aspects for binding. This also holds for the
bias caused by inner-filter effects in fluorescence measurements. This will, unfortunately,
be true for many molecules of the herbicides/pesticides family.

Regarding the comprehension of the possible toxic pathways, PQ and DQ appear
to behave in a similar way, with no interaction with DNA oligomers and only external
interaction with DNA polynucleotides. Therefore, pathways considering direct effects on
nucleotides should most likely be rejected.

By comparison, the capability of herbicides to bind BSA may play a key role in their
toxic activity. One of the main functions of serum albumins is their involvement in the
transport, distribution, and metabolism of exogenous and endogenous substances [64,65].
The interaction between DQ and PQ with BSA can therefore support the bioavailability, in
addition to the spreading of the herbicide in living organisms. Binding constant values
in the 104–106 range, as found here, are reported as optimal for the complexation of the
ligands and the consequent release once target or appropriate conditions are reached [66].

Data on micelles and, in particular, liposomes, show that, despite the positive charge
present in the POPC outer shell, some retention is possible. These preliminary tests open
the way to future studies in which the interaction with the membrane is more deeply
analyzed by biophysical studies with different types of liposomes.
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of PQ in SDS and DQ in DTAC.
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