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Abstract

Phagocytosis, the biological process in which cells ingest large particles such as bacteria, is

a key component of the innate immune response. Fcγ receptor (FcγR)-mediated phagocyto-

sis is initiated when these receptors are activated after binding immunoglobulin G (IgG).

Receptor activation initiates a signaling cascade that leads to the formation of the phago-

cytic cup and culminates with ingestion of the foreign particle. In the experimental system

termed “frustrated phagocytosis”, cells attempt to internalize micropatterned disks of IgG.

Cells that engage in frustrated phagocytosis form “rosettes” of actin-enriched structures

called podosomes around the IgG disk. The mechanism that generates the rosette pattern

is unknown. We present data that supports the involvement of Cdc42, a member of the Rho

family of GTPases, in pattern formation. Cdc42 acts downstream of receptor activation,

upstream of actin polymerization, and is known to play a role in polarity establishment.

Reaction-diffusion models for GTPase spatiotemporal dynamics exist. We demonstrate

how the addition of negative feedback and minor changes to these models can generate the

experimentally observed rosette pattern of podosomes. We show that this pattern formation

can occur through two general mechanisms. In the first mechanism, an intermediate species

forms a ring of high activity around the IgG disk, which then promotes rosette organization.

The second mechanism does not require initial ring formation but relies on spatial gradients

of intermediate chemical species that are selectively activated over the IgG patch. Finally,

we analyze the models to suggest experiments to test their validity.

Author summary

Phagocytosis, the process by which cells ingest foreign bodies, plays an important role in

innate immunity. Phagocytosis is initiated when antibodies coating the surface of a for-

eign body are recognized by immune cells, such as macrophages. To study early events in

phagocytosis, we used “frustrated phagocytosis”, an experimental system in which
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antibodies are micropatterned in disks on a cover slip. The cytoskeleton of cells attempt-

ing to phagocytose these disks organizes into “rosette” patterns around the disks. To

investigate mechanisms that underlie rosette formation we turned to mathematical

modeling based on reaction-diffusion equations. Building on existing models for polarity

establishment, our analysis revealed two mechanisms for rosette formation. In the first

scenario an initial ring of an intermediate signaling molecule forms around the disk,

while in the second scenario rosette formation is driven by gradients of positive and nega-

tive pathway regulators that are activated over the disk. Finally, we analyze our models to

suggest experiments for testing these mechanisms.

Introduction

All cells must be able to respond to changes in their environment, and often the proper

response requires cells to adopt a new morphology. For example, cell shape changes occur dur-

ing migration, division, and phagocytosis. Typically, these changes are initiated when recep-

tors on the cell surface are activated by an external cue [1]. Receptor activation initiates a

signaling cascade that results in spatiotemporal regulation of the actin cytoskeleton. The Rho

family of GTPases are a class of signaling molecules that play key roles in this process [2–6].

These proteins act as molecular switches. They are in an inactive state when bound with GDP

and become active when GDP is exchanged for GTP. Once active, Rho GTPases interact with

effector molecules including those that regulate the actin cytoskeleton. Due to the nonlinear

nature of the signaling pathways that regulate GTPase activity, understanding the molecular

mechanisms that generate cell shape changes has proven challenging [1]. Therefore, many

recent studies have turned to mathematical modeling to explore mechanisms capable of gener-

ating complex molecular structures [7–11].

Here we focus on Fcγ Receptor (FcγR)-mediated phagocytosis because of its biological

importance in the innate immune response [12,13] and because phagocytosis provides an

ideal system for studying how Rho GTPases organize the cytoskeleton into well-defined struc-

tures. Phagocytosis is initiated by the binding of the antibody immunoglobulin G (IgG) to

FcγR. Upon FcγR clustering, receptor cross-linking leads to phosphorylation of activation

motif domains, enabling downstream signaling [12–14]. To study the events that initiate

phagocytosis under well-controlled conditions, IgG is micropatterned in small disks on a glass

coverslip (Fig 1A). Because the antibody is attached to the coverslip it cannot be internalized,

and the experimental system is therefore referred to as “frustrated” phagocytosis [15]. Follow-

ing receptor activation, actin-enriched, adhesion-like structures termed podosomes [13,16,17]

form in a circle around the IgG disk (Fig 1B and 1C). Podosomes classically have been consid-

ered rod or cone-like structures of dense actin [16,17]. However, we recently demonstrated an

hourglass-like shape [18]. Podosomes recruit many additional molecules and are thought to

coordinate interactions between the actin cytoskeleton and the extracellular matrix [16,17,19].

They also form the leading edge of the phagocytic cup [20,21], and have been referred to as

“teeth” coordinating the “jaw” during phagocytosis [21]. The mechanisms responsible for

podosome formation and patterning are not known. Therefore, we turned to mathematical

modeling to establish sufficient conditions for pattern formation during frustrated

phagocytosis.

Beginning with Turing’s seminal paper [22] and continuing with developments by Gierer

and Meinhardt [23] and Meinhardt [24], reaction-diffusion models have been used to investi-

gate pattern formation in biological systems. These models rely on positive feedback to amplify
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local fluctuations in signaling activity and some form of global inhibition or substrate deple-

tion to keep regions of high activity localized [23]. Another key requirement of these models is

that at least one of the chemical species in the system diffuses at a different rate from the others

[22,23]. The hydrolysis cycle of GTPases satisfies the requirements for spontaneous polariza-

tion [7–10,25,26]. GTPases cycle between an active state when GTP-bound and an inactive

state when GDP-bound. Their activation is catalyzed by guanine nucleotide exchange factors

(GEFs), which promote the exchange of GDP to GTP. This exchange typically occurs at the

cell membrane where diffusion is slow as compared to the cytosol [7,8,10,26,27]. When in the

active state, some GTPases have been shown to recruit their own GEFs forming a positive feed-

back loop [25,26,28–31]. GTPase inactivation is accelerated by GTPase-activating proteins

(GAPs) [3–6]. When inactive, GTPases are sequestered in the cytosol by guanine nucleotide

dissociation inhibitors (GDIs) and diffuse rapidly [3–6].

There are now many reaction-diffusion models that describe how GTPases can generate

cell polarity and patterning in various systems [8–11]. One of the best characterized cases is in

yeast (Saccharomyces cerevisiae) budding, in which the GTPase Cdc42 generates a single, active

Fig 1. Actin and Cdc42 localization around disks of IgG during frustrated phagocytosis. A-C) Rosettes of actin podosomes form around IgG disks in RAW

264.7 macrophages. A micropattern of IgG disks of diameter 3.5 μm is shown in A. Actin is shown in B, in which puncta are podosomes. An overlay (IgG in

blue, actin in magenta) is shown in C. D-G) Single particle tracking (SPT) of Cdc42 during frustrated phagocytosis. Actin is shown in D. SPT of Cdc42 is

shown in E, with tracks colored by their mean squared displacement (MSD, distribution of MSDs is shown in S1C Fig). An individual rosette of actin (red

box in D) is shown expanded in F. For this same actin rosette, Cdc42 SPT (red box in E) is shown expanded in G (same MSD coloring as in E). Rings shown in

F,G are to aid in visualization of the increased track density where actin podosomes form.

https://doi.org/10.1371/journal.pcbi.1010092.g001
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site to determine the location of a bud site or mating projection. In yeast, autocatalysis is well-

defined: active Cdc42 binds to the scaffold protein Bem1, which also binds to the GEF Cdc24

that locally activates more GTPase [25,26,28,29]. Other examples of Rho GTPase-driven pat-

tern formation include single-cell wound healing, in which Rho and Cdc42 form distinct rings

through regulation by the dual GAP-GEF Abr [32,33], actin waves observed during cytokinesis

that are driven by RhoA and its GAP RGA-3/4 and GEF Ect2 [34,35], RhoA driven pulsed con-

tractions observed during embryonic development in C. elegans [34], and tip growth in pollen

tubes and fungal hyphae [10].

Here, we expanded upon existing reaction-diffusion models for GTPase activity to demon-

strate how these systems can generate the “rosette” pattern of podosomes observed during

frustrated phagocytosis. We explore the behavior of a recent model for GTPase activity that

includes a negative feedback loop formed through the activation of a GAP [9,10]. Depending

on the choice of parameter values, this model generates a range of patterns including spots,

mazes, and inverse spots [10]. We use the model to identify two distinct mechanisms for gen-

erating a rosette pattern. In the first scenario, an intermediate species forms a ring of activity

that promotes the formation of active GTPase spots in the ring. Next, we use a parameteriza-

tion approach involving an evolutionary algorithm followed by Markov chain Monte Carlo to

evolve systems that do not rely on initial ring formation to generate the rosette pattern. A com-

mon theme that emerges from this analysis is that rosette formation requires the activation of

both a positive and negative regulator of GTPase activity over the IgG disk. This creates spatial

gradients of these regulators, which in turn are sufficient to drive the formation of the rosette

pattern. Finally, we analyzed the behavior of the models to suggest experiments to test our pro-

posed mechanisms.

Results

Experimental observations suggest Cdc42, but not myosin, is required for

rosette patterning

Macrophages (RAW 264.7 cells) were observed during frustrated Fcγ receptor IIa (FcγR)

mediated phagocytosis, where cells attempt to phagocytose fixed, micropatterned disks of

immunoglobulin G (IgG). Actin, a major downstream effector during FcγR-mediated phago-

cytic signaling, formed in rings of small puncta, just outside of the IgG disks (Fig 1A–1C).

These puncta were podosomes: actin-rich, adhesion-like structures observed during phagocy-

tosis but more commonly known for their roles in motility and extracellular matrix interac-

tions [16,19]. This superstructural organization of podosomes in a circular arrangement has

previously been termed a podosome “rosette” [36–38]. Due to the dynamic nature of phagocy-

tosis, actomyosin contractility is known to play an integral role during the engulfment process

[12,13,21,39] and myosin II has been observed to localize to phagocytic podosomes and podo-

some rosettes [17,21]. Therefore, we wondered whether actomyosin contractility was impor-

tant for podosome rosette formation. To test this possibility, we treated cells with the Rho

kinase inhibitor Y27632. Inhibition of Rho kinase during frustrated phagocytosis led to the

complete disassembly of myosin II filaments, demonstrating that myosin II contractility was

inhibited (S1A and S1B Fig). However, podosome rosettes still formed (S1A and S1B Fig),

which suggested that the formation and maintenance of podosomes during phagocytosis is

independent of actomyosin contractility and that a biochemical mechanism may underlie

rosette formation.

Rho family GTPases, including Cdc42, are known to be activated during FcγR-mediated

phagocytic signaling [2,12,13,40,41]. Cdc42 is a regulator of the actin cytoskeleton, so we next

examined its localization during frustrated phagocytosis. We recently developed tools for
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observing and analyzing single molecule conformational changes in living cells [42]. We made

use of these techniques to visualize Cdc42 during frustrated phagocytosis (Figs 1D–1G and

S1C). Cdc42 localized to the podosome rosette, with individual molecule tracks clustered near

podosomes (Fig 1D–1G).

Taken together these results suggest podosome rosette organization involves localized

Cdc42 activity but does not require active myosin-mediated force generation. The involvement

of Cdc42 in rosette formation is also supported by other studies; Cdc42 levels are reduced

when actin is reduced at the phagocytic site [43], and Cdc42 is recruited to the tips of pseudo-

podia early in phagocytosis [40,44]. Therefore, we decided to investigate if a mechanism

involving Cdc42 might underlie formation of the podosome rosette.

Forming coexisting clusters of active GTPase

The core components of mathematical models for polarity establishment include an inactive

form of a GTPase that is cytosolic and diffuses rapidly, an active form that is membrane bound

and diffuses slowly, and positive feedback through autoactivation [7–11]. Additionally, these

models often assume that mass is conserved and, therefore, do not include protein synthesis

and degradation. In their simplest form, these models typically form a single polarity site [7–

10,25]. Recent investigations have focused on establishing mechanisms that generate coexist-

ing active GTPase clusters. Chiou et al. investigated a minimal model of a GTPase polarity cir-

cuit that assumed mass conservation and did not include any form of negative feedback [8].

They demonstrated how, in this model, local depletion increases the competition time between

clusters so that coexistence is maintained over biologically relevant time scales. To generate

stable coexisting sites requires the inclusion of protein synthesis and degradation [10,45,46],

adding negative feedback to limit the growth of active cluster [10,46], or including an interme-

diate state of the Rho GTPase, so it cannot be immediately reactivated following deactivation

[9]. We note that any of these mechanisms might underlie rosette pattern formation. However,

the GAPs ARHGAP12, ARHGAP25, and SH3BP1 have been shown to play a role in phagocy-

tosis [47]. Therefore, we focused on the Wave-Pinning GAP (WPGAP) model studied by

Jacobs et al. in which negative feedback occurs through activation of a GAP [10].

The WPGAP model (Fig 2A, [10]) is described mathematically by the following set of reac-

tion-diffusion equations:

@u
@t
¼ bvþ gv

un

Kn þ un
� su � eGuþ Dur

2u;

@v
@t
¼ � bv � gv

un

Kn þ un
þ suþ eGuþ Dvr

2v;

@G
@t
¼ cug � dGþ DGr

2G;

@g
@t
¼ � cug þ dGþ Dgr

2g;

where u is the concentration of active GTPase, v is the concentration of inactive GTPase, G is

the concentration of active GAP, and g is the concentration of inactive GAP. The basal GTPase

activation rate is b, the maximum self-positive feedback rate is γ, K is the concentration of

active GTPase when the feedback is at the half-maximal response, the basal GTPase inactiva-

tion rate is σ, the GAP-mediated negative feedback rate is e, the GAP activation is c, and the
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GAP inactivation rate is d. The total mass of both species is conserved:

T ¼
Z

ðuþ vÞ dV;

Tg ¼

Z

ðGþ gÞ dV;

where the integrals are over the volume of the system. A requirement for polarization is that

the membrane-bound active form of GTPase diffuses slowly in comparison to the cytosolic

inactive form:

Dv>>Du:

Both the active and inactive forms of the GAP are treated as cytosolic species that diffuse rap-

idly compared to the membrane-bound active GTPase.

It is tempting for simplicity and computational efficiency to perform initial investigations

on a 1D ring to find regions of parameter space that support coexisting spots. However, the

existence of coexisting clusters on a 1D ring does not guarantee a localized ring of clusters will

form when the system is extended to 2D. One important difference between 1D and 2D is that

Fig 2. The WPGAP model generates rosettes of GTPase activity if a ring of an intermediate species is assumed. A) Schematic of the Wave-Pinning GTPase

Activating Protein (WPGAP) model. B) WPGAP simulation results for individual parameter sweeps (Table 1). Red arrows show most parameters can

transition from a low intensity homogenous regime (circle cap) to a spot patterning regime (arrow cap). C) Spatial profile of parameters modulated by species

M. M either activates (first 3 panels) or inhibits (last 3 panels) parameters. D) Active GTPase concentrations using the parameter profiles shown in C (above

each panel, respectively). Consistent with parameter sweeps shown in B, each parameter is capable of being modulated to form a rosette pattern except for the

basal activation rate b.

https://doi.org/10.1371/journal.pcbi.1010092.g002
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in 2D spots have curvature, which can contribute to their stability [8]. Furthermore, our sys-

tem requires low activity without patterning away from the spots, which could not be captured

in 1D. Therefore, we performed WPGAP simulations in 2D.

For the WPGAP model, Jacobs et al. [10] explored how changes in the total amount of

GTPase (T) impacted bistability and the types of patterns that formed. They found the system

could form spots (localized regions of high GTPase activity), mazes, and negative spots (local-

ized regions of low GTPase activity). In this study, we are interested in coexisting spots, and

thus, guided by the work of Jacobs et al. [10], we began with parameter values that placed the

system in this regime. From single particle tracking during frustrated phagocytosis (Fig 1D–

1G), we estimated the diffusivity for the membrane-bound form of Cdc42 as ~0.04 μm2 s-1

(S1C Fig). Using this information, we fixed Du = 0.04 μm2 s-1 and we let Dv = Dg = DG = 100

Du. Radii of podosomes have been observed to be anywhere from ~0.15–0.6 microns

[17,18,48,49]. Therefore, we tuned the rate constants (Table 1) so that the model produced

spots with radius 0.31 ± 0.02 μm. Because most of the rate constants in the model have not

been measured experimentally, our choices for the initial parameter values are somewhat arbi-

trary. However, these rate constants result in coexisting spots of appropriate size when using

the estimated membrane-bound diffusion coefficient for Cdc42.

To explore how GTPase cluster size depends on the relative time scales of diffusion and

chemical kinetics, we fixed the rate constants and varied the diffusion coefficient of the active

GTPase Du, keeping the other diffusion coefficients 100-fold greater than Du (S2A Fig). Note

that mathematically this is equivalent to fixing the diffusion coefficients and varying the time

scale for the chemical kinetics, because solutions to the model equations only depend on the

ratio of these two time scales. We found that increasing the diffusivity increased the spot size

(S2A and S2B Fig), but did not impact the patterns formed by the system (quantified by spot

eccentricity, S2C Fig).

We set the average Cdc42 concentration to 808 molecules per μm2 (Table 1). The number

of Cdc42 molecules per podosome is not known. However, particle-based simulations of

Cdc42 polarity in yeast typically predict around 3000 molecules in a polarity site of roughly

1 μm radius, resulting in a surface concentration of ~950 molecules per μm2 [50]. Using a

GTPase spot radius of 0.31 μm, the area of a podosome is approximately 0.30 μm2, and there

are approximately 240 Cdc42 molecules per podosome. This produces a surface concentration

Table 1. Baseline parameter values.

Parameter Description Value

b GTPase activation 1 s-1

γ GTPase maximal self-positive feedback rate 20 s-1

K Half-maximal response GTPase concentration 200 molecules per μm2

n Hill coefficient 2

σ GTPase inactivation 10 s-1

c GAP activation 0.05 μm2 s-1

d GAP inactivation 10 s-1

e GAP dependent GTPase inactivation 10 μm2 s-1

Du Active GTPase diffusion 0.04 μm2s-1

Dv Inactive GTPase diffusion 4 μm2s-1

DG Active GAP diffusion 4 μm2s-1

Dg Inactive GAP diffusion 4 μm2s-1

T Total GTPase Concentration 808 molecules per μm2

Tg Total GAP Concentration 10 molecules per μm2

https://doi.org/10.1371/journal.pcbi.1010092.t001
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of ~900 molecules per μm2 at active spots, which is consistent with particle-based models for

the polarity site in yeast.

Next, we explored how varying individual parameters changed pattern formation. When

sweeping the GTPase activation rate b, lower values resulted in spots, but higher values

resulted in a spatially homogenous steady state with an intermediate level of GTPase activity

(Fig 2B). This suggested that a finite basal GTPase activation rate b was not required or had to

be quite small to facilitate patterning. Interestingly, each of the other parameter sweeps

resulted in changes in the observed patterning types, including spots, mazes, and holes (Fig

2B). For the GTPase inactivation rate σ, a high value resulted in a single low concentration

throughout the domain, and decreasing this value led to spots, then mazes. However, minimiz-

ing this value did not cause the entire domain to be at a single, high steady state, due to nega-

tive feedback from GAPs. In contrast, the self-positive feedback rate γ, the GAP inactivation

rate c, the GAP activation rate d, and the GAP-mediated negative feedback rate e were capable

of all patterning types, from a single low state to spots, mazes, holes, and a single high state

(Fig 2B). Overall, these observations suggested that it would be possible to spatially modulate

these parameters to go from the low, homogenous state to the spot forming state.

A two-step model for rosette formation

We next sought to determine if the WPGAP model could be modified to enable rosette formation.

One possible explanation for how a rosette could form is if two distinct steps occur: 1) an initial

ring of high or low concentration of some species (M) forms and 2) this species modulates a key

parameter in the pattern forming, WPGAP model. To test this model, we assumed a preexisting

ring in the concertation profile of M. We note that rings of high GTPase activity have been

observed and modeled in other contexts, such as in wound healing, in which a chemical gradient

and modulation of a bistable GTPase resulted in distinct rings of activity [32,33].

For our initial investigations, we assumed that a modulator M affected a rate in the

WPGAP model through the functional form:

o�ðrÞ ¼ o1 � o2MðrÞ;

where ω1 is the basal rate, ω2 models the effect of M on ω± and r measures the radial distance

from the center of an IgG disk. In our simulations, we consider a single IgG disk and use polar

coordinates with the origin located at the center of the disk. The computational domain con-

sists of a disk of radius of R with reflective boundaries at r = 0 to r = R (see Methods). Unless

otherwise noted R = 4 μm. M(r) was modeled as a Gaussian-shaped function centered at

r = 2 μm with variable variance. This form of ω± allowed us to tune model parameters so that

spot formation was only promoted within the ring.

For parameters that increase GTPase activity (GTPase activation b, GAP inactivation d, and

the maximum self-positive feedback rate γ), the WPGAP model was coupled to a ring of high

M concentration ω+ (Fig 2C and 2D, three leftmost columns). For parameters that decrease

GTPase activity (GAP activation c, GTPase inactivation σ, and GAP-mediated GTPase inacti-

vation e), the WPGAP model was coupled to an inverted ring of M, ω- (Fig 2C and 2D, three

rightmost columns). For each model parameter, ω1 and ω2 were varied to determine if the sys-

tem could generate rosette organization. As an initial guess, the parameter values were chosen

based on the results from the parameter sweeps (Fig 2B).

As expected from the parameter sweep results, modulating the basal GTPase activation rate

b did not appear sufficient to form a rosette pattern, because this produced spot formation

throughout the entire domain. However, modulating the other rate constants, such as the posi-

tive feedback rate γ, all resulted in a rosette forming (Fig 2C and 2D). Interestingly, when we
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modulated the rates for GTPase inactivation σ and the GAP-mediated negative feedback e, we

found that the rates required to form rosettes were higher than expected (Fig 2C and 2D). For

example, to form a rosette, the rate required for the GTPase inactivation σ within the ring was

~15 s-1, which resulted in no patterning when used as the global rate in the isolated WPGAP

model (Fig 2B–2D).

Gradient establishment by a simple reaction-diffusion model

The analysis presented above demonstrated that the rosette pattern can form following the

establishment of a ring of activity. Therefore, we next wanted to determine if rosette formation

could occur in the absence of such an initial ring. Our first goal was to establish the concentra-

tion profile of a signaling molecule that is activated by IgG-bound receptors over the disk and

deactivated throughout the domain. This profile was later used to model the spatially-depen-

dent rate constants in the WPGAP model. Let X represent the active form of this molecule. To

model the spatiotemporal dynamics of X, we used the following equation:

@X
@t
¼ kx rð Þ � dxX þ

Dx

r
@

@r
r
@

@r

� �

X

where kx(r) is the spatially-dependent activation rate, δx is the deactivation rate and Dx is the

diffusion coefficient for X (Fig 3A). Note that if kx is independent of r, then at steady state X(r)

= kx/δx. To model the IgG disk, we treat kx(r) as a step-function:

kxðrÞ ¼
kdisk if r < mF;

kbasal if r � mF;

(

where kdisk is the IgG-induced activation rate, kbasal is the basal activation rate, and μF is the

radius of the disk. For fixed values of kdisk, kbasal, and δx, this system was simulated for varying

diffusion coefficients Dx (Fig 3B). The range of diffusion coefficients was chosen to approxi-

mate the orders of magnitude observed in cellular diffusion rates [51,52], from a slow mem-

brane-bound rate (10−3 μm2s-1) to a fast cytosolic rate (10.0 μm2s-1). For a domain with a

radius R = 4 μm, changing the diffusivity of X resulted in changes in both the gradient steep-

ness and the difference between the maximum and minimum values of X (Fig 3C). For small

values of Dx, the distribution of X was switch-like, and X approached the expected steady state,

kx(r)/δx. However, for larger values of Dx, the gradient in X was shallower, and deviated signifi-

cantly from kx(r)/δx with a lower total amplitude (Fig 3B and 3C). We wondered if there was a

functional form that approximated the solution to this equation, and found that our simula-

tion results could be well approximated using a logistic function with the form:

f rð Þ ¼ bþ
a

1þ exp ðkmðr � r0ÞÞ
;

where β and α+β are the minimum and maximum values of f(r), respectively, km is the logistic

decay rate, and f(r0) = β+α/2 (Fig 3D). Therefore, for simplicity and computational speed we

used f(r) when performing parameter searches for the WGAP model. However, after perform-

ing parameter searches, we then verified that directly simulating the diffusing species rather

than using f(r) also generated rosette formation (see S1 Note).

Rosette formation through gradients

To determine if rosette formation is possible in the WPGAP model without the formation of

an initial ring around the IgG disk, we treated the positive feedback rate γ and the GAP
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activation rate c as spatially-dependent with profiles given by f(r):

g rð Þ ¼ gb þ
ga

1þ expðgkmðr � r0ÞÞ
;

c rð Þ ¼ cb þ
ca

1þ expðckmðr � r0ÞÞ
:

Note that these functions asymptotically approach their maximum values of γmax = γα + γβ or

cmax = cα + cβ as r decreases.

Unlike the two-step model, it was difficult to empirically determine parameter values that

form a rosette. Thus, we used a two-step approach to search parameter space. We first used an

evolutionary algorithm (EA) [53] to perform a global search and subsequently performed a

more local sampling of parameter space using a Delayed Rejection Adaptive Metropolis Mar-

kov chain Monte Carlo (DRAM-MCMC, see Methods) [54,55].

To implement the two-step approach requires a score function that provides a quantitative

measure for how close a simulated result is to the desired rosette pattern. For the desired pat-

tern, a GTPase rosette formed by the two-step model was used (Fig 2D). From this, we mea-

sured the radial average and radial standard deviation for the active GTPase u (Fig 4A–4C).

For new simulations, we measured the radial average of u (Fig 4A and 4C). We then divided

the system into octants and measured the radial standard deviation within each octant (Fig 4B

and 4C). The difference between the means of the desired output and simulation result and

Fig 3. A simple reaction-diffusion model for gradients of activity. A) Schematic of the simple reaction-diffusion model in which a species

X is activated by a rate kx(r), which depends on the local IgG concentration, and is deactivated at a constant rate δx. B) Simulations of the

model for various diffusion rates Dx. The spatial profile of kx(r) is shown as the dashed line and δx = 0.75 s-1. The homogenous steady states

values of X when k = kx(0) and k = kx(rmax) are shown as well (dotted lines). C) Maximum slope of X(r) and percent increase of X(0) over X

(rmax) as a function of Dx. D) Blue curves are same as in B and dashed lines are best fits of these curves to the logistic function (see Methods

for curve fitting details).

https://doi.org/10.1371/journal.pcbi.1010092.g003
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Fig 4. Model parameterization reveals mechanism enabling rosette formation. A) Schematic illustrating the radial averaging of GTPase activity used in

the score function. B) Schematic illustrating the radial standard deviation of GTPase activity per octant used in the score function. This results in eight

individual quantifications used in the score function. C) Radial profiles of the average and standard deviation of GTPase activity. These profiles were used

in the score function and compared to the results from numerical simulations. D) Parameter distributions after performing DRAM-MCMC sampling.
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the differences between the standard deviation of the desired output and standard deviations

in each octant were calculated. These nine measurements (Fig 4A–4C) were then averaged to

produce a single score. This score function was accurate, but flexible enough to allow for vari-

ous numbers of spots and spot locations.

Simulations were initialized with a small amount of random noise and seeded with an ini-

tial concentration of active GTPase in the shape of a rosette (see Methods). We seeded simula-

tions with a rosette to decrease the time for pattern formation, because parameter estimation

requires a significant number of simulations. Also, from observations of initial parameteriza-

tion attempts, the GTPase activation rate b, the GTPase inactivation rate σ, the minimum self-

positive feedback rate γα, and the minimum GAP activation rate cα were typically quite small

and were thus fixed at 2e-3, 0.4, 5e-3, and 5e-3 s-1, respectively. For 99 individual EA runs (100

individuals, 100 generations), most runs were able to discover parameters capable of rosette

organization (top 80 appeared successful, S3A and S3B Fig). The best parameter set found by

the EAs was then used to initialize DRAM-MCMC simulations. DRAM-MCMCs were simu-

lated until they appeared to converge, with all but the final 5,000 iterations removed as a

“burn-in” period (S3C Fig, see Methods).

The parameter distributions generated by MCMC sampling appeared Gaussian (Fig 4D, on

the diagonal). We took the mean values of the individual parameter distributions as our repre-

sentative parameter set (Figs 4D–4F and S3D and Table 2). To check how well the MCMC per-

formed, we also simulated the worst scoring parameter set, and these parameters also resulted

in rosette organization (S3D and S3E Fig and S1 Table). Our simulations predicted that

GTPase rosettes mostly form by 20 s and appear stable by 40 s (S4 Fig). We also verified that

simulating the diffusing species (see the section Gradient Establishment by a Simple Reaction-

Diffusion Model) rather than using the logistic function approximation f(r) would generate

rosette formation (see S1 Note, S5 Fig).

Inspection of the spatially-dependent rates revealed how the system was capable of rosette

patterning (Fig 4E). When the ratio between the positive to negative feedback (γ(r) /c(r)) is

plotted as a function of r using the identified parameter sets, in all cases the ratio is maximized

just beyond r = 2 μm, near where the spots formed (Fig 4E and 4F). Relative to the self-positive

feedback rate γ(r) (Fig 4G, magenta), the GAP activation rate c(r) (Fig 4E, green) is high over

the disk and away from the disk. However, c transitions more rapidly than γ between its ele-

vated level over the disk and its basal level away from the disk (Fig 4E). Thus, while the nega-

tive feedback is relatively high over the disk and away from it, there is a zone near the edge of

the disk where the negative feedback is low relative to the positive feedback. It is in this region

that rosette formation occurs.

To gain further insight into the model’s behavior we looked for pairwise correlations

between model parameters. Several parameters demonstrated strong correlations (Fig 4D).

There was a strong anti-correlation between cmax, the maximum GAP activation rate, and e,
the rate constant for GAP-mediated GTPase inactivation. This likely indicates a sensitivity of

the model to the total amount of GAP activity. The other correlations were not as intuitively

apparent, so to further explore parameter-dependent model behavior, we performed individ-

ual parameter sweeps using the representative parameter set (Table 2 and Fig 5A–5F). Parame-

ters typically moved from no patterning to rosette organization to ring formation (ckm, γmax,

Individual parameter distributions are shown on the diagonal. Lower triangular plots show kernel density estimates for parameter pairs. Circles in the

upper triangle represent the Spearman correlation coefficient between parameters. E) Radial profiles for the non-constant parameters from the parameter

estimation. The positive to negative feedback ratio is also shown. For visualization purposes, the GAP activation rate and ratio are scaled to be similar

orders of magnitude. The solid lines are the results for the mean parameter values from D (on the diagonal, Table 2) and the shaded regions indicate one

standard deviation. F) Active GTPase concentration using the representative parameter set (Table 2). Simulation domain has a max radius of 4.0 μm.

https://doi.org/10.1371/journal.pcbi.1010092.g004
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and d, Fig 5B, 5C and 5E), or vice versa (cmax, γkm, and e, Fig 5A, 5D and 5F). Thus, the anti-

correlations between ckm and γmax as well as γkm and e likely result from a balancing of the

effects produced by varying the individual parameters. However, the reason for the positive

correlation between cmax and γkm is not readily apparent but may result from the logistic func-

tion having a lower maximum value for shallower gradients (i.e., low decay rates, Fig 3). Also,

note that this model can generate rings of activity (Fig 5A–5F), as is required for the two-step

model discussed above.

Table 2. Mean parameter set after MCMC parameterization.

Parameter Description Value (± StDev) Fixed or Sampled

b GTPase activation 0.002 s-1 Fixed

γmax GTPase self-positive feedback rate, maximum spatial value 9.6 ± 0.5 s-1 Sampled

γkm GTPase self-positive feedback rate, decay rate 2.04 ± 0.16 Sampled

γα GTPase self-positive feedback rate, minimum spatial value 0.005 s-1 Fixed

K Half-maximal response GTPase concentration 200 molecules per μm2 Fixed

n Hill coefficient 2 Fixed

σ GTPase inactivation 0.4 s-1 Fixed

cmax GAP activation, maximum spatial value 0.08 ± 0.01 μm2s-1 Sampled

ckm GAP activation, decay rate 13.0 ± 1.2 Sampled

cα GAP activation, minimum spatial value 0.005 μm2s-1 Fixed

d GAP inactivation 43.0 ± 1.1 s-1 Sampled

e GAP dependent GTPase inactivation 31.3 ± 4.4 μm2s-1 Sampled

Du Active GTPase diffusion 0.04 μm2s-1 Fixed

Dv Inactive GTPase diffusion 4 μm2s-1 Fixed

DG Active GAP diffusion 4 μm2s-1 Fixed

Dg Inactive GAP diffusion 4 μm2s-1 Fixed

T Amount of GTPase 808 molecules per μm2 Fixed

Tg Amount of GAP 10 molecules per μm2 Fixed

https://doi.org/10.1371/journal.pcbi.1010092.t002

Fig 5. Effects of individual parameters on patterning. A-F) Plots of the score function versus model parameters (Table 2). Representative simulation results

shown to illustrate the impact of varying parameter values on rosette formation. G) Two parameter sweep varying c and γ. Each grid cell shows the active

GTPase concentration for an individual simulation when c and γ are fixed. The red dashed line is a plot of c(r) versus γ(r) from Fig 4E and Table 2.

https://doi.org/10.1371/journal.pcbi.1010092.g005
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Finally, we performed a two parameter sweep for γ and c. We restricted the sweeps to the

region of parameter space where spots formed (Fig 4E and 4F). Individual simulations were

performed using a constant value for γ and c (Fig 5G). For high values of γ as compared to c,
the model was in a high, homogenous regime (Fig 5G, upper left). For high values of c as com-

pared to γ, the model was in a low, homogenous regime (Fig 5G, lower right). For intermediate

values of c and γ, various types of patterning occurred, from spots to mazes to holes (Fig 5G,

bottom left to upper right). We next plotted c(r) vs. γ(r) within this region using the represen-

tative parameter set given in Table 2 (Fig 5G, red curve). The curve is typically in the low,

homogenous regime but passes through the patterning area, demonstrating why spots can

form only within a certain spatial zone.

Experimentally testable predictions

Finally, we analyzed the model with the goal of motivating experimental investigations. First

note that if the GAP responsible for deactivating Cdc42 is knocked down, the model predicts

that the rosette pattern should change to a ring of activity, whereas overexpression of the GAP

should result in a loss of pattern formation (Fig 5A and 5F). Next, we simulated the model

using varying disk sizes (Fig 6A and 6B). We observed a linear relationship between the disk

radius and the number of spots, indicating that the distance between spots remains constant as

the disk size increases (Fig 6A). To compare our simulation results to experimental results, we

counted the number of podosomes per site for IgG disks of radius 1.75 μm (8.1 ± 1.4, N = 29,

S6A Fig) and IgG disks of radius 5.0 μm (23.4 ± 2.4, N = 8, S6B Fig). The observed number of

spots qualitatively compared well with the numbers predicted by the model (Fig 6B). For simu-

lations using disk sizes of radius greater than 0.24 μm, 3 or more spots of active GTPase

formed, while smaller disks formed 2 or fewer spots (Figs 6A, 6B and S6C).

Fig 6. Effects of varying the size of IgG disks and holes. A) Simulation results for various disks using the representative parameter set (Table 2). The radius of

the simulation domain is 4.0 μm except for the case with a disk size of R = 5.0 μm (far right), where the domain radius is 7.5 μm. B) The number of active

GTPase spots linearly increases with disk sizes (blue circles). These results are consistent with experimental results (orange circles display the median, whiskers

denote one standard deviation). C) Number of active GTPase spots versus hole size. The system appears bistable for radii between 1.7 and 2.0 μm. In this region

rosette formation depends on the initial conditions used in the simulations.

https://doi.org/10.1371/journal.pcbi.1010092.g006
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Similarly, we explored simulations with holes lacking IgG of various sizes (Table 2, negative

ckm and γkm, Figs 6C and S6D). Rosettes always formed for a hole of radius 2.1 μm, and never

formed for a hole of radius 1.6 μm. However, holes with radii between 1.7 and 2.0 μm appeared

to be capable of forming rosettes, but rosettes sometimes failed to organize properly depending

on the initial conditions, suggesting that the system is bistable within this regime (Fig 6C).

Discussion

We used mathematical modeling to demonstrate how a Wave-Pinning GAP system with spa-

tially-dependent parameters can generate the rosette pattern of podosomes observed during

phagocytosis. Other studies have investigated the effects of spatially-varying parameters on

Turing systems. Most of these investigations were motivated by pattern formation during

embryonic development or morphogenesis. They revealed that spatial gradients can induce

transitions between spots and stripes [56,57], demonstrated that spatial gradients can generate

“Turing-like” patterns in regions of parameter space where the spatially homogenous system

does not admit a Turing instability [57], and revealed that more complex patterns than spots

and stripes, such as traveling waves, are possible when spatially-dependent parameters are con-

sidered [58]. Spatial gradients have also been studied at the single cell level. For example,

Payne and Grierson studied how the position of the GTPase ROP polarity site is determine by

a gradient of the plant hormone auxin [59]. Their model was able to explain many of the

observed phenotypes of various mutants. In a follow up study, a detailed bifurcation analysis

of the model was performed [60]. This analysis revealed that transitions from a boundary

patch to an internal patch to the coexistence of multiple patches are controlled by the auxin

gradient.

Our study was motivated by changes in cell morphology that occur in many different physi-

ological contexts, including cell migration, division, and differentiation. In eukaryotes, cell

shape changes are driven by forces generated by the actin cytoskeleton. The Rho family of

GTPases are primary regulators of the actin cytoskeleton. Therefore, understanding how these

signaling molecules generate spatiotemporal patterns is fundamental to understanding cellular

morphodynamics. An emerging theme in Rho GTPase signaling is that pattern formation

occurs through a combination of positive autoregulation and differences in diffusivity between

active and inactive GTPase states. It is now well understood how these elements can generate

cell polarity (i.e., determining a cell front and back). Recent studies have investigated how

GTPase-driven systems can generate more complicated spatial patterns [8–11,26]. Therefore,

we turned to mathematical modeling to determine whether these systems can generate the

rosette of podosomes observed during frustrated phagocytosis. Experimental evidence for

such a biochemical mechanism comes from our observations that Cdc42 colocalizes to rosette

structures and actomyosin contractility does not appear to be needed for rosette formation.

The starting point of our analysis was the WPGAP model that was previously shown to be

capable of forming co-existing clusters of high GTPase activity [10]. We used the model to

investigate two potential mechanisms for rosette formation. In the first scenario, a ring of high

or low concentration of a regulator of GTPase activity initially forms. Our analysis revealed

that rosette formation was possible if the species forming the ring regulated rates associated

with positive feedback, GTPase inactivation, GAP-mediated negative feedback, GAP activa-

tion, or GAP inactivation. However, modulating the basal GTPase activation rate did not gen-

erate rosette formation, but instead spots of high GTPase activity formed throughout the

entire domain.

We next used the model to demonstrate that rosette patterning could occur in the absence

of initial ring formation. This scenario required the following conditions to be met: 1) the
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positive and negative feedback strengths increased over the IgG disk, 2) negative feedback

dominated over positive feedback over the disk and far from the disk and 3) the negative feed-

back transitioned from its elevated level over the disk to its basal level more rapidly than that

of the positive feedback. These three features generated a small region outside of the disk

where the positive to negative feedback ratio is sufficiently high to enable spots of active

GTPase. This scenario occurs if the positive regulator of GTPase activity diffuses rapidly,

whereas the negative regulator of GTPase activity diffuses slowly in comparison.

Further investigations are required to rule out other mechanisms for rosette formation and

determine the specific molecular species involved in this process. A starting point for these

investigations is the GEFs and GAPs known to a play role in phagocytosis. In particular, the

GAPs ARHGAP12, ARHGAP25, and SH3BP1 were found to be important for the successful

engulfment of larger targets (beads of diameter = 8.3 μm) but not smaller ones

(diameter = 1.6 μm) [47]. However, Schlam et al. suggest that these GAPs are required for the

replenishment of a limiting species in actin polymerization, which is not important for small

targets [47]. The main particle size we observed (diameter = 3.5 μm) is between their “large”

and “small” bead sizes, and cells engaging in frustrated phagocytosis will (by definition) not

successfully engulf a target. Thus, these GAPs are good initial targets for further studies, but

careful consideration will be required to elucidate their target size-dependent and time-depen-

dent roles.

Another important next step is to obtain estimates for model parameters, as many rates in

the model have not been measured in vivo. Our labs recently demonstrated how single mole-

cule measurements can be used to infer the chemical kinetics of conformationally dependent

signaling molecules and the number of molecules within clusters in vivo [42]. These

approaches should be valuable tools for estimating model parameters and determining impor-

tant features of Rho GTPases and other podosome-related molecules that the model should

capture. Evidence that supports our current choice of parameters is that the model matches

the size and spatial organization of podosomes, uses a membrane-bound diffusion rate for

Cdc42 that is estimated from experimental data, and uses a reasonable estimate for the number

of Cdc42 molecules expected within podosomes. Finally, we note that the time scale predicted

by the model for Cdc42 to form rosettes (~20-40s, S4 Fig) appears to be faster than our experi-

mental observation for podosome rosette formation (~200 s) [18]. However, we believe the

model’s prediction is consistent with that of podosome formation because the recruitment of

actin and other podosome-related molecules would occur following GTPase activation.

To investigate the model’s behavior, we performed simulations using varying sizes of either

IgG disks or holes. Experimental results for the number of spots formed using different IgG

disk sizes were consistent with our simulation results. We also noticed that for simulations on

disks of radius R = 0.24 μm, 3 distinct spots of GTPase activity were produced, whereas disks

of smaller radii produced 1 or 2 sites. This result suggests a threshold for the minimum size of

a particle that can be internalized via phagocytosis. If we assume three or more podosomes are

required to engulf a target, then the model is consistent with the reported value of 0.5 μm as

the minimum size for phagocytic targets [61,62], although it is unclear whether GTPase pat-

terning is the limiting factor in this process. Simulations on holes lacking IgG of different sizes

revealed that holes of radii 1.6 μm or less do not form rosettes, while holes of 2.1 μm are capa-

ble of rosette formation. Interestingly, for holes between 1.7 μm and 2.0 μm rosette formation

depended on initial conditions, suggesting the system is bistable in this regime. Thus, follow

up studies exploring frustrated phagocytosis on holes and other micro-patterned shapes of IgG

may prove insightful.

In summary, our analysis revealed how relatively minor additions to a Rho GTPase and

GAP circuit were sufficient to generate the rosette of podosomes observed during frustrated
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phagocytosis. It is likely that this same polarity circuit can generate more complex patterns

when additional regulatory elements are added, and the computational framework we devel-

oped may prove useful for future investigations into the spatial regulation of GTPase activity.

Our analysis focused on static cytoskeletal structures. However, the actin cytoskeleton is a

dynamic system, and phagocytosis requires exact spatiotemporal control of cellular morpho-

dynamics during engulfment. Therefore, in future studies it will be important to consider in

more detail the time-dependent behavior of Rho GTPase signaling during phagocytosis and

extend the model to three-dimensions.

Methods

Cell culture and transfection

RAW 264.7 macrophages were obtained from the American Type Culture Collection (ATCC)

and maintained in culture medium: RPMI 1640 medium GlutaMAX Supplement (Thermo-

Fisher Scientific, 61870127) containing 10% heat-inactivated FBS (HI-FBS, GEMINI Bio, 100–

106) in a 5% CO2 humidified incubator at 37˚C. To detach RAW 264.7 cells from the Falcon

tissue culture dish (Fisher Scientific, 08-772E), the cells were treated with Accutase (Thermo-

Fisher Scientific, A1110501) at 37˚C for 5 min before gentle scraping (CytoOne, CC7600-

0220). The plasmids FTractin-tdTomato and myosin regulatory light chain (MRLC)-EGFP

were described previously [63,64]. RAW 264.7 cells were electroporated with the Neon Trans-

fection System (ThermoFisher Scientific) following the manufacturer’s protocol. In brief,

5x106 cells were electroporated with 1 μg plasmid in R buffer at a setting of 1680 V, 20 ms, and

1 pulse using 10 microliter Neon pipette tip. The cells were transferred into a well of 12-well

plate, with each well containing 1 ml of culture medium. After 12 hours of incubation, the

transfected macrophages were ready for the frustrated phagocytosis experiments.

Bone marrow cells were isolated from 6 to 12 weeks C57BL/6 mice and differentiated into

macrophages for 5–7 days in RPMI 1640 medium containing 10% heat inactivated FBS and

10% M-CSF (L929 conditioned medium) described elsewhere [65,66]. These macrophages

were detached from the flask using Accutase and gentle scraping.

Microcontact printing

The IgG patterns on glass coverslips were made using the microcontact printing of Polydi-

methylsiloxane (PDMS) as previously described [67]. The silicon master with an array of

3.5 μm holes spaced 8 μm apart or 10 μm holes spaced 20 μm apart was made using photoresist

lithography, and PDMS stamping on glass coverslips was carried out as described previously

[18].

Inhibition treatment and immunofluorescence staining

To inhibit actomyosin contractility and disassemble myosin II filaments, RAW 264.7 macro-

phages were plated on patterned IgG coverslips in Ham’s F12 medium (Caisson Labs, UT)

supplemented with 2% HI-FBS and 20 μM Rho kinase inhibitor Y-27632 (Hello Bio, HB2297)

for 25 min of inhibition during frustrated phagocytosis. For frustrated phagocytosis against

10 μm IgG spots, bone marrow-derived macrophages were plated on patterned IgG in the

above medium without inhibitor and incubated at 37˚C for 15 min before staining.

The cells were fixed with 4% paraformaldehyde at 37˚C for 10–15 min and permeabilized

using 0.1% Triton-X-100 (Sigma-Aldrich) in PBS for 5 min. Cells were then thoroughly

washed with PBS and fixative quenched with 0.1 M glycine for 20 min followed by incubation

with 2% BSA fraction V (Thermo, 15260037) in PBS for 30 min. Actin was stained with Alexa-

PLOS COMPUTATIONAL BIOLOGY Spatial models of pattern formation during phagocytosis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010092 October 3, 2022 17 / 25

https://doi.org/10.1371/journal.pcbi.1010092


Fluor 568 phalloidin (dilution 1:500, ThermoFisher Scientific A12380) diluted in 2% BSA in

PBS at room temperature for 20 min followed by one wash with 1xPBS/0.05% Tween for 10

min, and two washes with 1x PBS for 15 min.

Imaging of podosome structures during frustrated phagocytosis

Total internal reflection fluorescence structured illumination microscopy (TIRF-SIM) was

used to image podosomes in F-tractin-tdTomato transfected live RAW 264.7 macrophages.

Fluorescence emission was recorded using an sCMOS camera (Hamamatsu, Orca Flash 4.0 v2

sCMOS). Lasers with wavelengths 560 and 647 nm and an Olympus UApo N 100x oil NA 1.49

objective were used, and fluorescence emission was recorded using an sCMOS camera (Hama-

matsu, Orca Flash 4.0 v2 sCMOS). A Nikon SIM microscope was used to image podosomes in

fixed RAW 264.7 macrophages after Y-27632 inhibition, using 488 and 561 nm lasers. A 100x

oil immersion objective (1.49 NA, Nikon CFI Apochromat TIRF 100x) and EMCCD camera

(Andor DU-897) were used. To image podosomes in bone marrow-derived macrophages, a

Zeiss confocal microscope LSM880 built around AxioObserver 7 with a 63x 1.4 NA oil objec-

tive (Zeiss) was used.

Single particle tracking

Single particle tracking was performed using a home-built total internal reflection microscope

based on an Olympus IX81. The microscope was equipped with four solid state lasers (Coher-

ent OBIS 405 nm, 488 nm, 561 nm, and 647 nm), a 100X TIRF objective (Olympus, UPLA-

PO100XOHR) and an sCMOS camera (Photometrics Prime 95B) for fluorescence collection.

Raw cells were co-transfected with mScarlet-F-tractin (Excitation, 561 nm; Emission, Semrock,

FF01-600/52) and Cdc42-HaloTag [68]. Note that the HaloTag was attached to the N terminus

of Cdc42 to ensure that membrane interactions were not impaired. Cells were incubated with

100 pM dye JF646-Halo (Emission, Semrock, FF01-698/70) for 30 minutes and washed with

culture medium three times before imaging. Super-resolved F-tractin images were acquired at

100 Hz for 5 seconds and subjected to Super-Resolution Radial Fluctuations analysis [69]. For

single particle tracking of Cdc42, we streamed for 40 seconds at 50 Hz (2000 frames).

Single molecule diffusion analysis was done as before [42]. Briefly, individual molecules

were identified by a wavelet decomposition based approach [70] and precise centroids were

obtained by fitting with a 2D Gaussian function. Single molecule trajectories were built

through a well-established linking algorithm [71] and the mean-square-displacement was then

calculated [72,73] to color encode the tracks.

Numerical simulations

Ordinary differential equation (ODE) simulations were performed by using the Python pack-

age odeint from Scipy [74]. Reaction-diffusion equations were solved using the spectral differ-

ential equation solver Python package Dedalus [75]. For simulations using Cartesian

coordinates, the system was spatially discretized using a Fourier basis in x and a Chebyshev

basis in y with the recommended dealiasing factor of 1.5, as done before [10]. The system had

periodic boundary conditions in x and Neumann (reflective) boundary conditions in y. Simi-

larly, for simulations using polar coordinates, the system was spatially discretized using a Fou-

rier basis in ϕ, and a Chebyshev basis in r (dealiasing factor of 1.5) with periodic boundary

conditions in ϕ, and Neumann (no flux) boundary conditions in r. The typical grid size used

for simulations was 256 x 128 (ϕ, r respectively) which was informed by mesh grid refinement

(i.e., larger grid sizes resulted in the same outcome). However, a grid size of 64 x 64 was used

for parameterization steps to decrease simulation time. Simulations were typically performed
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using a time step dt = 0.01 s or 0.025 s. Reaction steps were solved using 4th order Runge-

Kutta, although 2nd order Runge-Kutta was used for parameterization steps.

Homogeneous steady states were determined by running the ODE system (without diffu-

sion) for t = 1000 s using odeint. For initial conditions of the reaction-diffusion equations,

each species was set to its steady state value throughout the domain and subsequently noise

was added by converting a small fraction of inactive species to the active form. The fraction of

concentration converted was determined by each simulation but was typically generated by

uniform sampling between 0 and 0.2vss (where vss is the steady state concentration for the inac-

tive species). For seeded simulations, the same random noise (but between 0 and 0.1vss) was

converted and additionally the normalized seed (i.e., a rosette) was scaled by 0.1vss and con-

verted to active GTPase. For simulations with non-constant coefficients, the initial steady

states were determined by using the basal values for the spatially-dependent rates.

To fit the logistic equation to the simple reaction-diffusion profiles, we used the Python

package minimize (using method = "SLSQP") from Scipy [74].

Parametrization

Evolutionary algorithm (EA) simulations were performed using the Python package DEAP

(v1.3.1) [53]. For EA hyperparameters we used a mutation rate of 0.3 and a crossover rate of

0.5. Markov chain Monte Carlo (MCMC) simulations were performed using the Python pack-

age Pymcmcstat (v1.9.1) [55]. For MCMC sampling, we used the Delayed Rejection Adaptive

Metropolis (DRAM) algorithm [54,55]. MCMC hyperparameters were set to S20 = 0.015 and

N0 = 0.015, which resulted in chain acceptance rates between 29–40%. Chains were run for

between 10,000–12,500 steps. All but the last 5,000 steps for individual MCMC chains were

discarded as a “burn-in” period. MCMC chains appeared to pass all convergence tests, includ-

ing within chain variance (Geweke statistic p>> 0.05, [76]) and between chain variance (Gel-

man-Rubin diagnostic < 1.1, [77]).

Note that for the coupled model, where the simple reaction diffusion model was simulated

in place of the logistic function, we used the same MCMC pipeline for sampling to discover a

working coupled model. For proof of concept, we simply ran this pipeline for 1,000 steps and

took the best scoring parameter set.

Spot size determination

Simulations were performed as described above using cartesian coordinates (tfinal = 40 s). Each

system was interpolated to a uniform grid with the same grid size (128 x 128). A mask was gen-

erated by thresholding at the mean of the maximum and minimum concentrations within the

system. Using this mask, features were quantified using the Python package scikit-image [78].

The effective radius was defined as the average between the major and minor axis lengths.

After an initial pass at fitting Radiuseff based on log(Du), simulations were rerun using different

grid sizes to ensure the number of spots counted for each simulation were similar (N~100).

Counting podosomes per site

For experimental results, the number of podosomes per site were calculated using a pipeline

we developed previously [18] (https://github.com/elstonlab/PodosomeImageAnalysis). In

essence, this pipeline uses persistent homology, a type of topological data analysis, to identify

significantly persistent features (connected components, holes) within images followed by

post-processing.
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For simulated results, a mask was created by thresholding at the average between the maxi-

mum and minimum intensity within a simulation. From this mask, the number of features

was counted using the Python package ndimage.label from Scipy [74].

Supporting information

S1 Fig. Additional experimental evidence for GTPases in frustrated phagocytosis. A) Con-

trol RAW 264.7 macrophages were marked for actin (phalloidin staining) and myosin II

(RLC-eGFP) during frustrated phagocytosis. B) RAW 264.7 macrophages were marked for

actin (phalloidin staining) and myosin II (RLC-eGFP) when treated with 20mM Rho kinase

inhibitor Y-27632 for 25 min during frustrated phagocytosis. Proper actin rosette formation

despite Rho kinase inhibition suggests that actomyosin contractility is not necessary for rosette

formation. C) Diffusion coefficient estimates for Cdc42 during frustrated phagocytosis. Quan-

tifications from the mean squared displacement analysis of the single particle tracking per-

formed in Fig 1D-1G. The mode of the distribution is 0.04 μm2 s-1.

(TIF)

S2 Fig. Diffusion rates change the size of active GTPase spots. A) Simulations of the

WPGAP model for various diffusion rates. The diffusion coefficient for cytosolic species is

taken to be 100Du. B) Relationship between the membrane diffusion coefficient and spot size.

C) Relationship between the membrane diffusion coefficient and spot eccentricity. D) Radial

distributions for the spatial distributions of parameters modulated by an intermediary species

M in Fig 2D. E) Active GAP concentrations for the results shown in Fig 2D.

(TIF)

S3 Fig. EA and DRAM-MCMC parameterization. A) EA parametrization runs (99 total).

Best individual run shown in red and the runs that resulted in GTPase rosettes shown in pur-

ple. B) Individual parameter distributions from the successful EA runs shown in A. The best

performing parameter set shown by red crosses. C) DRAM-MCMC chains for individual

parameters post burn-in phase. D) Individual parameter densities for the chains shown in C.

Representative parameter set values shown by green diamonds (Table 2). The worst scoring

parameter set shown by magenta diamonds (S1 Table). E) Active GTPase concentration for

the worst scoring parameter set (S1 Table).

(TIF)

S4 Fig. Individual simulations demonstrate time scale for rosette formation. A-D) Four

independent simulations of spatially-modulated WPGAP model using the mean parameter

values from Fig 4D (on the diagonal, Table 2). Simulations appear to mostly form a rosette

within 20 s, with rosettes appearing stable by 40 s.

(TIF)

S5 Fig. Rosette formation is possible when modulating species are explicitly included in

the model. A) Radial distributions for c and γ from a coupled model, where the diffusing spe-

cies are simulated (dashed lines, see S1 Note) and the logistic function approximations using

the representative parameter set (Table 2). B) Active GTPase concentration for the coupled

model shown in A. C) Spatial concentration of the diffusing species modulating the GAP acti-

vation rate, c, in the coupled model in A,B. D) Spatial concentration of the diffusing species

modulating the self-positive feedback rate, γ, the coupled model in A,B. E) The positive to neg-

ative feedback ratio γ/c forms a ring. For visualization purposes, the GAP activation rate, c, is

multiplied by 100 to be a similar order of magnitude to the self-positive feedback rate γ.

(TIF)
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S6 Fig. Additional information for experimental and simulated results on varying disk and

hole sizes. A) Representative experimental results for disks of radius 1.75 μm. Podosomes are

indicated with red circles. B) Same as A but using disks of radius 5 μm. C) Simulated number

of GTPase spots versus disk radius for small disks with radius less than 0.25 μm. D) Simula-

tions for the representative parameter set (Table 2, negative ckm and γkm) when changing the

hole size.

(TIF)

S1 Table. Worst scoring parameter set after running the MCMC. Fixed values same as in

Table 2.

(DOCX)

S1 Note. Verification of a fully coupled model. Details for using reaction-diffusion equations

to determine spatially-dependent rates rather than the logistic function approximation.

(DOCX)
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