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Purpose: Short-echo-time proton MR spectra at 7T feature nine

to 10 distinct macromolecule (MM) resonances that overlap with

the signals of metabolites. Typically, a metabolite-nulled in vivo

MM spectrum is included in the quantification�s prior knowledge

to provide unbiased metabolite quantification. However, this MM

model may fail if MMs are pathologically altered. In addition,

information about the individual MM peaks is lost. In this study,

we aimed to create an improved MM model by parameterization

of the in vivo MM spectrum into individual components, and to

use this new model to quantify free induction decay MR spectro-

scopic imaging (FID-MRSI) data.
Methods: The measured in vivo MM spectrum was parameter-

ized using advanced method for accurate, robust, and efficient

spectral fitting (AMARES) and Hankel-Lanczos singular value

decomposition algorithms from which six different MM models

were derived. Soft constraints were applied to avoid over-

parameterization. All MM models were combined with simulated

metabolite spectra to form complete basis sets. FID-MRSI data

from 14 healthy volunteers were quantified via LCModel, and the

results were compared between all basis sets.

Results: The MM model using nine individual AMARES-

parameterized MM components with additional soft constraints

achieved the most reliable results. Nine MMs and seven metab-

olites were mapped simultaneously over the whole slice.
Conclusion: The proposed MM model may facilitate studies

that involve patients with pathologically altered MMs. Magn
Reson Med 79:1231–1240, 2018. VC 2017 The Authors Mag-
netic Resonance in Medicine published by Wiley Periodi-
cals, Inc. on behalf of International Society for Magnetic
Resonance in Medicine. This is an open access article
under the terms of the Creative Commons Attribution

License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.
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INTRODUCTION

Proton MR spectroscopic imaging (1H-MRSI) is a powerful,
noninvasive technique that provides valuable insights into
brain metabolism. 1H-MRSI benefits from the increased
chemical shift dispersion and signal-to-noise ratio (SNR)
at ultra-high magnetic field strengths (� 7T). To take full
advantage of the ultra-high field, ultra-short acquisition
delay (TE*) free induction decay (FID)-MRSI sequences
recently have been developed (1–4). With FID-MRSI,
relaxation-related SNR losses are minimized and J-cou-
pling evolution is eliminated, thus allowing the
quantification of more metabolites compared to what is
available at lower fields (� 3T) (5). However, MR spectra
measured with such sequences contain prominent
high-molecular-weight macromolecules (MMs) signals
superimposed on the signal of low-molecular-weight
metabolites. These MM contributions are particularly
strong due to their short T1 and T2 relaxation times.

The presence of such broad MM signals in proton
spectra of the brain already was described in the early
1990s (6). Behar et al. assigned these MM resonances to
cytosolic proteins, mostly to the methyl and methylene
groups of protein amino acids. The signal of MMs in the
range from 0 to 4.7 parts per million (ppm) consists of
10 individual peaks: 0.90 ppm (MM1); 1.21 ppm (MM2);
1.43 ppm (MM3); 1.67 ppm (MM4); 2.04 ppm (MM5);
2.26 ppm (MM6); 2.99 ppm (MM7); 3.21 ppm (MM8); 3.8
to 4.0 ppm (MM9); and 4.3 ppm (MM10) (7).

Because MM signals are very strong in short-TE*/TE spec-
tra, the omission of MM contributions in the fitting routine
may yield substantial errors in the quantified metabolite lev-
els (7). Moreover, the quantification of these strong MM sig-
nals, per se, may provide valuable information. MM
concentrations were found to be age- and region-dependent
in the healthy brain (8–10). In addition, several studies have
shown MM levels to be altered in various diseases (11–13).
This makes them potentially valuable for clinical studies.

Many possibilities to properly handle MMs during quan-
tification were proposed (7). In most cases, MMs only are
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accounted for to improve metabolite quantification. At
lower field strengths (� 3T) and shorter TEs, in which MM
resonances are mere bumps rather than distinct peaks, a
mathematical estimation using a spline baseline is ade-
quate (14,15). At field strengths>3T, such a simulation of
the MM background usually is insufficient. Moreover,
there has been an increased interest in MM quantification
over the last couple of years. Previously published papers
modeled the MMs at ultra-high field with a single mea-
sured MM spectrum (typically a metabolite-nulled MM
spectrum acquired with inversion recovery methods)
(10,15–18). These measured MM spectra are a well-
established MM model for metabolite quantification but do
not allow for quantification of the individual MM peaks.
Consequently, the quantification of metabolites with such
a model only will fail when individual MM resonances are
pathologically altered (13). Multiple molecules and chemi-
cal groups typically contribute to even single MM peaks,
which impedes any effort for quantum-mechanical simula-
tions as applied for metabolite signals. Hence, we aimed to
derive the individual MM basis spectra by parameteriza-
tion of in vivo metabolite-nulled spectra (13). If the MM
basis spectra are combined with metabolite basis spectra in
one basis set, MMs and metabolites simultaneously can be
quantified from FID-MRSI spectra.

The main goal of this work was to simultaneously map

individual macromolecule components and metabolite

levels in a healthy human brain at 7T. The information

about the individual MM resonances may provide a

better understanding of MM pathological changes in a

diseased brain.

METHODS

Volunteers

Fourteen healthy volunteers (five females; 31 6 4 years of

age) were measured on a 7T whole-body MR scanner

(Magnetom, Siemens Healthcare, Erlangen, Germany) with

a 32-channel receive coil array combined with a volume

transmit coil (NovaMedical, Wilmington, Massachusetts,

USA). The study was approved by the institutional review

board. Written informed consent was obtained from all

subjects prior to the MR examination.

Data Acquisition

A 3D, T1-weighted, magnetization-prepared, two rapid acqui-

sition gradient echoes sequence (19) was acquired to position

the MRSI slice in the region of interest and to derive the gray

matter (GM)/white matter (WM) tissue maps. Standard field-

map-based first- and second-order B0-shimming was per-

formed on a shim volume with a slice thickness of 20 to

25 mm and full in-plane brain coverage. Subsequently, a Bþ1 -

map (20,21) and B0-map were acquired, which served for

pulse-power calibration and signal-amplitude normalization.
Metabolite-nulled spectra utilized for MM parameteri-

zation were acquired using double inversion recovery

2D-FID-MRSI with two inversion 40 ms Wurst pulses

from six healthy volunteers (28 6 2 years) with the fol-

lowing parameters (18,22): repetition time ((TR), 879 ms;

TE*, 1.3 ms; TI1, 570 ms; TI2, 21 ms; flip angle, 55�; field

of view (FoV), 180� 180 mm2; matrix size, 32� 32;

nominal voxel size, 5.6�5.6� 12 mm3; 2,048 complex
spectral data points; and acquisition bandwidth, 6,000 Hz.
Metabolite residuals of N-acetyl-aspartate (NAA) (2.01 ppm),
myo-inositol (3.52 ppm), glutamate (Glu) (2.3 ppm),
glutamine (Gln) (2.45 ppm), and total creatine (tCr) (i.e.,
Crþphosphocreatine (PCr)) (3.98 ppm) were carefully
removed from the metabolite-nulled spectra using the
AMARES algorithm (23) to minimize any metabolite contri-
butions that could have influenced the parameterization.

The spectroscopic data were acquired with a single-slice
2D-FID-MRSI sequence (3), with the following parameters:
TR, 600 ms; TE*, 1.3 ms; flip angle, 45�; FoV, 220�
220 mm2; nominal voxel size, 3.4� 3.4� 8 mm3; matrix
size, 64� 64; 2,048 complex spectral data points;
acquisition bandwidth, 6,000 Hz; WET water suppression
consisting of four 40 ms Gaussian pulses with a 110 Hz
bandwidth optimized for 7T (4); one average with an
elliptically sampled k-space acquired in a pseudo-spiral
pattern; and scan time�30 min.

Parameterization of the Metabolite-Nulled Spectrum

Individual MM components in the range of �0.5 to
4.0 ppm (altogether nine separate peaks: 0.90 ppm (MM1),
1.21 ppm (MM2), 1.43 ppm (MM3), 1.67 ppm (MM4),
2.04 ppm (MM5), 2.26 ppm (MM6), 2.99 ppm (MM7),
3.21 ppm (MM8), and 3.77 ppm (MM9)) were considered
for parameterization from the average metabolite-nulled
spectrum. The MM peak at 4.3 ppm (MM10) was not
parameterized due to proximity to the water peak.

Two methods of parameterization implemented in jMRUI
5.2 were applied: 1) Hankel-Lanczos singular value decom-
position (HLSVD) (24); and 2) advanced method for accu-
rate, robust, and efficient spectral fitting (AMARES) (23).

For modeling the individual MM peaks, 13 components
were used in the HLSVD parameterization and nine Gauss-
ian functions in the AMARES parameterization. A higher
number of components in case of HLSVD was necessary to
account for the baseline imperfections. These extra com-
ponents, which did not represent the MM contribution,
were removed afterward. In AMARES, the prior knowl-
edge of the chemical shifts (adapted from (7,25)) was uti-
lized in the initial phase of modeling. The amplitude, line
width, and relative phase were adjusted in an iterative
manner to achieve minimal fitting residuals.

Basis Spectra of Metabolites

LCModel 6.3 (26) was used to quantify all data acquired
with a single-slice 2D-FID-MRSI sequence. The metabolite
basis set consisted of 17 simulated metabolite resonances:
glucose; aspartate (Asp); total choline (tCho) (glycerophos-
phorylcholineþphosphorylcholine); tCr (PCrþCr); g-
aminobutyric acid (GABA); Glu; Gln; glutathione (GSH);
glycine; lactate; myo-inositol (Ins); NAA; N-acetyl-aspartyl
glutamate (NAAG); scyllo-inositol; and taurine (Tau). Sim-
ulations were performed in NMR Scope (jMRUI 5.0) using
one hard pulse and a consecutive FID acquisition. The first
39 points of all simulated FIDs were removed to account
for the first-order phase error present due to the TE* of 1.3
ms. Consequently, seven different MM models (see below)
were combined with the same metabolite basis spectra of
17 simulated chemical compounds to form seven complete
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basis sets. Finally, all the resultant seven different basis

sets were used for data quantification.

Making the Basis Sets With Different MM Models

The parameterized individual MM peaks were saved sepa-

rately and included into seven different basis sets. With an

increasing number of independent components in the basis

set, the risk of over-parameterization of the mathematical

model used to quantify MRS data increases. Therefore, the

number of degrees of freedom of our model was decreased

either by grouping of components or by applying soft con-

straints on MM signal intensities.
The following MM models were created:

1. Full measured MM spectrum (full_MM)
2a. Individual MM components parameterized via

HLSVD (ind_MM_HL)
2b. Individual MM components parameterized via

AMARES (ind_MM_AM)
3a. Groups of individual MM components from

HLSVD (grp_MM_HL)
3b. Groups of individual MM components from

AMARES (grp_MM_AM)
4a. Individual MM components from HLSVD using

soft constraints (con_MM_HL)
4b. Individual MM components from AMARES using

soft constraints (con_MM_AM)

For MM models 4a and 4b, soft constraints were

applied via concentration ratio priors (CRPs) using the

LCModel parameter CHRATO. This approach is based on

specifying prior probabilities on chosen signal intensity

ratios of individual MM peaks. The MM1 (0.9 ppm) peak

was used as a ratio denominator because it is easy to

quantify and does not overlap with any metabolic reso-

nance. First, every single MM peak was quantified from

six measured metabolite-nulled spectra using AMARES.

From the quantification results, prior knowledge about a

signal intensity ratio of MM(XX)/MM1 was determined

(MM(XX) being the signal of MM peaks other than

MM1), which then was included in the LCModel control

file. The expected values of the ratios, together with their

standard deviations, were optimized iteratively.
For MM models 3a and 3b, MM groups were defined as:

MM1–MM4 (0.9–1.6 ppm); MM5–MM6 (2.04–2.26 ppm);

MM7–MM8 (2.99–3.21 ppm); and MM9 (3.77 ppm), as

previously proposed in (25). This grouping has no known

biological or chemical relevance and solely was chosen to

enable comparison to the previously published results (25).
Data acquired from 14 volunteers were quantified with

these basis sets using LCModel 6.3 (26) in the spectral range

from 4.2 ppm to 0.2 ppm. In addition, lipid signals were sim-

ulated in basis set with full_MM using LCModel (parameter

CHSIMU) to improve the handling of lipid resonances in the

1.2 to 1.4 ppm region originating from the extracerebral adi-

pose and muscle tissue (see Supporting Fig. S1).

Postprocessing

All measured data were processed with an in-house devel-

oped program based on Bash 4.2.25 (Free Software Founda-

tion, Boston, Massachusetts, USA) and MatLab R2009a

(MathWorks, Natick, Massachusetts, USA) scripts (27),
which allowed automated postprocessing with minimal
user interaction. Coil combination and phase correction of
individual channels was performed using MUSICAL (28).
Tissue segmentation into GM, WM, and cerebrospinal fluid
(CSF) was carried out using FAST (functional MRI of the
brain (MRIB) automated segmentation tool) (29). To obtain
the corresponding tissue volume contributions for each
MRSI voxel, the high-spatial-resolution segmented images
were Fourier-transformed to k-space and matched to the
MRSI resolution/point spread function before converting
the data back to image-space (30).

Thorough quality assurance was carried out to rule out
any lipid-contaminated voxels or poor-quality spectra. The
maps of SNR, Cramer-Rao lower bounds (CRLB), and line
width (i.e., full width at half maximum (FWHM)) of NAA
served this purpose. Spectra with CRLBNAA> 30% and
FWHMNAA> 20 Hz were automatically excluded from the
analysis. A further visual inspection was performed on spec-
tra with only one of these quality criteria fulfilled. Typically,
1% to 3% of all spectra from one dataset were discarded.

Comparison of MM Models for Spectral Fitting

To test the six basis sets with parameterized MMs, metabo-
lite signal amplitudes were compared to the results
obtained using the basis set with a measured MM spec-
trum (full_MM). First, the quantified metabolite intensities
were averaged for every metabolite separately per volun-
teer and method. Afterward, repeated measures analysis of
variance to account for the repeated testing of quantified
intensities of multiple metabolites, as well as post-hoc,
Bonferroni-corrected paired post-hoc tests, were used to
compare the metabolite signal intensities for every method.

A P value� 0.05 was considered to indicate significant
results. Due to the relatively small sample size and the
large number of metabolites, no multiplicity correction
was performed for multiple dependent variables.

Metabolite maps were created for individual MM peaks
and metabolites covering the whole slice. Voxels with a
CRLBs higher than 30% were not displayed on the maps.

The signal amplitudes of all MM peaks were correlated
with the GM fraction to investigate GM/WM differences.
For this analysis, voxels with a CSF tissue fraction higher
than 20% and a CRLB higher than 30% were excluded.

RESULTS

MM Parameterization

Both methods of parameterization (i.e., using AMARES
and HLSVD) provided a good approximation of the mea-
sured MM spectrum in terms of a flat-fitting residual
(Fig. 1). A minimal number of components in HLSVD
parameterization was found to be 13. An overall broader
line shape of HLSVD parameterization (Figs. 1 and 2a, 4a)
was reflected in the elevated baseline after the combination of
individual MM resonances into MM groups (Figs. 1 and 3a).

Comparison With an Established Method

The metabolite signal amplitudes obtained via the six
parameterized basis sets were compared with the metabolite
signal amplitudes obtained via the basis set that included

Simultaneous Mapping of Metabolites and Macromolecules 1233



the full measured MM spectrum, which can be considered a

standard quantification approach (Fig. 2). Significant differ-

ences for most of the quantified metabolites were found if

the number of degrees of freedom was not decreased (basis

sets ind_MM_HL and ind_MM_AM) (Supporting Table S1).

Data quantified with grp_MM_HL were significantly

increased for NAA (16.03%), NAAG (18.60%), Glu

(22.57%), Ins (19.39%), GABA (17.27%) (all P< 0.001), and

tCr (5.84%) (P¼ 0.023), and were decreased for GSH

(�28.92%) (P<0.001) and Gln (�13.78%) (P¼ 0.007). Data

quantified with grp_MM_AM were significantly increased

for NAA (13.77%), NAAG (18.60%), and Glu (29.31%) (all

P<0.001), and were decreased for GSH (�18.57%)

(P< 0.001), and Asp (�6.92%) (P¼0.018).
There were no significant differences for all the major

metabolites if CRPs were imposed on both parameterized

models (con_MM_HL and con_MM_AM) (Supporting Table

S1). For con_MM_HL, Gln showed significantly decreased

signal amplitudes (�25.41%) (P¼ 0.021) and GABA

showed a significant increase (51.15%) (P¼ 0.004). For

con_MM_AM, Gln was significantly decreased (�30.41%)

(P< 0.001), whereas Asp (36.63%) (P<0.001) and GABA

(39.88%) (P¼ 0.014) showed a significant increase.
Figure 3 illustrates the quantification with full_MM,

con_MM_AM, and con_MM_HL. The flat fit residuals and

spline baselines were comparable for all three approaches;

however, the elevated baseline of con_MM_HL compared

to full_MM and con_MM_AM after first-order correction

reveals the bias in MM quantification using this model.

Therefore, the basis set with AMARES-modeled MMs was

considered a more suitable model for the MM background.

Metabolic and MM Maps

The simultaneous quantification of the acquired 2D-

FID-MRSI with AMARES-modeled individual MMs with

FIG. 1. Parameterization of the metabolite-nulled MM spectrum
(top; MM model 1) utilizing two algorithms: HLSVD and AMARES

(center: MM models 2a/4a and 2b/4b, respectively). Individual
parameterized MM peaks were also combined into four MM groups

(bottom: MM models 3a and 3b).AMARES, advanced method
for accurate, robust, and efficient spectral fitting; HLSVD, Hankel-
Lanczos singular value decomposition; MM, macromolecule.

FIG. 2. Comparison of metabolite signal
amplitudes quantified using different basis

sets. The results obtained using full_MM (MM
model 1) were considered a gold standard
and compared (repeated measures analysis

of variance) to the remaining six basis sets
(MM models 2a/b, 3a/b, and 4a/b). (* indicates

P�0.05). The bar plots show the quantified
mean metabolite signal intensities (6
standard deviation) from all volunteers aver-

aged over the whole MRSI slice. A.U.,
arbitrary unit; Gln glutamine; Glu, glutamate;

MM, macromolecule; NAA, N-acetyl-
aspartate; NAAG, N-acetyl-aspartyl gluta-
mate; tCho, total choline; tCr; total creatine.
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CRPs enabled the mapping of metabolites and MMs

within one measurement (Figs. 4,5). Physiological tissue

differences were found in both MM (Fig. 4) and metabo-

lite levels (Fig. 5). Figure 4 and Figure 6 illustrate that

most individual MM resonances tend to be higher in GM

compared to WM. MM7 at 2.99 ppm appeared to be rela-

tively evenly distributed over the whole brain slice. In

contrast, MM8 at 3.21 ppm was higher in WM compared

to GM. The signals of Glu and tCr were higher in cortical

GM compared to WM, whereas the signal of NAAG was

two times higher in mesial WM compared to cortical

GM. tCho exhibited the highest signal intensity in the

frontal WM area. Minimal tissue or regional differences

were observed for NAA. A low-abundant metabolite tau

was reliably mapped with CRLB< 30% and found to be

higher in GM. No visual difference was found between

the metabolic maps obtained from quantification with

full_MM and con_MM_AM.

DISCUSSION

In this study, we improved quantification of in vivo

2D-FID-MRSI spectra by including information about indi-

vidual macromolecular peaks in the fitting prior knowl-

edge. Thus, we were able to simultaneously map the

spatial distribution of individual MM components together

with metabolites that resonated between 4.2 and 0 ppm.

Comparison to Previous Studies

The number of MM model components that are neces-
sary for parameterization is influenced by the actual
chemical shift dispersion and the SNR of the parameter-
ized spectrum. In a pioneering work by Seeger et al. (13),
only four MM components were sufficient to adequately
model the MM contribution in human brain spectra
obtained at 1.5T.

Unlike the metabolite spectra, a plethora of chemical
compounds contribute to every single MM peak. These
individual contributions cannot be resolved at 7T but are
some of the strongest factors that influence the MM line-
shape. In addition, a local susceptibility broadening
affects the lineshape as well. Recently published single-
voxel animal studies (25,31) parameterized the MM back-
ground using LCModel built-in Gaussian functions with
precisely defined chemical shifts, linewidths, and ampli-
tudes. Lopez-Kolkovsky et al. (25) parameterized MM
from a metabolite-nulled rat spectrum acquired at 17.2T,
with a total of 32 individual MM resonances. However,
Lee and Kim (31) aimed to parameterize the MM contri-
bution directly from a rat short-TE spectrum at 9.4T
with a total of 25 MM components. Snoussi et al. (32) fit-
ted MM from the human brain using the sum of 19
Gaussian functions. The presence of the additional MM
resonances had to be handled to avoid the model over-
parameterization, either by combining individual peaks

FIG. 3. Top: An example of LCModel quantification with full_MM, con_MM_AM, and con_MM_HL, showing 2D-FID-MRSI spectrum

(black) and fit (red) before first-order phase correction. Bottom: A corresponding 2D free induction decay MR spectroscopic imaging
spectrum (black), fit (red), and fitted MM (blue) quantified using full_MM (1), con_MM_HL (4a), and con_MM_AM (4b) after first-order

phase correction. An elevated baseline is visible in the case of con_MM_HL. The shown spectra originate from a single voxel located in
the central part of the slice superior to the lateral ventricles (GMfraction¼60%, WMfraction¼39%)GM, gray matter; MM, macromolecule;
ppm, parts per million; WM, white matter.
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into groups (25) or by merging the peaks into a single

model MM spectrum (31,32).
Nine to 10 distinct MM peaks can be distinguished in the

human brain at magnetic fields close to 7T (7,18,33),

although recent reports have hypothesized another MM res-

onance around 2.6 ppm (34,35). We parameterized an aver-

aged metabolite-nulled spectrum by AMARES using nine

Gaussian functions and by HLSVD using 13 components.

HLSVD allows only minimal control over the fitting output.

Moreover, the input number of components affects the fit-

ting result. Therefore, to properly handle the baseline of the

parameterized metabolite-nulled spectrum, a minimum of

13 components were required to achieve flat residuals.

Afterward, the four redundant resonances that did not cor-

respond to MM peaks were removed from the results.

AMARES, however, is a more interactive tool for which

prior knowledge of the quantified peaks is required. Hence,

the parameterization may be well-controlled and iteratively

improved. The prior knowledge for AMARES was adapted

from that proposed in previous studies (25,31).

Comparison With an Established Method

A single measured MM spectrum was considered an

established method of handling MM in vivo and served

as a gold standard for all our comparisons. Nevertheless,

any systematic deviations of our gold standard from the
real values could not be estimated and were not the
subject of this work.

To test the simultaneous quantification of metabolites
and macromolecules, the metabolite signal amplitudes of
the gold-standard method were compared to the six
methods using parameterized MMs. It is obvious from
Figure 2 that the inclusion of additional components
into the basis set without using any constraints
(ind_MM_AM and ind_MM_HL) led to significant overes-
timation or underestimation of the metabolites. Thus,
two different methods were examined by decreasing the
degrees of freedom of the MM. Grouping of the MM
peaks, as described in (25), lead to significant overesti-
mation or underestimation of several metabolite signal
intensities compared to the gold standard, even in
higher-abundant metabolites, such as NAA, Glu, and Ins,
for both parameterization methods. A possible explana-
tion may lie in the accuracy of the modeled MM peaks.
As stated above, any MM model is a simplification of
the real world in vivo MM resonances. Our MM models
involve a certain unknown deviation from in vivo MM.
Several modeled MM peaks were added together to form
MM groups. Thus, the error in the model might have
increased, rendering significant differences. In our case,
the application of CRPs on the MM peaks appeared to be a

FIG. 4. Maps of nine individual MM components (MM1–MM9) in native resolution (64�64 voxels) measured in a volunteer, are shown,

together with tissue maps and a T1-weighted image. Most of the MM resonances tend to be higher in GM compared to WM; only MM8
at 3.21 ppm is higher in WM CSF, cerebrospinal fluid; GM, gray matter; MM, macromolecule; ppm, parts per million; WM, white matter.

1236 Pova�zan et al.



FIG. 5. Metabolic maps in native resolution (64�64), measured in the same volunteer as in Figure 4. Seven metabolites were reliably
quantified with Cramer-Rao lower bounds below 30% in all volunteers. Physiological gray matter/white matter and spatial differences

are visible.Glu, glutamate; Ins, myo-inositol; NAA, N-acetyl-aspartate; NAAG, N-acetyl-aspartyl glutamate; tCho, total choline; tCr; total
creatine.

FIG. 6. Scatter plots summarizing the dependence of the macromolecule peaks on the gray matter fraction. Data from all volunteers were
used. The lines of best fit for a linear regression model are shown in black. AU, arbitrary unit; GM, gray matter; MM, macromolecule.
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more robust way to handle the over-parameterization.
Furthermore, the information about all MM peaks was
preserved. Despite elevation of the baseline in the case
of con_MM_HL (Fig. 3), most of the metabolite levels
remained unchanged for both parameterization
approaches. Only some low-abundant metabolites showed
a significant difference compared to results obtained via
the full_MM model. Nevertheless, the HLSVD parameteri-
zation did not yield a valid MM model, which was mani-
fested by the elevated baseline and broadened lineshapes
of the MM peaks (Fig. 3). The HLSVD is an algorithm based
on singular value decomposition with minimal prior
knowledge. It was shown to be a powerful water removal
tool (36). However, for more complex tasks with several
overlapping resonances, it often fails to provide reliable
results (37). Craveiro et al. (37) reported significant differ-
ences between the metabolite residuals removal of the
metabolite-nulled MM spectrum using HSLVD and
AMARES. In our study, HLSVD did not successfully
model the MM peaks using only nine components. To
minimize the fitting residual, 13 HLSVD components had
to be input, and the four additional components were later
discarded. AMARES algorithm outperformed HLSVD and
therefore is recommended for the parameterization. All
the presented maps were created only from the results
obtained with con_MM_AM.

Metabolic and MM Maps

Spatial maps of nine MMs, together with seven metabo-
lites, were mapped in all volunteers in approximately half
an hour. To our knowledge, this is the first time that the
individual macromolecular contributions were mapped
with such a high spatial resolution (64�64 matrix size).

The physiological background of the observed GM/WM
and regional MM differences is unclear, which also is con-
nected to the contribution of various chemical compounds
to a single MM peak. The MM1 (0.9 ppm) contains signals
of the protein amino acids leucine, isoleucine, and valine;
MM2 (1.21 ppm) and MM3 (1.43 ppm) threonine and ala-
nine; MM4 (1.67 ppm); and MM7 (2.99 ppm) lysine and
arginine (6). The contribution of Gln and Glu in MM5
(2.04 ppm) and MM6 (2.26 ppm) (6) may be one of the
causes of higher GM signal for these two MM resonances.
The previously reported higher signal of MM (overall) in
GM compared to WM (10,18) was confirmed for all MM
resonances except for MM7 (2.99 ppm), which was evenly
distributed; and MM8 (3.21 ppm), which was higher in
WM. One possible explanation is a different origin of
MM8. In contrast to the other MM peaks, MM8 was not
found in in vitro dialyzed cytosol (6). Based on this, we
hypothesize that MM8 probably originates from the cell
membrane or the extracellular area.

The MM maps enable the visualization of even subtle
spatial and tissue differences, which may be clinically
interesting for various brain diseases. Hwang et al. (38)
and Graham et al. (12) showed maps of the MM com-
pound resonating at 1.3 ppm in stroke patients, although
a mixed signal of MMs and lipids was detected. Changes
in MM also were observed in patients with multiple scle-
rosis. The MM at 0.9 ppm and 1.3 ppm were elevated in
acute lesions compared to those in chronic lesions or in

controls (11). A more recent study (39) reports signifi-

cantly decreased signals of MM (including lipids) at 0.9,

1.2 to 1.4, and 2.0 ppm in chronic lesions and normal-

appearing WM compared to cortical gray matter. The

above-mentioned MM differences often are connected to

a particular MM peak and do not manifest over the whole

spectral range. A quantification of patient data with only a

single measured MM background in the basis set leads not

only to incorrect estimation of MMs but also to biased

metabolic quantification. In addition, a rather diffuse MM

change, such as that observed in (39), favors utilization of

MRSI over single-voxel spectroscopy.
The spatial and tissue differences of metabolites found

in our study were in good agreement with previous stud-

ies (1,4,40,41). An increased signal of tCho in the mesial

frontal area has been reported previously (4,40), as well

as the strong GM/WM contrast in tCr and Glu maps

(4,18,42). NAA and NAAG both are neuronal compounds

(43), and their concentration should be similar in both

cell bodies (GM) and axons (WM). The discrepancy

observed for NAAG in multiple MRS studies (18,42,44),

as well as in this work, thus far has not been satisfacto-

rily explained.

Limitations

A truly quantitative comparison of the different MM models

was not possible because the established method fits MMs

with a single MM spectrum, whereas the parameterized

MM models use different numbers of separate resonances,

which cannot be statistically compared. Therefore, only the

effect of the MM models on the quantification of metabo-

lites was quantitatively estimated.
In a diseased brain, the changes in MM levels frequently

are accompanied by changes in lipids. Moreover, lipid

contamination due to the point spread function and

subject movement, particularly in the region from 1.2 to

1.4 ppm, is very challenging and requires proper lipid han-

dling even in a healthy brain, as can be seen in MM2,

MM3, and MM4 maps (Fig. 4). The occipital part in the

MM2 and the frontal part in the MM4 maps may be con-

taminated with the extracranial lipid signal. An additional

lipid model included in the basis set may reduce this prob-

lem, but also may cause a further unwanted overparamete-

rization. The proposed model of the MMs may be

improved by parameterization using a higher number of

components per MM peak to achieve a nonideal (i.e., non-

Gaussian, non-Lorentzian, non-Voigt) lineshape, and the

lipid suppression could be further improved (45).
The use of a single-component MM spectrum is a much

more conservative MM model and provides a fast and

robust way to handle MM in short-TE/short-TE* spectra.

The process of determining the optimal constraints for

a parameterized MM model is a lengthy and delicate

procedure, especially when a MM peak overlaps more

than one metabolic resonance. Yet, if the quantified spec-

tra are more demanding (i.e., lipid contamination, patho-

logical changes), the parameterized individual MM peaks

with soft constraints provide better results. Furthermore,

mapped MM resonances may serve as a biomarker for

pathological changes in the brain metabolism.
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CONCLUSION

We have mapped a total of nine macromolecular reso-

nances and seven metabolites in the healthy human

brain by simultaneous quantification from 2D-FID-MRSI

spectra. AMARES provides an efficient way to parame-

terize macromolecules from the metabolite-nulled in

vivo spectrum. The improved model of macromolecules

derived by parameterization of the metabolite-nulled

spectrum may facilitate the detection and spatial map-

ping of pathologically altered macromolecules.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article.

Fig. S1. The representative 1H-FID-MRSI spectra chosen from four different
brain regions (A-D) shown for the quantification without lipid handling and
with lipids included into the spectral fitting prior knowledge. The lipid reso-
nances were simulated using LCModel (parameter CHSIMU). full_MM was
used as MM model for both quantification, with and without lipid handling.
For approximately 80% to 85% of the voxels, the contamination with
extracerebral lipids was minimal (spectra A and B). Spectra in proximity to
the skull region (e.g., spectrum C) had fewer metabolites fitted with CRLBs
below the given threshold if no lipid information was included into the prior
knowledge. In some cases (typically 1%–2% of all spectra), the lipid han-
dling failed and lipids were not fitted even for the basis set with lipid han-
dling (e.g., spectrum D). However, these voxels are often ruled out due to
other reasons (such as increased line widths, huge CSF contribution, etc.).
Table S1. The most important statistical measures for comparison of
metabolite signal amplitudes quantified using different basis sets (Fig. 2).
The results obtained using full_MM (MM model 1) were compared using
repeated measures ANOVA to the remaining six basis sets (MM models 2a/
b, 3a/b, and 4a/b).
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