
RESEARCH ARTICLE

Applying aspiration in local search for

satisfiability

Cong PengID
1,2*, Zhongwei Xu1, Meng Mei1

1 School of Electronic Information Engineering, Tongji University, Shanghai, China, 2 LIACS, Leiden

University, Leiden, the Netherlands

* ppcc1988@outlook.com

Abstract

The Boolean Satisfiability problem (SAT) is a prototypical NP-complete problem, which has

been widely studied due to its significant importance in both theory and applications. Sto-

chastic local search (SLS) algorithms are among the most efficient approximate methods

available for solving certain types of SAT instances. The quantitative configuration checking

(QCC) heuristic is an effective approach for improving SLS algorithms on solving the SAT

problem, resulting in an efficient SLS solver for SAT named Swqcc. In this paper, we focus

on combining the QCC heuristic with an aspiration mechanism, and then design a new heu-

ristic called QCCA. On the top of Swqcc, we utilize the QCCA heuristic to develop a new

SLS solver dubbed AspiSAT. Through extensive experiments, the results illustrate that, on

random 3-SAT instances, the performance of AspiSAT is much better than that of Swqcc

and Sparrow, which is an influential and efficient SLS solver for SAT. In addition, we further

enhance the original clause weighting schemes employed in Swqcc and AspiSAT, and thus

obtain two new SLS solvers called Ptwqcc and AspiPT, respectively. The eperimental

results present that both Ptwqcc and AspiPT outperform Swqcc and AspiSAT on random 5-

SAT instances, indicating that both QCC and QCCA heuristics are able to cooperate effec-

tively with different clause weighting schemes.

Introduction

The Boolean satisfiability (SAT) problem is one of the most studied NP-complete problems,

and is of significant importance in both theory and pracite [1]. The SAT problem has a broad

range of applications in various fields, such as mathematical logic, inference, machine learning,

constraint satisfaction, VLSI engineering and computing theory [2]. Similarly, many real-

world problems, including testing [3], formal verification [4, 5], synthesis [6], nano-fabric cell

mapping [7] and various routing problems [8], can be encoded into SAT, and further be solved

by efficient SAT solvers [9–12].

Given a propositional formula in conjunctive normal form (CNF), the SAT problem is to

decide whether there exists an assignment of Boolean variables that makes the propositional

formula evaluate to be true. Although it is important to solve the SAT instance encoded from

industrial problems, solving random SAT instances, especially random 3-SAT instances, also

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Peng C, Xu Z, Mei M (2020) Applying

aspiration in local search for satisfiability. PLoS

ONE 15(4): e0231702. https://doi.org/10.1371/

journal.pone.0231702

Editor: Baogui Xin, Shandong University of Science

and Technology, CHINA

Received: February 5, 2020

Accepted: March 30, 2020

Published: April 23, 2020

Copyright: © 2020 Peng et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported in part by the

National Science and Technology Key Plan of China

under Grant 2017YFB120110508 to ZX, in part by

the National Natural Science Foundation of China

under Grant U1734211 to ZX, and in part by the

national CSC Scholarship to CP.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-8070-9092
https://doi.org/10.1371/journal.pone.0231702
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231702&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231702&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231702&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231702&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231702&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231702&domain=pdf&date_stamp=2020-04-23
https://doi.org/10.1371/journal.pone.0231702
https://doi.org/10.1371/journal.pone.0231702
http://creativecommons.org/licenses/by/4.0/

shows great importance in both theory and practice. In theory, the random 3-SAT problem is

the core problem in the field of computational complexity research. In practice, the random

3-SAT problem can provide a test platform for heuristic methods for dealing with many prob-

lems in machine learning and artificial intelligence [13]. Also, a random 3-SAT instance can

provide a relatively unbiased and intractable test set for evaluating practical algorithms, mak-

ing the results of practical algorithms statistically more significant. Due to the importance of

the random 3-SAT problem, actually random 3-SAT instances have been widely used by sev-

eral international SAT competitions [14–17].

Moreover, an important family of SAT instances is uniform random k-SAT [18]. The per-

formance of algorithm are usually stable on random k-SAT instances. In last two decades,

great progress has been made near the phase transition in solving random k-SAT. Thus,

through testing SLS algorithm we can easily recognize excellent heuristics on random k-SAT

instances, which may be beneficial for solving real-world problems [19]. Besides, it can be

interesting to test SLS algorithm on solving a broad range of structured instances.

Practical algorithms for solving SAT can be mainly categorized into two main classes: 1)

complete algorithms evolving out of the DPLL procedure [20] and 2) stochastic local search

(SLS) algorithms based on the GSAT algorithm [21]. SLS can be regarded as a kind of heuristic

search, while heuristic search is a influential and common method for solving computation-

ally-hard combinatorial problems [22, 23]. In this paper, we are devoted to improving the per-

formance of SLS algorithms. SLS algorithms are usually incomplete—they are able to solve a

number of certain types of SAT instances very fast, especially random satisfiable instances, but

cannot prove unsatisfiability [24].

In practice, a severe issue for SLS algorithms is the cycling problem, where SLS algorithms

would possibly revisit candidate solutions that have been searched before [25]. This problem

makes the search process of SLS algorithms stagnant, and thus results in a negative conse-

quence on the performance of SLS algorithms. In order to deal with this serious issue effec-

tively, Cai et al. proposed a novel configuration checking (CC) heuristic, which has achieved

success in the problem of minimum vertex cover (MinVC) [26–28].

Recently, SLS algorithms achieve effectiveness in solving the maximum satisfiability (Max-

SAT) problem, which is a generalization of SAT. By integrating an efficient MaxSAT local

search algorithm called CCLS [15] and additive BMS (Best from Multiple Selections) [29], Chu

et al. developed a new SLS algorithm for MaxSAT called CCABMS, which had a good perfor-

mance on a large number of industrial MaxSAT instances [30]. Lei and Cai [31] proposed a

dynamic local search algorithm, which exploited the structure of weighted partial MaxSAT

(WPMS) by a carefully designed clause weighting scheme. In addition, Luo et al. presented a

new SLS algorithm named CCEHC for WPMS in [22]. CCEHC employed an extended frame-

work of CCLS with a heuristic emphasizing hard clauses, called EHC (Emphasis on Hard

Clauses). Extensive experiments demonstrated that CCEHC significantly outperforms a group

of SLS competitors. In the literature [32], Cai et al. proposed a novel decimation algorithm for

MaxSAT, and then combined it with a local search algorithm. However, the above local search

algorithms are designed specifically for solving MaxSAT, and their performance of directly

solving SAT lags far behind.

When focusing on SAT solving, Cai et al. proposed a neighboring-variables-based CC heu-

ristic to develop an SLS solver called Swcc [14] for solving SAT. Compared to the neighboring-

variables-based CC heuristic, Luo et al. proposed a new clause-states-based CC heuristic called

quantitative configuration checking (QCC), by combining the quantity of configurations’ vari-

ations into the CC strategy. Different from the CC strategy, where the configuration of a vari-

able refers to the truth values of all its neighboring variables, the configuration of a variable in

the QCC strategy refers to the states of all clauses it appears in the random mode rather than

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 2 / 16

https://doi.org/10.1371/journal.pone.0231702

only in the greedy mode. Moreover the authors developed a SLS solver named Swqcc [33],

which is more efficient than Swcc. However, the performance of Swqcc on random 3-SAT

instances is still not satisfactory. In this situation, to enhance the efficiency of local search,

Salhi proposed an aspiration mechanism and integrated it with tabu search [34]. Similarly, Cai

successfully used the aspiration mechanism to improve the efficiency of the neighboring-vari-

ables-based CC heuristic for solving SAT problems [35].

In this paper, we combine the QCC heuristic and the aspiration mechanism in an effective

way, and propose a new heuristic dubbed QCCA. Based on the QCCA heuristic, we also

develop a new SLS solver called AspiSAT for solving SAT. Our experimental results show that

the performance of AspiSAT on random 3-SAT instances exceeds that of Swqcc and Sparrow,

which is an influential and effective SLS solver for SAT. Moreover, we enhance the clause

weighting methods employed in both Swqcc and AspiSAT, resulting in two new SLS solvers,

Ptwqcc and AspiPT, respectively. The related experiments demonstrate that Ptwqcc and

AspiPT perform much better than Swqcc and AspiSAT on random 5-SAT instances.

The remainder of our paper is organized as follows. In Section 2, we provide necessary pre-

liminaries. Section 3 presents a brief review of the stochastic local search algorithm. Section 4

shows the pattern detection heuristics. In Section 5, we combine quantitative configuration

checking heuristics with aspiration mechanism. In Section 6, we propose the stochastic local

search algorithm based on QCCA heuristic. In Section 7, we evaluate the performance of Aspi-

SAT, Swqcc and Sparrow on random 3-SAT instances and structured instances. Further

empirical analyzes on probability and threshold weighting method and evaluation of AspiSAT

and Ptwqcc are demonstrated in Section 8. Finally, Section 9 concludes the paper and lists

some future work.

Preliminaries

Given a set of n Boolean variables V = {x1, x2, � � �, xn}, and a set of 2n literals associated with

each variable in V, i.e., L = {x1, ¬x1, x2, ¬x2, � � �, xn, ¬xn}, a clause is a disjunction of literals. In

the classic k − SAT problem, each clause consists of a fixed number of k literals. A proposi-

tional formula F can be expressed in the conjunctive normal form, i.e., F = c1 ^ c2 ^ � � � ^ cm,

where m is the number of clauses and ci(1 ⩽ i ⩽m) is a clause in F. In this paper, we use the

notation V(F) to represent all the variables in the formula F, the notation C(F) to represent all

the clauses in the formula F and the notation r = m/n to denote the clause-to-variable ratio of

the formula F. Two different variables are called neighboring variables if they appear simulta-

neously in at least one clause, and the notation N(x) = {y|y 2 V(F)} (y and x are neighbor vari-

ables) is used to represent all neighboring variables of the variable x. We also define the

notation CL(x) = {c|c is a clause which variable x appears} to represent the set of all clauses

where the variable x appears.

A mapping α: V(F)! {true, false} is called an assignment. If αmaps all variables to a Bool-

ean value, then this assignment is complete. For SLS algorithms for solving SAT, a candidate

solution is a complete assignment. Given a complete assignment, any clauses of formula F has

two possible states: satisfied or unsatisfied. A clause is satisfied if and only if at least one literal

of the clause is true under the assignment α; otherwise, the clause is unsatisfied. Given a for-

mula F, an assignment α satisfies F if and only if α satisfies all the clauses in the formula F. The

SAT problem is to decide whether there exists a complete assignment that satisfies all clauses

in F.

Since these three SLS solvers (namely AspiSAT, Ptwqcc and AspiPT) proposed in this paper

are all dynamic local search algorithms, here we give an brief introduction of related concepts

of dynamic local search. In the dynamic local search, each clause c (c 2 C(F)) in the formula F

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 3 / 16

https://doi.org/10.1371/journal.pone.0231702

is associated with a positive integer (c) as its weight, and we use the notation weight(c) to

denote the weight of the clause c. The average weight of all clauses is recorded as �w. We use the

notation cost(F, α) to represent the sum of the weights of all unsatisfied clauses in the formula

F under the assignment α. For any variable x in the formula F, when the variable x is flipped,

such that the assignment α becomes a new assignment β, we define score(x) = cost(F, α) − cost
(F, β). In this paper, a clause c is large-weighted if and only if weight(c) ⩾ 2.

Stochastic local search algorithm for solving SAT problems

The basic framework

The basic framework of the SLS algorithm for solving SAT problems is described as follows:

• Step 1: For the CNF formula F, the algorithm randomly generates a complete assignments to

all variables in formula F;

• Step 2: The algorithm performs the search process in an iterative manner: in each search

step (also known as iteration), the algorithm picks a variable according to a heuristic and

flips the selected variable (i.e., modifying the truth value of the variable accordingly);

• Step 3: The algorithm will repeat Step 2 until it finds a complete assignment that satisfies the

formula F, or the number of steps performed by the algorithm exceeds the preset step limit;

• Step 4: Once the search process is terminated, if the algorithm finds an assignment that satis-

fies F, then the algorithm reports this assignment; otherwise, it reports ‘Unknown’.

The pseudo code for a typical stochastic local search algorithm for SAT can be seen in Algo-

rithm 1, where α is a variable assignment and G is a set of variables in the given formula F.

Algorithm 1: SLS-for-SAT
Input: propositional formula F
Output: satisfying assignment of F or ‘unknown’
1 begin
2 α ≔ InitialiseSearch(F)
3 while not Terminate(F, α) do
4 if Restart(F, α) do
5 α ≔ ReInitialiseSearch(F);
6 else
7 G ≔ SelectVarsToFlip(F, α);
8 α ≔ FlipVars(F, α, G);
9 end
10 end
11 if Solved(F, α) then
12 return α
13 else
14 return ‘unknown’
15 end
16 end

Greedy mode and diversification mode

SLS algorithms for solving SAT problems usually work between two modes [36]: the greedy

mode and the diversification mode. In the greedy mode, SLS algorithms prefer to flip those

variables that can reduce the number of unsatisfied clauses. In the diversification mode, SLS

algorithms tend to explore the search space in order to better avoid the local optimum, so a

random strategy is usually employed to accomplish the task. Li et al. proposed a heuristic

based on the concept of promising decreasing variable (PDV), and developed an SLS solver

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 4 / 16

https://doi.org/10.1371/journal.pone.0231702

G2WSAT [37] using this PDV-based heuristic. The PDA-based heuristic has been widely used

by winning SLS solvers in international SAT Competitions (e.g., G2WSAT [37], adaptG2W-

SAT [38], gNovelty+ [39], Sparrow [40], and EagleUP [41]). Among these solvers, Sparrow

[40] achieves the best performance for solving SAT instances. Compared with the improve-

ments in the greedy mode, recently more related work is focused on how to improve heuristics

in the diversification mode. Most of the improvements for heuristics in the diversification

mode belong to the Novelty family, for instance, Novelty [42], Novelty+ [43], Novelty++ [37],

Novelty+p [38], and adaptNovelty+ [44]. Unlike the Novelty series, the probability distribution

based heuristic [40] used by the Sparrow solver [40] is a recent breakthrough in the diversifica-

tion mode.

Review of configuration checking heuristics

As mentioned before, the cycling problem is a major bottleneck of stagnating the performance

of SLS algorithms, and configuration checking (CC) is proposed for handling this problem.

CC was originally proposed for improving the performance of SLS algorithms for solving the

problem of minimum vertex cover. According to its generality, CC heuristics have also

resulted in an SLS solver called Swcc for solving SAT. According to the experiments reported

in the literature [14], the results show that the performance of Swcc on the random 3-SAT

instances exceeds the winning solver called TNM [45] in random track of SAT competition,

which from the practical perspective indicates that the CC heuristic is effective for dealing with

the cycling problem.

The most important concept in CC heuristics is the definition of configuration. In the con-

text of the SAT problem, the CC heuristic defines a configuration for each variable that

appears in the formula F, which measures the circumstance information of the corresponding

variable. In formal, the configuration of the variable x is a truth-valued vector, denoted by the

notation configuration(x). Cai et al. gave the first definition of configuration where configura-
tion(x) is composed of the truth value (i.e., true or false) of each variable in all neighboring var-

iables of variable x (i.e., N(x)) [14]. The core idea of CC heuristic is to avoid any flipping

variable whose configuration has not changed since the last flip of the corresponding variable

[14].

In the literature [33], Luo et al. refined the definition of the configuration and gave a new

definition of configuration based on the clause states. The related experiments reported in that

literature showed that the performance of Swqcc with the newly defined configuration is better

than Swcc which adopts the original definition of configuration. This paper is also focused on

the clause-states-based configuration, so we give a formal definition of the clause-states-based

configuration as follows.

Definition 1 Given a formula F in CNF form and a complete assignments a, the configura-

tion of the variable x is a vector, denoted by the notation configuration(x). The vector configu-
ration(x) is composed of the states (i.e., satisfied or unsatisfied) of each clause in the set CL(x)

consisting of all clauses where the variable x appears.

In [33], Luo et al. not only redefined the definition of configuration, but also quantified the

changes of configuration; then Luo et al. proposed the quantitative configuration checking

(QCC) heuristic. The QCC heuristic uses the notation confvariation(x) to represent the num-

ber of configuration changes since the last flip of the variable x [33]. For each variable x, the

initial value of confvariation(x) is 1, and the specific update operations of confvariation(x) can

be found in [33]. It is worth noting that the literature [33] also uses a smoothing mechanism

for confvariation(x). In this paper, we do not smooth the confvariation(x) based on preliminary

experiments.

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 5 / 16

https://doi.org/10.1371/journal.pone.0231702

As mentioned in [14], previous heuristics never consider the circumstance information of a

variable when selecting a variable to be flipped, but take a number of variable properties (e.g.,

score [21], break [46] and age [47]) into account. However, the family of CC heuristics con-

sider both the variable properties and the circumstance information of the variables when

selecting a variable to be flipped. This is the essential difference between the family of CC heu-

ristics and the previous heuristics.

Combining quantitative configuration checking heuristics with

aspiration mechanism

Although the QCC heuristic achieves improvement over the original CC heuristic, according

to the implementation details described in [33], the QCC heuristic, which is similar to the orig-

inal CC heuristic, still makes SLS algorithms ignore flipping a number of variables with rela-

tively large score(x) when reaching the local optima. The aspiration mechanism is an effective

way to handle this problem, and has been successfully applied to the tabu search and the origi-

nal CC heuristic. The aspiration mechanism renders the CC strategy more flexible by selecting

the variables with great scores to flip. Without aspiration, variables in the diversification mode

may be flipped mistakenly. This would delay the local search transferring to promising regions

of search space. The aspiration mechanism corrects such mistakes and thus avoids the deten-

tion [19]. In this work, we focus on combining the QCC heuristic with the aspiration mecha-

nism in an effective way and then propose a new heuristic dubbed QCCA (Quantitative

Configuration Checking with Aspiration).

In the QCCA heuristic, an important concept is the significant decreasing (SD) variable

[35]. Due to its importance, we give its formal definition.

Definition 2 Given a formula F of the CNF form and a complete set of true value assign-

ments α, the variable x is a SD variable if and only if score(x) ⩾ κ, where the threshold κ is a rel-

atively large integer.

In this work, when solving random 3-SAT instances, the threshold κ is set to the average

clause weight �w; when solving other instances, the threshold κ is set to 2.

Since the QCCA heuristic is improved from the QCC heuristic, the concepts and defini-

tions used in the QCCA heuristic are consistent with the QCC heuristic. According to the liter-

ature [33], the QCC heuristic maintains an important set of candidate variables G. In this

paper, the QCCA heuristic maintains the candidate variable set G in the same way as the QCC

heuristic does. Moreover, in order to be consistent with the QCC heuristic, the QCCA heuris-

tic selects the variable to be flipped between the greedy mode and the diversification mode.

The QCCA heuristic chooses which mode to select the variable to be flipped depending on

whether or not the set of candidate variable G and the set of variable SD are empty. If the can-

didate variable set G or the SD variable set is not empty, the QCCA heuristic works in the

greedy mode to select the variable; otherwise the QCCA heuristic works in the diversification

mode to select the variable. The details of how the greedy mode and the diversification mode

work are described as follows.

1. When the QCCA heuristic works in greedy mode, the QCCA heuristic first determines

whether or not G is empty; if G is not empty, the QCCA heuristic will select the variable

with the largest score to be flipped from the set G; otherwise (G set is empty), the QCCA

heuristic will activate the aspiration mechanism, i.e., selecting the SD variable with the larg-

est score to be flipped. If there is more than one variable with the largest score, then it will

select the one with the maximum confvariation.

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 6 / 16

https://doi.org/10.1371/journal.pone.0231702

2. When the QCCA heuristic works in the diversification mode, the QCCA heuristic first ran-

domly picks an unsatisfied clause c, and then selects the variable with the largest confvaria-
tion in the clause c to be flipped. If there is more than one variable with the largest

confvariation, select the variable that has not been flipped most recently.

Stochastic local search algorithm based on QCCA heuristic

Smoothed clause weighting method

The clause weighting method, especially the smoothed clause weighting method, significantly

improves the performance of the SLS algorithm for solving SAT instances. The smoothed

clause weighting method has been adopted by many advanced SLS solvers [40, 41, 48, 51].

AspiSAT adopts the method of smoothed clause weighting(SCW) used by Swqcc, which

resembles the SAPS weighting method [48].

In the SCW method, each clause has a weight, weight(c), which is a positive integer. In the

initialization phase, the weight of each clause is set to 1. Whenever the SLS algorithm activates

the SCW method, the weight of each unsatisfied clause will be increased by 1. In addition, the

SCW method will use the smoothing mechanism periodically. The main rule used by the SCW

smoothed mechanism to maintain clause weights is described as follows:

Rule 1. When the average clause weight �w is greater than a fixed threshold δ, the weight

of each clause appearing in the formula will be smoothed: for each clause c 2 C(F),

weightðcÞ ¼ bg � weightðcÞc þ dð1 � gÞ � �we, where γ is a real-valued number ranging from 0

to 1 (0 < γ< 1).

In the AspiSAT algorithm, AspiSAT activates the SCW method when the algorithm reaches

local optima.

AspiSAT algorithm

In this section, we present a new SLS algorithm dubbed AspiSAT, which is based on the

QCCA heuristic. We list the pseudo code of the AspiSAT algorithm in Algorithm 2, and

describe the details of the AspiSAT algorithm as follows.

In the initialization phase of the algorithm, the algorithm randomly generates a complete

assignment α as the initialization solution, and the weight of each clause is set to 1. Then for

each variable x, the algorithm calculates the score(x) according to the initialized assignment α.

Also, for each variable x, the property confvariation(x), which measures the frequency of the

change on x’s configuration, is initialized to 1. After that, the algorithm puts all variables with

score> 0 into G, the set of candidate variable. Then G is maintained during the search process

of the algorithm (Lines 14 and 20 in Algorithm 2), and flipping the variables in G would

decrease the total weight of all unsatisfied clauses.

When the initialization phase is complete, the algorithm performs the search process in an

iterative manner: the algorithm would select and flip a variable in each search step (also

known as iteration) until the algorithm finds a satisfying assignment or the number of search

steps exceeds the step limit. In each search step, the algorithm selects the variable to be flipped

according to the selection mechanisms employed in the greedy mode and the diversification

mode of the QCCA heuristic. It is worth noting that, in the current search step, when the can-

didate variable set G and SD variable set are both empty, the algorithm will be considered as it

reaches a local optimum, and the algorithm will activate the SCW method to update the clause

weights. After the execution of the SCW method is finished, the algorithm will select a variable

to be flipped in the diversification mode.

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 7 / 16

https://doi.org/10.1371/journal.pone.0231702

In each step, the algorithm would flip the selected variable and then update the candidate

variable set G as well as the variable properties, such as score, confvariation.

Once the search process is finished, if the algorithm finds a satisfying assignment, the

assignment reports such assignment as a solution to the formula; otherwise, the algorithm

reports ‘Unknown’.

Algorithm 2: AspiSAT
Input: CNF-formula F, maxSteps
Output: A satisfying truth assignment α of F or Unknown
1 begin
2 initialize a random assignment α;
3 initialize all weight(c) as 1 and compute score(x) for each vari-
able x;
4 initialize confvariation(x) as 1 for each variable x;
5 put variable with score(x) > 0 into the G set;
6 for step 1 to maxSteps do
7 if αsatisfiesF then return α;
8 if G 6¼ � then
9 v x with the greatest score(x) in G, breaking ties by prefer-
ring the one with the greatest confvariation(x);
10 else
11 if there exist SD variables then
12 v x with the SD variable with the greatest score(x),
breaking ties in favor of the one with greatest confvariation(x).
13 else
14 increase all unsatisfied clauses’ weights by 1;
15 G G [{y | score(y) > 0 & confvariation(y) > 0};
16 if ω > δ then
17 smooth clause weights by Rule δ;
18 c randomly choose an unsatisfied clause;
19 v the greatest confvariation(x) variable in clause c,
breaking tie by choosing least recently flipped variable;
20 flip v; update confvariation and score;
21 G (G- {y | score(y) ⩽ 0} [{y | score(y) > 0 & y 2 N(v)};
22 return Unknown;
23 end

Experimental evaluation of the AspiSAT algorithm

In this section, we first briefly describe the testing benchmarks and the experimental setups.

Then, we evaluate the performance of AspiSAT, Swqcc [33], Sparrow [40] and gNovelty

+GCwa [52] on random 3-SAT instances and structured instances. The experiment is divided

into four parts. In the first part, we compare the performance of AspiSAT, Swqcc, Sparrow

and gNovelty+GCwa on large-scale random 3-SAT instances (2500 ⩽]var ⩽ 50000) in ran-

dom track of the international SAT competition; In the second part, we compare the perfor-

mance of AspiSAT, Swqcc and Sparrow on a huge-scale random 3-SAT instance (55000 ⩽]var
⩽ 100000). In the third part, in order to show the significant performance gap between

AspiSAT and Swqcc, we compare the performance of AspiSAT and Swqcc on the larger-scale

random 3-SAT instance (110000 ⩽]var ⩽ 150000). In the fourth part, we compare the

performance of AspiSAT and Sattime [53] on the satisfiable structured instances; we would

like to note that Sattime is well-known as it is an efficient SLS solver for solving structured

SAT instances. Finally, we summarize and analyze the results of these comparative

experiments.

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 8 / 16

https://doi.org/10.1371/journal.pone.0231702

Testing benchmarks

In this experiment, we set up four testing benchmarks. The first benchmark contains large-

scale random 3-SAT instances used in the Random SAT Track of the International SAT11

Competition [49]; The reason why we did not adopt the medium-sized random 3-SAT

instances used in the SAT competition is that for modern SLS algorithms, those instances are

too simple and can be quickly solved. The second and third testing benchmarks are consisting

of random 3-SAT instances generated by the fixed clause length model. The second testing

benchmark includes those random 3-SAT instances with 55000 ⩽]var ⩽ 100000; the third

testing benchmark contains those random 3-SAT instances with 110000 ⩽]var ⩽ 150000.

The fourth testing benchmark is composed of selected satisfiable instances used in the

Crafted Track of the international SAT11 Competition. We do not consider those unsatisfiable

instances because they cannot be determined by any SLS algorithms.

All instances in the first three testing benchmarks sets share the same clause-to-variable

ratio of 4.2, and they are all satisfiable. Hence these instances can be used to test the perfor-

mance of the SLS algorithm.

Competitors and experimental setup

In this experiment, the AspiSAT solver is implemented in C++. Based on preliminary experi-

ments, for AspiSAT, the smoothing threshold δ is set to 200 + (]var + 250)/500, and the

parameters β and γ are set to 0.3. In order to make our comparison fair, the parameter settings

used by the Swqcc solver [33] are the same as those ones used in the AspiSAT solver. The Spar-

row solver and the Sattime solver use the version of the International SAT11 Competition

[50]. It is worth noting that Sparrow [40] is one of the best-performing SLS solvers for solving

random SAT instances, while Sattime [53] is one of the best performing SLS solvers for solving

the structured SAT instances. The gNovelty+GCwa solver [52] is an effective local search

solver for solving SAT.

All our experiments were conducted on a workstation with an Intel(R) Core(TM) i7-2620

CPU, clocked at 2.7GHz and 7.8GB of memory. The operating system of the machine is GNU/

Linux.

Evaluation criteria

In this experiment, the evaluation criteria we used were similar to those used in the Interna-

tional SAT Competition. We compare the average time and success rate of each algorithm in

solving each set of instances. We set the cutoff time for each solver run: for the first testing

benchmark, the cutoff time is set to 1000 seconds; for the second testing benchmark, the cutoff

time is set to 2000 seconds; for the third testing benchmark, the cutoff time is set to 3000 sec-

onds; for the fourth testing benchmark, the cutoff time is set to 2000 seconds.

For the first testing benchmark, each solver performs 100 runs on each instance; for the sec-

ond testing benchmark, each solver performs 10 runs on each instance; for the third testing

benchmark, each solver performs 1 run on each instance; for the fourth testing benchmark,

each solver performs 10 runs on each instance. For each solver run, it is said to be successful if

and only if the solver finds a satisfying assignment; otherwise it is said to be failed.

Evaluation results

Discussion on the experimental results on the first testing benchmark. Table 1 shows

the performance of AspiSAT, Swqcc, Sparrow and gNovelty+GCwa on the first testing bench-

mark. According to the results, in terms of the averaged run time, the performance of AspiSAT

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 9 / 16

https://doi.org/10.1371/journal.pone.0231702

and Swqcc significantly outperform Sparrow and gNovelty+GCwa. The averaged run time of

gNovelty+GCwa is even larger than 1000.0 on the 5 sets of instance sets (k3-v25000,

k3-v30000, ks-v35000, ks-v40000 and k3-v50000). Similarly, in terms of the success rate, Aspi-

SAT achieves 100% in each instance family, while Swqcc has a success rate of less than 100%

on 2 sets of instance sets (k3-v40000 and k3-v50000), and the success rates of Sparrow on the 6

sets of instance sets (k3-v2500, k3-v25000, k3-v30000, k3-v35000, k3-v40000 and k3-v50000)

are less than 100%. As for gNovelty+GCwa, the success rates on all the 10 sets of instance sets

are less than 100%. Especially on the last instance family which is also the most difficult

instance family to be solved (k3-v50000), the success rates of AspiSAT, Swqcc and Sparrow are

100%, 99.8%, 73.3% and 0.0% respectively. This shows that the performance of Sparrow and

gNovelty+GCwa is significantly lower than AspiSAT and Swqcc. Based on the experimental

results in Table 1, we could conclude that AspiSAT performs best on the first testing

benchmark.

Discussion on the experimental results on the second testing benchmark. We also com-

pared the performance of AspiSAT, Swqcc and Sparrow on large-scale random 3-SAT

instances (55000 ⩽]var ⩽ 100000). The experimental results are summarized in Table 2.

According to the experimental results, AspiSAT surpasses Swqcc and Sparrow in terms of

both the success rate and the averaged run time. From the perspective of the success rate, Aspi-

SAT is able to achieve the success rate higher than 98% for each instance family on the second

testing benchmark (There are 10 instance families in total, among which the success rates of 6

instance families are 100%). The success rate of Swqcc is 100% on only 3 instance families, and

the success rate of Swqcc is lower than that of AspiSAT on other instance families. Also, the

success rates of Sparrow on these instance families range from 51.6% to 96.3%, which are

significantly lower than AspiSAT and Swqcc. In particular, on the largest instance family

(k3-v100000), the success rate of AspiSAT is 98.4%, while as a comparison, the success rates of

Swqcc and Sparrow are only 91.4% and 51.6%, respectively.

In addition, in terms of averaged run time, AspiSAT uses less than 700 seconds on all

instance families. The average run time of Swqcc on all instance families ranges from 201.1 to

967.8, while that of Sparrow ranges from 573.6 to 1583.6. In particular, on the k3-v100000

instance family, the averaged run time of AspiSAT is 693.4 seconds, while the averaged run

time of Swqcc and Sparrow is 967.8 seconds and 1556.4 seconds, respectively. The experimen-

tal results show that AspiSAT performs best on the second testing benchmark.

Table 1. Comparative results of AspiSAT, Swqcc, Sparrow and gNovelty+GCwa on the first benchmark.

Instance Class gNovelty+GCwa Sparrow Swqcc AspiSAT

]suc avg time]suc avg time]suc avg time]suc avg time

k3-v2500 91.2% 129.3 98.8% 24.0 100.0% 11.5 100.0% 7.4

k3-v5000 67.7% 450.3 100.0% 13.8 100.0% 12.4 100.0% 7.5

k3-v10000 22.7% 840.4 100.0% 29.0 100.0% 21.4 100.0% 15.4

k3-v15000 0.4% 997.8 100.0% 42.1 100.0% 33.3 100.0% 22.6

k3-v20000 0.2% 998.7 100.0% 77.7 100.0% 51.9 100.0% 37.2

k3-v25000 0.0% >1000.0 99.4% 141.6 100.0% 82.0 100.0% 55.9

k3-v30000 0.0% >1000.0 99.0% 178.5 100.0% 104.6 100.0% 72.0

k3-v35000 0.0% >1000.0 94.8% 315.0 100.0% 159.6 100.0% 106.2

k3-v40000 0.0% >1000.0 93.1% 285.7 99.9% 142.2 100.0% 101.1

k3-v50000 0.0% >1000.0 73.3% 541.5 99.8% 215.6 100.0% 184.2

]suc means the success rate; as each solver performs 100 runs on each instances, avg time means the average time per a run.

https://doi.org/10.1371/journal.pone.0231702.t001

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 10 / 16

https://doi.org/10.1371/journal.pone.0231702.t001
https://doi.org/10.1371/journal.pone.0231702

Discussion on the experimental results on the third testing benchmark. In order to bet-

ter illustrate the performance gap between AspiSAT and Swqcc and the performance gap

between the QCCA heuristic and the original QCC heuristic, we further explore the perfor-

mance of our AspiSAT solver and the Swqcc solver on a larger-scale random 3-SAT instances

(110000 ⩽]var ⩽ 150000). Table 3 reports the experimental results of this empirical compari-

son and indicates that AspiSAT performs clearly better than Swqcc.

According to the experimental results, the performance gap between AspiSAT and Swqcc

in terms of both the success rate and the average run time shows that the improvement of the

QCCA heuristic over the original QCC heuristic is substantial, which indicates the effective-

ness of the aspiration mechanism. We would like to note that the AspiSAT solver could also be

combined with the probability distribution heuristic adopted by the Sparrow solver, and the

performance might be further improved.

Discussion on the experimental results on the fourth testing benchmark. It is widely

recognized that, for solving the structured SAT instances, complete solvers based on conflict

driven clause learning (CDCL) shows the best performance. However, it is also very interesting

to test the performance of SLS solvers on solving structured SAT instances, and Sattime is an

efficient SLS solver for solving structured SAT instances.

To demonstrate the robustness of the AspiSAT solver, we compare the performance of

AspiSAT, Swqcc and Sattime on the fourth testing benchmark. According to the experimental

results reported in Table 4, it is clear that AspiSAT achieves the comparable performance

Table 2. Comparative results of AspiSAT, Swqcc and Sparrow on the second benchmark.

Instance Class Sparrow Swqcc AspiSAT

]suc avg time]suc avg time]suc avg time

k3-v55000 96.3% 573.6 100.0% 201.1 100.0% 171.5

k3-v60000 94.5% 652.8 100.0% 219.5 100.0% 191.9

k3-v65000 90.2% 852.1 100.0% 276.0 100.0% 236.8

k3-v70000 89.6% 844.4 99.7% 309.7 99.8% 267.7

k3-v75000 81.4% 1077.5 99.8% 408.0 100.0% 342.0

k3-v80000 77.3% 1134.8 99.3% 480.6 99.9% 377.3

k3-v85000 69.0% 1290.7 99.1% 620.7 100.0% 441.2

k3-v90000 63.8% 1408.8 98.9% 662.5 100.0% 516.2

k3-v95000 50.9% 1585.3 96.2% 847.8 99.4% 623.3

k3-v100000 51.6% 1556.4 91.4% 967.8 98.4% 693.4

]suc means the success rate; as each solver performs 100 runs on each instances, avg time means the average time per a run.

https://doi.org/10.1371/journal.pone.0231702.t002

Table 3. Comparative results of AspiSAT and Swqcc on the third benchmark.

Instance Class Swqcc AspiSAT

]suc avg time]suc avg time

k3-v110000 96.0% 1335.0 99.0% 921.4

k3-v120000 93.0% 1500.6 100.0% 1068.7

k3-v130000 80.0% 2059.2 100.0% 1345.6

k3-v140000 70.0% 2199.0 96.0% 1631.7

k3-v150000 72.0% 2231.4 89.0% 1867.3

]suc means the success rate; as each solver performs 100 runs on each instances, avg time means the average time per a run.

https://doi.org/10.1371/journal.pone.0231702.t003

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 11 / 16

https://doi.org/10.1371/journal.pone.0231702.t002
https://doi.org/10.1371/journal.pone.0231702.t003
https://doi.org/10.1371/journal.pone.0231702

compared to Sattime on the fourth testing benchmark, and even performs better than Sattime

on a number of instance families. When focusing on the comparison between AspiSAT and

Swqcc, the AspiSAT solver performs better or achieves the comparable performance compared

to Swqcc. More particularly, out of 7 instance families in total, AspiSAT performs better than

Swqcc in terms of the success rate on 3 instance families, and achieves the same success rate

compared to Swqcc on the other 4 instance families. The experimental results show that the

QCCA heuristic is able to achieve improvements over the original QCC heuristic on solving

structured SAT instances.

We would like to note that Sattime adopts reasoning mechanisms before local search in

solving structured SAT instances. However, in order to better demonstrate the effect of QCCA

heuristic, we do not integrate reasoning mechanisms into the implementation of AspiSAT. By

combining effective reasoning mechanisms, the performance of AspiSAT could be enhanced

on solving structured SAT instances.

Summary: The above experimental results show that AspiSAT performs better than Swqcc,

Sparrow and gNovelty+GCwa on solving random 3-SAT instances, which indicates the effec-

tiveness of the QCCA heuristic. Moreover, the QCCA heuristic achieves improvement over

the original QCC heuristic on solving both random 3-SAT instances and structured SAT

instances.

Improving clause weighting method for AspiSAT solver and Swqcc

solver

In this section, by improving the original SCW weighting method of AspiSAT solver and

Swqcc solver, we can develop new SLS solvers based on AspiSAT and Swqcc, respectively:

AspiPT and Ptwqcc, which shows performance improvement on solving random 5-SAT

instances. Our experimental results show that AspiPT and Ptwqcc perform significantly better

than AspiSAT and Swqcc on random 5-SAT instances, and the performance of AspiPT and

Ptwqcc on random 7-SAT instances is highly comparable to that of AspiSAT and Swqcc.

Probability and threshold weighting method

In this subsection, we present a probability and threshold weighting (PTW) method which is

similar to the PAWS weighting method [51]. The PTW weighting method has a total of two

components: an increasing weight component and a decreasing weight component. In the

search phase, the original PAWS method would activate the decreasing weight component in a

fixed period. Unlike the PAWS method, the PTW weighting method activates the weight

Table 4. Comparative results of AspiSAT, Swqcc and Sattime on the fourth benchmark.

Instance Class]instances Sattime Swqcc AspiSAT

]suc avg time]suc avg time]suc avg time

289 15 100.0% 0.06 100.0% <0.01 100.0% <0.01

automata-synchronization 7 0.0% >2000.0 7.1% 1926.6 14.3% 1830.3

battleship 14 100.0% 14.1 100.0% <0.01 100.0% <0.01

Green Tao 3 100.0% 32.3 93.3% 236.0 96.7% 201.6

sgen 10 97.0% 137.5 40.0% 1325.5 40.0% 1342.2

SRHD-SGI 28 53.2% 1023.1 43.5% 1226.8 45.0% 1176.9

VanDerWaerden_pd_3k 7 77.1% 679.1 100.0% 45.4 100.0% 85.4

]suc means the success rate; as each solver performs 100 runs on each instances, avg time means the average time per a run.

https://doi.org/10.1371/journal.pone.0231702.t004

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 12 / 16

https://doi.org/10.1371/journal.pone.0231702.t004
https://doi.org/10.1371/journal.pone.0231702

decreasing component in a probabilistic manner—whenever PTW is activated, PTW deter-

mines which component to be called depending on the probability parameter sp and the

threshold θ.

The PTW weighting method will be executed as follows. First, a probability p is random-

ized. When p< sp and the number of large weight clauses is greater than θ, the PTW performs

the decreasing weight component: for each large weight clause, the clause weight is decreased

by 1; otherwise, the PTW executes the increasing weight component: for each unsatisfied

clause, the clause weight is increased by 1.

We replace the original SCW weighting method with the proposed PTW weighting method

in AspiSAT and Swqcc, resulting in new SLS solvers called AspiPT and Ptwqcc, respectively.

Empirical evaluation of AspiPT and Ptwqcc

In this section, we evaluate the performance of AspiPT, Ptwqcc, AspiSAT and Swqcc on ran-

dom 5-SAT instances and random 7-SAT instances. The random 5-SAT testing benchmark

we used contains all large-scale random 5-SAT instances in the International SAT competition

(10 instances per instance family). The random 7-SAT testing benchmark we used includes

random 7-SAT instances with]var = 150 and]var = 200 in the International SAT competition

(10 instances per instance family).

Then we introduce the parameter settings for AspiPT and Ptwqcc. For solving random

5-SAT instances, the probability parameter sp in AspiPT and Ptwqcc is set to 0.75 and the

threshold θ is set to 8. For solving random 7-SAT instances, the probability parameter sp in

AspiPT and Ptwqcc is set to 0.9 and the threshold θ is set to 10. In addition, since AspiPT uses

the aspiration mechanism, we set the parameter κ of AspiPT to 2.

In our experiment, each solver performs 10 runs on each instance. For each solver run, the

cutoff time is set to 1000 seconds.

Table 5 reports the experimental results of AspiPT, Ptwqcc, AspiSAT and Swqcc on random

5-SAT instances and random 7-SAT instances. As can be seen from the experimental results,

the performance of AspiPT and Ptwqcc on random 5-SAT instances is significantly better than

that of AspiSAT and Swqcc. We would like to note that Swqcc and AspiSAT cannot solve ran-

dom 5-SAT instances with]var ⩾ 1250 within the cutoff time, while AspiPT and Ptwqcc can at

least solve random 5-SAT instances with]var = 2000. In addition, the performance of AspiPT

and Ptwqcc is highly comparable to that AspiSAT and Swqcc on solving random 7-SAT

instances. The experimental results show that the QCCA heuristic and the QCC heuristic can

cooperate well with different clause weighting methods (SCW method and PTW method).

Table 5. Comparative results of AspiPT, Ptwqcc, AspiSAT and Swqcc on random 5-SAT instances and random 7-SAT instances.

Instance Class Swqcc Ptwqcc AspiSAT AspiPT

]suc avg time]suc avg time]suc avg time]suc avg time

k5-v750 55.0% 672.8 95.0% 147.4 96.0% 677.5 95.0% 135.3

k5-v1000 1.0% 994.8 94.0% 237.1 2.0% 991.3 97.0% 238.6

k5-v1250 0.0% >1000.0 86.0% 359.2 0.0% >1000.0 92.0% 292.4

k5-v1500 0.0% >1000.0 54.0% 675.6 0.0% >1000.0 65.0% 612.2

k5-v2000 0.0% >1000.0 20.0% 868.1 0.0% >1000.0 19.0% 881.1

k7-v150 46.0% 731.8 40.0% 782.2 49.0% 722.0 37.0% 803.3

k7-v200 2.0% 981.4 2.0% 986.6 1.0% 990.2 3.0% 988.7

]suc means the success rate; as each solver performs 100 runs on each instances, avg time means the average time per a run.

https://doi.org/10.1371/journal.pone.0231702.t005

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 13 / 16

https://doi.org/10.1371/journal.pone.0231702.t005
https://doi.org/10.1371/journal.pone.0231702

Conclusion

In this paper, we propose a new QCCA heuristic, which effectively combines the QCC heuris-

tic and the aspiration mechanism. The QCCA heuristic is able to improve the performance of

the SLS algorithm for solving the SAT problem. Based on QCCA heuristics, we develop a new

SLS solver AspiSAT for solving SAT problems. Extensive experiments present that the Aspi-

SAT solver performs better than Swqcc, Sparrow and gNovelty+GCwa on solving a broad

range of random 3-SAT instances. Moreover, for solving the structured SAT instances, Aspi-

SAT outperforms Swqcc in terms of the success rate, and the performance of AspiSAT is com-

parable to that of Sattime.

Furthermore, we replace the original weighting method SCW in AspiSAT and Swqcc with

the PTW weighting method, resulting in two new SLS solvers dubbed AspiPT and Ptwqcc,

respectively. Our experiments show that AspiPT and Ptwqcc perform significantly better than

AspiSAT and Swqcc on random 5-SAT instances. The conclusion shows that the QCCA heu-

ristic and the QCC heuristic are able to cooperate well with different clause weighting

methods.

For future work, we plan to integrate the probability distribution heuristic into AspiSAT, in

order to further improve the performance. We would also like to redefine the concept of con-

figuration, in order to propose new and more effective heuristics based on the QCC heuristic

and the QCCA heuristic for solving other types of SAT instances.

Author Contributions

Data curation: Cong Peng, Zhongwei Xu.

Methodology: Cong Peng.

Software: Cong Peng.

Validation: Cong Peng, Zhongwei Xu, Meng Mei.

Writing – original draft: Cong Peng.

Writing – review & editing: Cong Peng, Zhongwei Xu, Meng Mei.

References
1. Kautz HA, Sabharwal A, Selman B. Incomplete Algorithms. Handbook of Satisfiability. 2009: 185–203.

2. Gu J. Evolution by gene duplication. IEEE Trans. Systems, Man, and Cybernetics. 1993; 23(4):1108–

1129.

3. Yin L, He F, Hung WNN, Song X, Gu M. Maxterm Covering for Satisfiability. IEEE Trans. Computers.

2012; 61(3):420–426.

4. Larrabee T. Test pattern generation using Boolean satisfiability. IEEE Trans. on CAD of Integrated Cir-

cuits and Systems. 1992; 11(1):4–15.

5. Biere A, Cimatti A, Clarke EM, Fujita M, Zhu Y. Symbolic Model Checking Using SAT Procedures

instead of BDDs. Proceedings of the 36th Conference on Design Automation, New Orleans, LA, USA,

1999 Jun;p:317–320.

6. Hung WNN, Narasimhan N. Reference model based RTL verification: an integrated approach. Ninth

IEEE International High-Level Design Validation and Test Workshop, Sonoma Valley, CA, USA, 2004

Nov;p:9–13.

7. Hung WNN, Song X, Yang G, Yang J, Perkowski MA. Optimal synthesis of multiple output Boolean

functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. on CAD of Inte-

grated Circuits and Systems. 2006; 25(9):1652–1663.

8. Hung WNN, Gao C, Song X, Hammerstrom DW. Defect-Tolerant CMOL Cell Assignment via Satisfiabil-

ity. CoRR. 2007;abs/0705.4320.

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 14 / 16

https://doi.org/10.1371/journal.pone.0231702

9. Wood R, Rutenbar RA. FPGA Routing and Routability Estimation via Boolean Satisfiability. Proceed-

ings of the 1997 ACM/SIGDA Fifth International Symposium on Field Programmable Gate Arrays,

FPGA, Monterey, CA, USA, 1997 Feb;p:119–125.

10. Song X, Hung WNN, Mishchenko A, Chrzanowska-Jeske M, Kennings MM, Coppola AJ. Board-level

multiterminal net assignment for the partial cross-bar architecture. IEEE Trans. VLSI Syst. 2003; 11

(3):511–514.

11. Hung WNN, Song X, Kam T, Cheng L, Yang G. Routability checking for three-dimensional architec-

tures. IEEE Trans. VLSI Syst. 2004; 12(12):1371–1374.

12. Hung WNN, Song X, Aboulhamid EM, Kennings AA, Coppola AJ. Segmented channel routability via

satisfiability. ACM Trans. Design Autom. Electr. Syst. 2004; 9(4):517–528.

13. Aurell E, Gordon U, Kirkpatrick S. Comparing Beliefs, Surveys, and Random Walks. Advances in Neural

Information Processing Systems 17 [Neural Information Processing Systems, NIPS], Vancouver, Brit-

ish Columbia, Canada, 2004 Dec;p:49–56.

14. Cai S, Su K. Local Search with Configuration Checking for SAT. IEEE 23rd International Conference on

Tools with Artificial Intelligence, ICTAI, Boca Raton, FL, USA, 2011 Nov;p:59–66.

15. Luo C, Cai S, Wu W, Jie Z, Su K. CCLS: An Efficient Local Search Algorithm for Weighted Maximum

Satisfiability. IEEE Trans. Computers. 2015; 64(7):1830–1843.

16. Luo C, Cai S, Wu W, Su K. Double Configuration Checking in Stochastic Local Search for Satisfiability.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, Québec,

Canada, 2014 Jul;p:2703–2709.

17. Luo C, Cai S, Su K, Wu W. Clause States Based Configuration Checking in Local Search for Satisfiabil-

ity. IEEE Trans. Cybernetics. 2015; 45(5):1014–1027.

18. Achlioptas D. Random satisfiability. In Handbook of Satisfiability. 2009; 245–270.

19. Cai S, Su K. Local search for Boolean satisfiability with configuration checking and subscore. Artif. Intell.

2013 Nov; 204:75–98.

20. Davis M, Logemann G, Loveland DW. A machine program for theorem-proving. Commun. ACM. 1962;

5(7):394–397.

21. Selman B, Levesque HJ, Mitchell DG. A New Method for Solving Hard Satisfiability Problems. Proceed-

ings of the 10th National Conference on Artificial Intelligence, San Jose, CA, USA, 1992 Jul;p:440–446.

22. Luo C, Cai S, Su K, Huang W. CCEHC: An efficient local search algorithm for weighted partial maximum

satisfiability. Artif. Intell. 2017; 243:26–44.

23. Li W, Alidaee B. Dynamics of local search heuristics for the traveling salesman problem. IEEE Trans.

Systems, Man, and Cybernetics. 2002; 32(2):173–184.

24. Hoos HH, Stützle T. Stochastic Local Search: Foundations & Applications. Elsevier / Morgan Kauf-

mann. 2004.

25. Michiels W, Aarts EHL, Korst JHM. Theoretical aspects of local search. Monographs in Theoretical

Computer Science. An EATCS Series. Springer. 2007.

26. Cai S, Su K, Sattar A. Local search with edge weighting and configuration checking heuristics for mini-

mum vertex cover. Artif. Intell. 2011; 175(9-10):1672–1696.

27. Cai S, Su K, Sattar A. Two New Local Search Strategies for Minimum Vertex Cover. Proceedings of the

Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada, 2012 Jul.

28. Cai S, Su K, Luo C, Sattar A. NuMVC: An Efficient Local Search Algorithm for Minimum Vertex Cover.

J. Artif. Intell. Res. 2013; 46:687–716.

29. Cai S. Balance between Complexity and Quality: Local Search for Minimum Vertex Cover in Massive

Graphs. Proceedings of IJCAI, 2015;p:747–753.

30. Chu Y, Luo C, Cai S, You H. Empirical investigation of stochastic local search for maximum satisfiability.

Frontiers Comput. Sci. 2019; 13(1):86–98.

31. Lei Z, Cai S. Solving (Weighted) Partial MaxSAT by Dynamic Local Search for SAT. Proceedings of the

Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI, Stockholm, Sweden,

2018 Jul;p:1346–1352.

32. Cai S, Luo C, Zhang H. From Decimation to Local Search and Back: A New Approach to MaxSAT. Pro-

ceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI, Melbourne,

Australia, 2017 Aug;p:571–577.

33. Luo C, Su K, Cai S. Improving Local Search for Random 3-SAT Using Quantitative Configuration

Checking. ECAI 2012—20th European Conference on Artificial Intelligence. Including Prestigious Appli-

cations of Artificial Intelligence (PAIS-2012) System Demonstrations Track, Montpellier, France, 2012

Aug;p:570–575.

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 15 / 16

https://doi.org/10.1371/journal.pone.0231702

34. Salhi S. Defining tabu list size and aspiration criterion within tabu search methods. Computers & OR.

2002; 29(1):67–86.

35. Cai S, Su K. Configuration Checking with Aspiration in Local Search for SAT. Proceedings of the

Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada, 2012 Jul.

36. Tompkins DAD, Balint A, Hoos HH. Captain Jack: New Variable Selection Heuristics in Local Search for

SAT. Theory and Applications of Satisfiability Testing—SAT 2011—14th International Conference,

SAT, Ann Arbor, MI, USA, 2011 Jun;p:302–316.

37. Li C, Huang W. Diversification and Determinism in Local Search for Satisfiability. Theory and Applica-

tions of Satisfiability Testing, 8th International Conference, SAT, St. Andrews, UK, 2005 Jun;p:158–

172.

38. Li C, Wei W, Zhang H. Combining Adaptive Noise and Look-Ahead in Local Search for SAT. Theory

and Applications of Satisfiability Testing—SAT 2007, 10th International Conference, Lisbon, Portugal,

2007 May;p:121–133.

39. Pham DN, Thornton J, Gretton C, Sattar A. Combining Adaptive and Dynamic Local Search for Satisfia-

bility. JSAT. 2008; 4(1):149–172.

40. Balint A, Fröhlich A. Improving Stochastic Local Search for SAT with a New Probability Distribution.

Theory and Applications of Satisfiability Testing—SAT, Edinburgh, UK, 2010 Jul;p:10–15.

41. Gableske O, Heule M. EagleUP: Solving Random 3-SAT Using SLS with Unit Propagation. Theory and

Applications of Satisfiability Testing—SAT, Ann Arbor, MI, USA, 2011 Jun;p:367–368.

42. McAllester DA, Selman B, Kautz HA. Evidence for Invariants in Local Search. Proceedings of the Four-

teenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelli-

gence Conference, AAAI 97, IAAI 97, Providence, Rhode Island, USA., 1997 Jul;p:321–326.

43. Hoos HH. On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT. Proceedings of

the Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on Innovative

Applications of Artificial Intelligence, Orlando, Florida, USA., 1999 Jul;p:661–666.

44. Hoos HH. An Adaptive Noise Mechanism for WalkSAT. Proceedings of the Eighteenth National Confer-

ence on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelli-

gence, Edmonton, Alberta, Canada, 2002 Jul;p:655–660.

45. Li C, Wei W, Li Y. Exploiting Historical Relationships of Clauses and Variables in Local Search for

Satisfiability—(Poster Presentation). Theory and Applications of Satisfiability Testing—SAT 2012—

15th International Conference, Trento, Italy, 2012 Jun;p:479–480.

46. Selman B, Kautz HA, Cohen B. Noise Strategies for Improving Local Search. Proceedings of the 12th

National Conference on Artificial Intelligence, Seattle, WA, USA, 1994 Jul;1:337–343.

47. Gent IP, Walsh T. Towards an Understanding of Hill-Climbing Procedures for SAT. Proceedings of the

11th National Conference on Artificial Intelligence, Washington, DC, USA, 1993 Jul;p:28–33.

48. Hutter F, Tompkins DAD, Hoos HH. Scaling and Probabilistic Smoothing: Efficient Dynamic Local

Search for SAT. Principles and Practice of Constraint Programming—CP 2002, 8th International Con-

ference, CP, Ithaca, NY, USA, 2002 Sept;p:233–248.

49. http://www.cril.univ-artois.fr/SAT11/bench/SAT11-Competition-SelectedBenchmarks.tar

50. http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-sources.tar.gz

51. Thornton J, Pham DN, Bain S, Jr VF. Additive versus Multiplicative Clause Weighting for SAT. Proceed-

ings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innova-

tive Applications of Artificial Intelligence, San Jose, California, USA, 2004 Jul;p:191–196.

52. Duong TN, Pham DN, Sattar A, Newton MAH. Weight-Enhanced Diversification in Stochastic Local

Search for Satisfiability. IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial

Intelligence, Beijing, China, 2013 Aug;p:524–530.

53. Li CM, Li Y. Satisfying versus Falsifying in Local Search for Satisfiability—(Poster Presentation). Theory

and Applications of Satisfiability Testing—SAT 2012—15th International Conference, Trento, Italy,

2012 Jun;p:477–478.

PLOS ONE Applying aspiration in local search for satisfiability

PLOS ONE | https://doi.org/10.1371/journal.pone.0231702 April 23, 2020 16 / 16

http://www.cril.univ-artois.fr/SAT11/bench/SAT11-Competition-SelectedBenchmarks.tar
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-sources.tar.gz
https://doi.org/10.1371/journal.pone.0231702

