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Background: Computed tomography (CT) signs of lung nodules play an important role in indicating 
lung nodules’ malignancy, and accurate automatic classification of these signs can help doctors improve their 
diagnostic efficiency. However, few relevant studies targeting multilabel classification (MLC) of nodule signs 
have been conducted. Moreover, difficulty in obtaining labeled data also restricts this avenue of research to 
a large extent. To address these problems, a multilabel automatic classification system for nodule signs is 
proposed, which consists of a 3-dimensional (3D) convolutional neural network (CNN) and an efficient new 
semi-supervised learning (SSL) framework.
Methods: Two datasets were used in our experiments: Lung Nodule Analysis 16 (LUNA16), a public 
dataset for lung nodule classification, and a private dataset of nodule signs. The private dataset contains 
641 nodules, 454 of which were annotated with 6 important signs by radiologists. Our classification system 
consists of 2 main parts: a 3D CNN model and an SSL method called uncertainty-aware self-training 
framework with consistency regularization (USC). In the system, supervised training is performed with 
labeled data, and simultaneously, an uncertainty-and-confidence-based strategy is used to select pseudo-
labeled samples for unsupervised training, thus jointly realizing the optimization of the model.
Results: For the MLC of nodule signs, our proposed 3D CNN achieved satisfactory results with a mean 
average precision (mAP) of 0.870 and a mean area under the curve (AUC) of 0.782. In semi-supervised 
experiments, compared with supervised learning, our proposed SSL method could increase the mAP by 
7.6% (from 0.730 to 0.806) and the mean AUC by 8.1% (from 0.631 to 0.712); it thus efficiently utilized 
the unlabeled data and achieved superior performance improvement compared to the recently advanced 
methods.
Conclusions: We realized the optimal MLC of lung nodule signs with our proposed 3D CNN. Our 
proposed SSL method can also offer an efficient solution for the insufficiency of labeled data that may exist 
in the MLC tasks of 3D medical images.
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Introduction

Lung cancer is currently the second most common cancer 
in the world and is also the leading cause of cancer death (1).  
For all stages combined, the 5-year relative survival rate 
in lung cancer is relatively low, at approximately 22% (2). 
Therefore, the early screening of lung nodules is of great 
significance. From computed tomography (CT) images, 
radiologists can form a reliable, preliminary diagnosis of 
nodules’ malignance according to the size and shape of 
nodules, which greatly improves the early detection rate of 
lung cancer. In the process of diagnosis, common lung CT 
signs provide important evidence for radiologists to diagnose 
diseases in patients. CT signs are strongly associated with 
specific thoracic disorders, which can increase diagnostic 
specificity (3) and are often used as the qualitative 
features to predict the invasiveness of lung cancer (4).  
As shown in Figure 1, recognition of these signs is an 
important basis for radiologists to differentiate lung nodules 
in CT. Therefore, accurate automatic classification of 
nodule signs can help doctors improve diagnostic efficiency. 
Moreover, there is often a certain degree of subjectivity 
in judging signs, and thus automatic classification can 
reduce errors caused by radiologists’ subjective judgments. 
Additionally, end-to-end diagnostic models are being 
increasingly applied in nodule classification tasks (5,6), 
but it is not clear how the models actually work (7). This 
black-box diagnostic mode is often questioned in clinical 
applications. Doctors’ trust in artificial intelligence will 
be greatly reduced under external time pressure. Thus, 
providing doctors with more explainable evidence is more 
important than providing an unexplainable answer (8), and 
nodule signs classification can meet this need well. Overall, 
building an automatic classification system of nodule signs 
would be a highly worthwhile endeavor.

CT sign classification models can be divided into 3 types: 
binary classification models, multiclassification models, and 
multilabel classification (MLC) models. First, the binary 
classification model is typically built for a certain sign. 
Through use of hybrid resampling and feature fusion, 2 

classification models for ground-glass opacity and the cavity 
in nodules, respectively, have been designed (9,10). In one 
study, the snake model (active contour model) was applied to 
extract the precise contour information of a nodule and to 
help build a spiculation recognition model (11). The binary 
classification model for a certain CT sign often makes full 
use of the shape and texture characteristics of this sign 
and tends to have good performance in the classification. 
However, when the model is used for other signs, its 
performance will drop sharply. If one model is designed for 
each sign, the overall classification efficiency is bound to 
decline. Second, the multiclassification model is a model 
that outputs only 1 positive class from multiple classes. 
For example, a fused classification model was proposed 
to identify 9 kinds of lung CT signs (12). Image retrieval 
methods are also used to realize CT sign classification 
(13,14). He (15) proposed using images of signs generated 
by a generative adversarial network (GAN) to pretrain the 
convolutional neural network (CNN) model, and then use 
real data to fine-tune the model. These multiclassification 
models are trained on multiclassification sign datasets, 
which means that each image in the dataset contains only 
1 sign. This leads to 2 major issues: (I) the process does 
not conform to the actual clinical application scenario, 
and (II) the data labeling process is extremely tedious. A 
nodule usually contains more than one sort of sign, so when 
the general area of a nodule is located, it is hoped that an 
efficient sign classification model can diagnose all signs 
contained in the entire area of the lesion at a time. The 
multiclassification model can output only 1 positive class at 
a time and therefore cannot meet our needs. Moreover, the 
acquisition of multiclassification sign annotation requires 
radiologists to additionally crop each sign, representing 
an inevitable and massive increase in the workload. As an 
MLC model can output multiple positive classes at a time, 
what is needed is an MLC model that can evaluate all the 
signs in the nodular lesion area simultaneously. Accordingly, 
radiologists would only need to annotate the nodules with 
global annotations of signs, which would greatly reduce the 
annotation workload.
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Semi-supervised learning (SSL) can use a small amount 
of labeled data and a large amount of unlabeled data in the 
training process, in which unlabeled data can also be used 
to improve model performance. Considering the difficulty 
of acquiring sign annotation, this paper further explores 
the implementation of an SSL method in the MLC task of 
nodule signs. A variety of SSL methods have been proposed 
for image classification, among which consistency training 
(16,17) and pseudo-labeling (18-20) are the most commonly 
used. Consistency training is based on the consistency 
regularization method, which emphasizes that the realistic 
perturbations of the data points should not change the 
output of the model (21). Pseudo-labeling is based on 
entropy minimization (22), which combines unlabeled 
data and low-entropy predictions for model optimization 

in a supervised manner (23). Most of the advanced SSL 
methods proposed in recent years use both consistency 
regularization and entropy minimization (24-27). In recent 
years, the SSL methods mentioned above have also been 
widely used in the field of medical image classification. 
For example, virtual adversarial training and consistency 
regularization were combined for the ultrasound image 
screening of breast cancer and for the multiclassification 
tasks in ophthalmic diseases (28). It was also reported that 
a similarity metric function in the semantic representation 
space for pseudo-label selection was used to iteratively 
incorporate unlabeled samples so as to optimize the model 
for the diagnosis of benign and malignant lung nodules (29).  
Effective SSL methods have also been designed for the MLC 
of thorax disease, which have been tested on 2D chest X-ray 

Figure 1 Examples of common lung nodule CT signs. (A) Spiculation and lobulation; (B) vessel convergence, pleural indentation; (C) air 
bronchogram; (D) tumor-lung interface. The nodule CT sign in the red dotted box is enlarged and displayed in the red solid line box in 
the upper left corner or lower left corner of the subfigure. To better display the characteristics of different nodule signs, the corresponding 
binary image is given in the light green box. CT, computed tomography.
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images. In contrast to the traditional consistency-based 
method which enforces the prediction consistency, a sample 
relation consistency method was proposed by Liu et al. (30),  
focusing on the consistency of the intrinsic relation among 
different unlabeled samples. To solve the imbalanced 
classification problem in SSL, Liu et al. (31) incorporated 
an anticurriculum learning method in pseudo-labeling. 
However, to the best of our knowledge, few studies have 
implemented SSL methods in MLC tasks of 3D CT. The 
advanced SSL methods that have been proposed (24-27) 
cannot be directly applied in the MLC of CT images. For 
one, these methods (using the softmax layer in the network) 
(24,26) are designed only for single-label classification. For 
another, the augmentation operation mixup (32) used in 
these SSL methods has been proven to be ineffective when 
extended to MLC (33). Additionally, strong augmentation 
is a crucial component in these SSL methods (25-27). 
However, some strong augmentation operations may 
severely alter the appearance of the images, making it 
difficult to identify lesion areas, which potentially makes 
them unsuitable for CT images.

Overall, our study aimed to overcome the following 
issues: (I) current classification models of CT signs are 
mostly designed for identifying individual signs, fail to 
judge all signs in the nodular lesion area simultaneously, 
and thus are impracticable for clinical application; (II) 
medical imaging labels are often difficult to obtain, and 
the process of annotating nodule CT signs is particularly 
time-consuming and labor intensive for radiologists. 
Therefore, we designed a 3D CNN which combines the 
dense block and convolutional block attention modules 
(CBAMs) for the MLC of nodule signs,  realizing 
simultaneous recognition of multiple signs in nodular 
lesions for the first time and propose a new SSL method: 
the uncertainty-aware (UA) self-training framework 
with consistency regularization (USC). This method 
was applied in the MLC task of nodule signs and can 
also be extended to other similar scenarios. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-40/rc).

Methods

Datasets

The lung nodules examined in this study were solitary 
pulmonary nodules (SPNs), which are defined as localized, 

circular or elliptical lesions in the lung with a diameter of 
≤3 cm. Many studies on SPNs have used the Lung Image 
Database Consortium and Image Database Resource 
Initiative (LIDC-IDRI) public dataset. In addition to 
benign and malignant annotation, the LIDC-IDRI dataset 
also provides some sign annotations, such as lobulation 
and spiculation (34). However, to our knowledge, there are 
other signs that can also affect the diagnosis of nodules. 
The presence of spiculation, lobulation, and vessel 
convergence (VC), and particularly of pleural indentation 
(PI) and air bronchogram (AB), is often indicative of 
a malignant nodule (35). As the LIDC dataset could 
not meet our needs for the MLC of nodule signs, we 
collected CT images of lung nodules with the annotation 
of several common signs and constructed our own nodule 
sign dataset. This retrospective study was conducted in 
accordance with the Declaration of Helsinki (as revised 
in 2013) and approved by the ethics committee of the 
Shanghai Public Health Clinical Center. By virtue of the 
retrospective nature of study, the collection of patient 
CT images and relevant clinical information would not 
adversely affect the patient’s rights or welfare, and thus 
need for individual consent was waived by the committee.

The datasets used in this study include 1 public dataset 
and 1 private dataset. The public dataset is the Lung 
Nodule Analysis 16 (LUNA16) dataset (36), which is 
a subset of the LIDC-IDRI dataset and was used for 
pretraining in this study. The LUNA16 dataset contains a 
total of 1,186 nodules, which were annotated by multiple 
radiologists for malignancy on a rating scale of 1–5, with 
1 indicating the lowest malignancy and 5 indicating the 
highest malignancy. In this study, the average rating of 
multiple ratings for the same nodule was used as the final 
assessment of its malignancy, and nodules with an average 
rating ≤2.5 were considered to be benign, while those with 
an average rating ≥3.5 were considered to be malignant. 
As a result, a total of 811 nodules were selected as the 
pretraining dataset (Table 1).

The private dataset of nodule CT signs was collected 
and annotated by the Shanghai Public Health Clinical 
Center and contains 641 nodules from 3 hospitals: 
Zhongshan Hospital Affiliated with Fudan University, 
the Second People’s Hospital of Ningbo Beilun District, 
and the Cancer Hospital Affiliated with Fudan University. 
Among the nodules, 454 samples are labeled. The data 
annotation in this study was performed by 2 radiologists 
(Y Zhuo, with 7 years of chest radiological experience 
and F Shan, with more than 18 years of chest radiological 

https://qims.amegroups.com/article/view/10.21037/qims-23-40/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-40/rc
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experience), and in cases of ambiguous labeling results, a 
consensus was reached through discussion. Six common 
signs related to lung nodules were annotated: lobulation, 
spiculation, tumor-lung interface (TLI), AB, VC, and PI. 
The distribution of label categories in the dataset is shown 
in Table 1. Generally, 1 indicates the presence of the sign in 
the nodule, and 0 indicates its absence. Specifically, for the 
TLI sign, 1 represents a clear interface, while 0 represents 
an unclear interface.

Workflow

The framework proposed in this paper consists of 3 main 
stages: (I) image preprocessing and data preparation stage, 
which involves preprocessing the CT images, performing 
the train-test split, and dividing the labeled and unlabeled 
data; (II) nodule sign classification model training stage for 
training the initial MLC model, in which our proposed 3D 
CNN (Model in Figure 2) is first pretrained with LUNA16 

Table 1 The label distribution of the public and private datasets

Label
LUNA16 Nodule CT signs

Malignance Lobulation Spiculation TLI AB VC PI

1 403 338 305 360 261 301 227

0 408 116 149 94 193 153 227

LUNA16, Lung Nodule Analysis 16; CT, computed tomography; TLI, tumor-lung interface; VC, vessel convergence; AB, air bronchogram; 
PI, pleural indentation.

Figure 2 An overview of our proposed USC framework. After preprocessing, the image is divided into labeled data and unlabeled data. The 
supervised training (the first line) is performed on the labeled data, and the supervised BCE loss is calculated between the model predictions 
and labels; the consistency training (the second and third line) is performed on the unlabeled data. During the consistency training process, 
selected pseudo-labels of weakly augmented samples are used to supervise the prediction of strongly augmented samples, and the consistency 
BCE loss is calculated between the predictions and the pseudo-labels. Pseudo-label selection is based on confidence and uncertainty. The 
confidence thresholds of positive and negative pseudo-labels set in this paper are 0.75 and 0.35, respectively (γP =0.75 and γN =0.35), while 
the uncertainty thresholds are 0.08 and 0.12, respectively (μP =0.08 and μN =0.12). USC, uncertainty-aware self-training framework with 
consistency regularization; BCE, binary cross entropy; LUNA16, lung nodule analysis 16.
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dataset and then fine-tuned with the labeled dataset of 
nodule signs; and (III) a USC semi-supervised learning 
stage for model optimization using both the labeled and 
unlabeled dataset. In the latter stage, the framework 
selectively uses the pseudo-labels generated by the fine-
tuned MLC model and the strongly augmented samples in 
a supervised manner. Simultaneously, the labeled data are 
used to fine-tune the model continuously. These 2 processes 
are repeated in every epoch. The overall process of the 
framework is shown in Figure 2.

Data preprocessing

All nodules used in this study were between 5 and 30 mm in 
size, and the slice thickness was less than 1.5 mm. CT images 
that failed to meet the requirements were screened out from 
the dataset in advance. For all the CT images, we carried 
out the following preprocessing operations: (I) to have a 
clearer observation of the nodular signs, we adjusted the 
CT window width and level to the lung window [a window 
width of 1,500 Hounsfield unit (HU) and a window level 
of –500 HU]; (II) we resampled the CT image according 
to the spacing of 0.5 mm × 0.5 mm × 0.5 mm; (III) we used 
the mask center as the nodule center to extract a 3D cube of 
64×64×64 pixels, which ensured that the cube contained all 
the nodule signs while reducing the inclusion of irrelevant 
lung tissue surrounding the nodule as much as possible.

MLC method

CNNs are commonly used in artificial intelligence-driven 
computer-aided diagnosis systems and have demonstrated 
promising prediction accuracy for lung nodule risk 
stratification (37). According to the input, CNN-based 
diagnosis models in CT image analysis can be mainly 
divided into the following 3 types: (I) 2D CNN using a 
single slice as input (38); (II) 2D CNN using multiple slices 
as input, generally consisting of images from different 
perspectives or scales (39,40); and (III) 3D CNN using 
the entire 3D volume as input (41,42). As various nodule 
signs may appear in different slices, finding a slice in 
the CT series that contains all the nodule signs is highly 
unrealistic. Another major problem related to the 2D CNN 
using multiple images as input is that it sees the CT series 
as many independent slices, ignoring useful continuous 
information between adjacent slices. Because the 3D 
convolutional kernel can leverage interslice context, we 
built a 3D CNN model for the MLC of nodule signs. Our 
proposed 3D CNN was constructed using dense blocks 
and CBAMs. The dense block enhances feature reuse 
through dense connections (43), while the CBAM builds 
both spatial and channel attention maps to incorporate 
global information into the network (44). Specifically, the 
3D CNN contains 3 stages (Figure 3). Stage 1 contains 
two 3D convolutional layers with a kernel size of 3 and a 
CBAM (44). Both stages 2 and 3 are composed of a 3D 

Figure 3 The overall architecture of our proposed 3D CNN. 3D CNN, 3-dimensional convolutional neural network; CBAM, convolutional 
block attention module; FC, fully connected layer; CAM, channel attention module; SAM, space attention module.
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convolutional layer with a stride of 2, two dense blocks (43), 
a CBAM, and a dropout layer (dropout rate =0.3). Stage 4 
consists of an adaptive max pooling layer, a fully connected 
(FC) layer, and a sigmoid layer. As shown in Figure 3, each 
dense block contains 4 bottlenecks with a growth rate of 16, 
meaning that after each dense block, the number of feature 
channels increases by 64. CBAM consists of 2 modules, the 
channel attention module (CAM) and the spatial attention 
module (SAM). CAM and SAM respectively compute the 
attention weights for feature channels and spatial locations 
to optimize the features jointly.

It is well known that the performance of deep learning 
models relies on representation learning based on massive 
data (45). Training deep learning models with a small 
dataset often leads to overfitting, so model pretraining 
has become a basic step. Many image classification tasks 
are first pretrained on ImageNet, but due to the large 
differences in features between natural images and medical 
images, especially grayscale images such as CT, pretraining 
on ImageNet has been proven to be ineffective in medical 
image-related tasks (46). Therefore, in this study, we used 
the LUNA16 dataset to pretrain the model.

Two classical models, 3D DenseNet (43) and 3D 
ResNet (47), were reimplemented for comparison. We 
also included 2 other models, Local_Global (38) and 
NASLung (42), for comparison; the former is a 2D model, 
while the latter is a 3D model, and both have achieved 
state-of-the-art performance in benign and malignant lung 
nodule classification. We examined their applicability to 
the classification of nodule signs.

SSL method

The training of the 3D model requires a large amount 
of labeled data, and as mentioned above, nodule sign 
annotation is labor intensive, while the acquisition of 
unlabeled nodule data is comparatively convenient. 
Consequently, we thought to use an SSL method to 
improve MLC performance. In this section, we describe, 
in detail, our proposed SSL method, USC. Our proposed 
method consists of 2 parts: self-training and consistency 
regularization.

For the MLC task, we use ( ) ( ) )( }{
1

,
lN

i i
l l l

i
X x y

=
=  to denote 

a labeled dataset with Nl samples, where ( )i
lx  denotes the 

input  sample ,  ( ) ( ) }{( )
1 , , 0,1

Ci i i
l Cy y y = ⊆  denotes  the 

corresponding ground truth label, and C denotes the 

number of labels for MLC. ( ) 1i
cy =  indicates that the label 

exists in the i-th sample, while ( ) 0i
cy =  indicates that the 

label does not exist in the i-th sample. Accordingly, in this 

paper, ( )i
cy  denotes whether a particular sign is present in 

the sample. Similarly, ( )( )}{
1

uN
i

u u
i

X x
=

=  denotes an unlabeled 

dataset with Nu samples. Therefore, the entire dataset can 

be represented as X={Xl, Xu}.

Consistency regularization
Recently, advanced methods in the semi-supervised field 
have typically used the idea of consistency regularization. 
Consistency regularization is based on the manifold 
assumption, which requires that perturbations applied to 
input do not cause a change in model output (23). The idea 
of consistency regularization is generally incorporated in 
semi-supervised methods in the form of the consistency 
loss term. More specifically, for an unlabeled sample xu, the 
consistency loss is defined as follows:

( )( ) ( )( )
2

2
, ,u uP y x P y xα θ α θ′| − |  [1]

where ( ),P y x θ|  is used to denote the output distribution 

of the model whose parameter is θ, and α and α' are used 
to denote the random perturbation applied to the sample. 
Due to the random perturbation, the inputs of the model 
are not the same, thus leading to a difference in the outputs. 
The L2 loss is used to measure the difference (i.e., the 
consistency loss), and the Kullback-Leibler (KL) divergence 
loss (48) and cross-entropy loss (25,26) are also used in 
some studies.

Self-training
The self-training algorithm regards high-confidence 
predictions as the pseudo-labels for unlabeled data (20). 
More specifically, it uses the base classification model 
trained on a small number of labeled samples to predict 
pseudo-labels for unlabeled samples and then selectively 
uses the pseudo-labeled samples in model optimization 
together with the labeled samples.

After the pseudo-label inference is completed by the 
base classification model, the common strategy of pseudo-
label selection is to determine whether it reaches a certain 
confidence threshold. For MLC, the output of the sample 
through the sigmoid layer of the model represents the 
confidence that the label exists in the sample. We use p(i) to 

denote the model prediction on the i-th sample and ( )i
cp  to 
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denote the prediction of the c-th class in the i-th sample, 

with [ ]1,c C∈  and C being the total number of class labels 

for MLC. The pseudo-label selection conforms to the 
following formula:

( )( ) ( )( )i i(i)
c c P c Ng = I p > γ + I p < γ  [2]

where I denotes the indicator function, and γP and γN denote 
the confidence thresholds of positive and negative pseudo-

labels, respectively. If ( )i
c Pp γ> , the positive pseudo-label 

corresponding to class c will be selected; if 
( )i
c Np γ< , the 

negative pseudo-label corresponding to class c will be 
selected.

UA self-training framework with consistency 
regularization
In the SSL method based on self-training, the quality 
of pseudo-labels will directly affect the classification 
performance. If the pseudo-labels we use in model training 
are reliable and stable, with the addition of plentiful 
pseudo-labeled samples, the robustness of the model will 
be continuously enhanced, while if incorrect pseudo-labels 
are overused, much noise will be introduced into the model 
training process, resulting in a decline in the performance 
of model classification. Using confidence and uncertainty 
simultaneously for pseudo-label selection can improve the 
accuracy of the pseudo-labels used for model training and 
greatly reduce the introduction of noise during training (20).  
To obtain more stable and reliable pseudo-labeled samples, 
we also incorporated the above strategy into our method. 
More specifically, as shown in Figure 2, we first use labeled 
samples to train the initial MLC model, and then the model 
is used to infer labels on weakly augmented unlabeled 
samples. During the inference process, Monte Carlo 
dropout (49) is used. This means the dropout layer is kept 
open in the network to add perturbations to the model. 
Inference is repeated for each unlabeled sample 10 times, 
and the mean and variance of multiple inference results are 
each calculated, with the mean being the confidence and the 
variance being the uncertainty. According to the confidence 
and uncertainty, we then decide whether to select the 
inference result of the sample as a pseudo-label. Only when 
both the confidence and uncertainty requirements are met, 
will we select the pseudo-label and use it for self-training. 
For unlabeled samples xu, whether or not the prediction 
of the c-th class label in the i-th sample can be used as a 
pseudo-label is determined as follows:

( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )i i i i i
c c P c P c N c Ng I u p I p I u p I pµ γ µ γ= < × > + < × <   [3]

where ( )i
cp  is the prediction of the c-th class in the sample ( )i

ux ,  
and u is a function used for calculating the uncertainty of 
the prediction. γP and γN respectively represent the confidence 
thresholds, and similarly, μP and μN respectively represent 
the uncertainty thresholds. These 4 hyperparameters 
are used to judge whether the prediction is a qualified 

positive or negative pseudo-label. ( ) }{0,1i
cg ∈  acts as a flag, 

indicating if the prediction can be selected as a pseudo-
label. Meanwhile, the same unlabeled sample will also be 
strongly augmented, the prediction of which can then be 
obtained through the model. Finally, a consistency loss 
is constructed between the prediction of the strongly 

augmented image and the pseudo-label based on ( )i
cg . 

The pseudocode of our proposed method can be found in  
Figure 4.

In the training of the overall network, the loss consists 
of 2 parts: the supervised loss of labeled data and the 

consistency loss of unlabeled data, which is simply s u uλ+  ,  
where λu is a fixed coefficient used to represent the 

relative weight of the consistency loss. Both s  and u  are 
calculated in a custom binary cross-entropy (BCE) loss 
form, which can be uniformly expressed as follows:

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )( ) ( )( )

1

1

1ˆ ˆ, , ,

1 ˆ ˆlog 1 log 1

=

=

= ⋅

 = − + − − 

∑∑

∑∑

 

 

C
i i i i i i

bce c bce c ci
c

C
i i i i i

c c c c ci
c

L y y g g D y y
g

g y y y y
g

[4]

where ( )ˆ iy , ( )iy , ( )ig and are all C-dimensional vectors; 
( )ˆ iy  denotes the model prediction for the i-th sample; and 
( )iy  denotes the label of the i-th sample. For the labeled 

sample, it is its original ground truth label, and for the 
incorporated pseudo-labeled sample, it is its pseudo-label. 

( )ig  consists of ( )i
cg . For a labeled sample, its ( )i

cg  is all 1, 
while for a pseudo-labeled sample, the value depends on 
whether the inference outcome meets the requirements of 
confidence and uncertainty, as is defined in Equation [3]. If 
the inference outcome of the class c meets the requirements, 

( )i
cg  equals  1 ;  otherwise,  ( )i

cg  equals  0 .  Thus,  the 
indeterminate pseudo-label will be ignored in calculating 

the loss. ( ) ( )( )ˆ ,i i
bce c cD y y  denotes the BCE between ( )ˆ i

cy   

and 
( )i
cy .

Considering that few studies have been conducted on 
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SSL for an MLC task of 3D medical images, to further 
verify the effectiveness of our proposed semi-supervised 
method, we reimplemented 2 works: FixMatch, which is 
also based on self-training and consistency regularization 
methods and which is capable of achieving state-of-the-art 
performance across many standard SSL benchmarks (27); 
and UPS, which is one of the most recent of the proposed 
SSL methods that only uses the pseudo-labeling method 
and which performs on par with consistency regularization-
based SSL methods (20). We adapted these 2 methods to be 
suitable for the MLC task and compared their performance 
with that of our proposed USC method.

Augmentation in our proposed USC
In our proposed USC method, 2 versions of 3D image 
augmentation methods are applied: “weak” and “strong”. 
We adopt the f l ip-and-crop strategy in the weak 
augmentation. Specifically, it includes the random flip 
along the X, Y, and Z axes and a random crop operation 
after padding. As for strong augmentation, apart from 
the traditional augmentation transformations such as 
Flip, Rotate, ElasticTransform, and GaussianNoise, 
considering the characteristics of CT images, we also 
incorporate RandomCropBorder and RandomDropPlane  
operations (50). The specific augmentation transformations 
and corresponding probabilities of using them in the weak 

and strong augmentation methods are shown in Table 2.

Experiment

Dataset partition and experimental setup
In our experiments, the nodule sign dataset was split into 
training and testing sets at the nodule level for a realistic 
evaluation. For MLC method assessment, we used all 
454 labeled samples and implemented a 5-fold cross-
validation. For SSL method assessment, based on the 
same 5-fold cross-validation split, we selected a small 
portion of the training set as labeled data, removed the 
labels of the remaining training set, and mixed them with  
187 unlabeled samples to form the unlabeled data. 
Eventually, the labeled data accounted for 15% of the entire 
training dataset, which conforms to the basic assumption 
of semi-supervised learning of labeled data being far less 
abundant than unlabeled data. The overall dataset partition 
is shown in Figure 5.

In the training phase of the MLC model, we used Adam 
optimizer with the learning rate ranging from 1e-3 to 3e-4 
for different models with a batch size of 16 and trained 
each model for 100 epochs. During training, we performed 
the following augmentation operations on the input data: 
random flip along each of the axes and random crop (fist 
padding the nodule to 68×68×68 pixels and then randomly 

Figure 4 Pseudocode of USC. CT, computed tomography; USC, uncertainty-aware self-training framework with consistency regularization.



Quantitative Imaging in Medicine and Surgery, Vol 13, No 9 September 2023 5545

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(9):5536-5554 | https://dx.doi.org/10.21037/qims-23-40

Table 2 List of transformations used in USC

Variables Transformation Description

Weak augmentation Flip Random flip along each of the axes, P=0.5

Crop First pad the volume and then crop the volume at a random location, P=1.0

Strong augmentation Rotate Random rotation up to 20° along the vertical axis, P=0.5

Flip Random flip along each of the axes, P=0.5

ElasticTransform Applying elastic deformation to the volume, P=0.4

GaussianNoise Adding Gaussian noise to the volume, P=0.5

RandomGamma Randomly changing the contrast of the volume, P=0.8

GridCutout Dropping cuboid regions of a volume in grid fashion, P=0.4

RandomCropBorder Randomly removing some pixels from borders, P=0.4

RandomDropPlane Randomly removing a few intermediate 2D planes along the vertical axis, P=0.4

USC, uncertainty-aware self-training framework with consistency regularization; 2D, two-dimensional.

Figure 5 The dataset split into the MLC and SSL experiments. CT, computed tomography; MLC, multilabel classification; SSL, semi-
supervised learning.

cropping a patch of 64×64×64 pixels).
In the experiments of SSL methods, we used our 

proposed 3D CNN with transfer learning as the MLC 
model. We first fine-tuned the pretrained MLC model 
with labeled data using the Adam optimizer with a learning 
rate of 1e-4 and a batch size of 16 for 100 epochs and 
then further optimized the model via our proposed USC 
method with a learning rate of 3e-5 for another 100 epochs. 
In the process of applying USC, we randomly resampled 
the labeled data to make it consistent in quantity with the 

unlabeled part to ensure that in each training iteration, the 
labeled data and unlabeled data were equal in number.

In all experiments, we used PyTorch (Linux Foundation) 
to build MLC models and the SSL frameworks and trained 
the models on 4 Titan Xp graphics cards (Nvidia). The 
source code is publicly available at https://github.com/
oslo71/USC.

Metrics of performance evaluation
To comprehensively evaluate the MLC model and SLL 
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method we proposed for lung nodule sign classification, 
we calculated the accuracy, micro-F1, macro-F1, hamming 
loss, and mean average precision (mAP) as the performance 
metrics. The detailed definitions and formulae for these 
metrics are as follows.

The overall accuracy was calculated by taking the average 
of the accuracies of each individual class. The formula for 
calculating the overall accuracy is as follows:

1 1

1 1C C
c c

c
c c c c c c

TP TNAccuracy Accuracy
C C TP TN FP FN= =

+
= =

+ + +∑ ∑
 
 [5]

We separately calculated 2 types of F1-score: micro-F1 
and macro-F1. For macro-F1, we first calculated the 
precision and recall for each class, and then the macro-F1 
was calculated by averaging on the F1-score of each 
individual class as follows:

c
c

c c

TPPrecision
TP FP

=
+  

[6]

c
c

c c

TPRecall
TP FN

=
+  

[7]

1 1

21 1- 1 1-
= =

⋅ ⋅
= =

+∑ ∑
C C
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Precision Recallmacro F F score
C C Precision Recall    [8]

The micro-F1 was computed using the total true-positive 
(TP), false-positive (FP), and false-negative (FN) counts 
across all labels and samples as follows:
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The hamming loss was defined as the fraction of 
misclassified labels to the total number of labels of all 
samples as follows:

( )
1

0

1 ˆ
−

=

= ≠∑ 

labelsN
c c

Hamming j j
jlabels

L I y y
N  [12]

The area under the precision–recall curve, referred to as 
average precision (AP), represents the AP of the classifier. 
By computing the AP for each class and taking the mean, 

we obtained the mAP of the MLC classifier.
We further calculated the area under the curve (AUC) for 

each sign class and the average overall AUC. We performed 
5-fold cross-validation in both the MLC experiments and 
semi-supervised experiments, with all results being averaged 
on the test set.

Results

Performances of MLC models trained from scratch

In the experiment for the MLC of nodule signs, based on 
all the labeled data, we used the schemes of a 2D model 
and 3D models, respectively. The 2D model was the Local_
Global model, and the 3D models were ResNet, DenseNet, 
NASLung, and the 3D CNN proposed in this paper. As is 
shown in Table 3, Our proposed CNN model achieved the 
best performance with an accuracy of 0.751, an mAP of 
0.860, a hamming loss of 0.249, and an F1-micro and F1-
macro of 0.820 and 0.812, respectively. The performances 
of NASLung and 3D DenseNet were slightly inferior to 
our proposed 3D CNN, but the number of parameters in 
these models are much higher than that of our proposed 
3D CNN.

Medical-to-medical transfer learning

In our study, we adopted a medical-to-medical transfer 
learning strategy. The LUNA16 dataset was used to 
pretrain our proposed 3D CNN, and fine-tuning was 
then performed in the phase of MLC with the nodule sign 
dataset. During the model fine-tuning process, the first 
and second stages of the network were frozen, and only 
the remaining network parameters were updated. Table 4  
demonstrates that after applying the transfer learning 
strategy to our model, we further obtained performance 
improvements of 1.1% accuracy, 1.0% mAP, 0.6% F1-
micro, and 1.1% hamming loss. For the results of 5-fold 
cross-validation, we compiled the confusion matrix of each 
fold to obtain the integrated confusion matrix, which is 
presented in Figure 6.

For each lung nodule sign in the MLC task, we used 
AUC to evaluate the classification performance of the 
model. Table 5 shows that our proposed 3D CNN with 
transfer learning achieved an average AUC of 0.782 on 
all 6 signs and an average AUC of 0.805 on the 5 signs of 
lobulation, spiculation, VC, AB, and PI. However, for the 
TLI sign, our CNN performed relatively poorly.
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Table 3 Performance comparison of the MLC models trained from scratch

Model Parameter Accuracy mAP F1-micro F1-macro Hamming loss

Local_Global (2D) 183.99 k 0.739 0.838 0.809 0.793 0.261

ResNet-34 (3D) 63,472.71 k 0.719 0.828 0.790 0.781 0.281

DenseNet-121 (3D) 11,248.77 k 0.748 0.845 0.817 0.808 0.252

NASLung (3D) 28,564.35 k 0.744 0.851 0.812 0.801 0.256

The proposed CNN 1,409.54 k 0.751* 0.860* 0.820* 0.812* 0.249*

*, the best performance in each column. MLC, multilabel classification; mAP, mean average precision; 2D, two-dimensional; 3D, three-
dimensional; CNN, convolutional neural network; k, thousand.

Table 4 Performance of transfer learning

Model Accuracy mAP F1-micro F1-macro Hamming loss

The proposed CNN 0.751 0.860 0.820 0.812 0.249

The proposed CNN + transfer learning 0.762* 0.870* 0.826* 0.816* 0.238*

*, the best performance in each column. mAP, mean average precision; CNN, convolutional neural network.

Figure 6 The confusion matrix of our proposed CNN with transfer learning. CNN, convolutional neural network; TLI, tumor-lung 
interface; VC, vessel convergence; AB, air bronchogram; PI, pleural indentation.

Comparison of MLC and separate binary classification

To prove the superiority of a single MLC model for all 
nodule signs compared to 6 separate classification models for 
each sign, we converted the multilabel dataset into a single-

label dataset with multiple classes, used the same model 
architecture as our proposed 3D CNN to build 6 binary 
classification models, pretrained the models with LUNA16 
dataset, and fine-tuned each model with the nodule sign 
dataset. The comparison is shown in Table 6. The AUC of our 
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MLC model was better than that of the binary classification 
model on the 4 signs of lobulation, spiculation, AB, and 
PI. Although in terms of TLI and VC, the performance of 
MLC was inferior to that of a binary classification model, 
the overall average AUC of the MLC model reached 0.782, 
which was 0.6% higher than the average AUC of the 6 binary 
classification models trained separately.

Performance of the SSL method USC

An ablation study was conducted to demonstrate the 
superiority of our proposed SSL method. To evaluate the 
effect of our proposed USC method and the confidence-
and-uncertainty-based pseudo-label selection strategy, we 
also trained a supervised model and a model only using the 
confidence to select pseudo-labels. Table 7 shows that for 
the initial MLC model trained with a small labeled dataset, 
the performance was inadequate, with an accuracy of 0.662, 
an mAP of 0.730, and an average AUC of 0.631. With the 
introduction of pseudo-labeled samples, all classification 

metrics significantly improved. Under the confidence-based 
pseudo-label selection strategy (USC without UA selection), 
the accuracy reached 0.702, the mAP reached 0.800, and 
the average AUC reached 0.707. When our confidence-
and-uncertainty-based pseudo-label selection strategy 
(USC with UA selection) was used, the metrics mentioned 
above were further improved (accuracy: 1.2%; mAP: 0.6%; 
average AUC: 0.5%). Obviously, the confidence-and-
uncertainty-based pseudo-label selection strategy in USC 
could further enhance the performance of the MLC model 
as compared to the strategy that used confidence only.

In the process of pseudo-label selection, as shown in 
Figure 7, if only confidence was used (USC without UA), 
then all unlabeled samples are selected at the beginning 
of self-training. When the confidence and uncertainty 
are considered at the same time (USC with UA), the 
quantity of selected unlabeled samples grows rapidly from 
a relatively small number, and nearly all unlabeled samples 
will be selected after 60 epochs. Correspondingly, the total 
number of selected pseudo-labels under this strategy is 

Table 5 The AUC of 6 nodule signs

Model TLI Lobulation Spiculation VC AB PI Average AUC

The proposed CNN + transfer learning 0.670 0.790 0.824 0.800 0.806 0.804 0.782

TLI, tumor-lung interface; VC, vessel convergence; AB, air bronchogram; PI, pleural indentation; AUC, area under receiver operating 
characteristic curve; CNN, convolutional neural network.

Table 6 Performance comparison of the MLC model and the binary classification model

Model TLI Lobulation Spiculation VC AB PI Average AUC

Separate binary classification 0.693* 0.752 0.806 0.807* 0.805 0.792 0.776

Multilabel classification 0.670 0.790* 0.824* 0.800 0.806* 0.804* 0.782*

*, the best performance in each column. MLC, multilabel classification; AUC, area under receiver operating characteristic curve; TLI, 
tumor-lung interface; VC, vessel convergence; AB, air bronchogram; PI, pleural indentation.

Table 7 Ablation study

Method Accuracy mAP F1-micro F1-macro Hamming loss Average AUC

Supervised 0.662 0.730 0.762 0.742 0.338 0.631

USC, without UA 0.702 0.800 0.792 0.774 0.298 0.707

USC, with UA 0.714* 0.806* 0.800* 0.784* 0.286* 0.712*

Supervised: only using the labeled data; USC, without UA: selection of pseudo-labels using a confidence-based strategy only; USC, 
with UA: selection of pseudo-labels using a confidence-and-uncertainty-based strategy. *, the best performance in each column. USC, 
uncertainty-aware self-training framework with consistency regularization; UA, uncertainty aware; mAP, mean average precision; AUC, 
area under receiver operating characteristic curve.
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only two-thirds that of the former strategy. Since different 
confidence and uncertainty thresholds are set for positive 
and negative pseudo-label selection, the number of positive 
and negative pseudo-labels used for model optimization 
is also quite different. Overall, the number of selected 
positive and negative pseudo-labels both tend to be stable 
after 60 epochs, and the number of positive pseudo-labels 
is about 3 times that of negative pseudo-labels.

In addition, as part of the unlabeled data were generated 
from the labeled data artificially, we also conducted a 
statistical analysis of the accuracy of the pseudo-labels for 
them. As depicted in Figure 8A, the USC with UA achieved 
significantly higher accuracy in selecting pseudo-labels 
than did the USC without UA, with an average accuracy 
reaching 78.3% after 60 epochs, which is 3.2% higher than 
that of the USC without UA. Furthermore, as shown in 
Figure 8B, the accuracy of positive pseudo-labels selected 
by the USC with UA method was much higher than that of 
the negative pseudo-labels, and the accuracy of the positive 
pseudo-labels gradually increased with the pseudo-labeling 
process, while the accuracy of the negative pseudo-labels 

decreased to some extent.

Comparison with other advanced SSL methods

We reimplemented the FixMatch and UPS method for 
comparison with our proposed USC. In the FixMatch 
experiment, the pseudo-labels were directly selected upon 
the confidence threshold for consistency training. In the 
UPS experiment, the pseudo-labeled samples were treated 
as labeled data to extend the dataset, and the model was 
then retrained using the extended dataset. Table 8 shows 
the improvement in metrics that the above 2 methods and 
our USC method yielded for the MLC of nodule signs. We 
can see that on all metrics, our proposed USC achieved the 
most significant performance improvement.

Discussion

In this study, we realized the MLC of common CT 
imaging signs of lung nodules with our proposed 3D CNN, 
proposed a new SLL method for the MLC task of 3D 

Figure 7 The total number of selected pseudo-samples and pseudo-labels. (A) Comparison of the total number of selected pseudo-samples 
between USC without UA and USC with UA. (B) Comparison of the total number of selected pseudo-labels between USC without UA and 
USC with UA. (C) Comparison of the number of selected positive and negative pseudo-labels in USC with UA. USC, uncertainty-aware 
self-training framework with consistency regularization; UA, uncertainty-aware.
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medical images and applied it in a nodule sign classification 
task. Our proposed 3D CNN is constructed with dense 
block and CBAMs, achieving the best classification results 
in our experiments. Our proposed SSL method is called 
USC and compared with previously developed advanced 
SSL methods, exhibited better performance enhancement.

MLC is an important part of our work. Our proposed 
3D CNN combines the efficient feature reuse of dense 
block with the spatial and channel attention provided by 
CBAMs. It can be seen from Table 3 that the 3D CNN is 
better in terms of classification performance and parameter 
quantity. As shown in Table 5, the average AUC of the 
proposed model on the 6 nodule signs reached 0.782, and 
among 5 of these signs, reached 0.805. Moreover, the AUC 
of AB and PI, which are more clinically important and more 
indicative of malignant nodules, also exceeded 0.8, fully 
demonstrating our model’s superiority and clinical value. 
However, for TLI, the AUC was far from satisfying. We 
believe that as it is difficult for radiologists to judge whether 
the TLI is clear, the model is also not able to learn salient 
features for this sign.

In addition, we used the same network structure to build 

a binary classification model for each sign for comparison. 
Table 6 shows that although the binary classification models 
constructed separately showed better performance on 
some signs, their average AUC was not as good as that of 
the MLC model. We believe that it is because separate 
binary classification models fail to consider the implicit 
connections among features of different signs, while in 
the MLC model, the features can influence each other. 
Furthermore, considering that it is more costly to train a 
binary classification model for each sign, using an MLC 
model is more advantageous.

The SSL method is another focus of our work. 
In this paper, we propose a simple and efficient SSL 
method, USC, which combines the ideas of consistency 
training and confidence-and-uncertainty-based pseudo-
labeling. We fully considered the distinctiveness of CT 
images compared with traditional images and MLC tasks 
compared with binary classification or multiclassification 
tasks in designing our semi-supervised method. For 
the former, we use a customized strong augmentation 
method adapted to the characteristics of CT images. The 
specific augmentation operations are shown in Table 2. 

Figure 8 The accuracy of the selected pseudo-labels. (A) Comparison of the accuracy of selected pseudo-labels between USC without UA 
and USC with UA. (B) Comparison of the accuracy of selected positive and negative pseudo-labels in USC with UA. USC, uncertainty-
aware self-training framework with consistency regularization; UA, uncertainty-aware.

Table 8 Performance improvement comparison between the USC and advanced SSL methods

Method Accuracy mAP F1-micro F1-macro Hamming loss Average AUC

FixMatch 4.0% 7.0% 3.0% 3.2% 4.0% 7.6%

UPS 3.7% 4.2% 2.9% 4.2% 3.7% 6.2%

USC 5.2%* 7.6%* 3.8%* 4.2%* 5.2%* 8.1%*

*, the best performance in each column. USC, uncertainty-aware self-training framework with consistency regularization; SSL,  
semi-supervised learning; UPS, uncertainty-aware pseudo-label selection framework (20); mAP, mean average precision; AUC, area under 
receiver operating characteristic curve.
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For the latter, we independently judge each class label 
of the sample during the pseudo-label selection process. 
Different selection criteria are set for positive pseudo-
labels and negative pseudo-labels, respectively. Specifically, 
we use the initial classification model trained on labeled 
dataset to infer labels on the weakly augmented unlabeled 
images, select the predictions as pseudo-labels according 
to their confidence and uncertainty, and then calculate 
the consistency loss between the predictions of the 
corresponding strongly augmented images and the pseudo-
labels. Compared with the traditional pseudo-label selection 
strategy, the biggest advantage of our proposed method 
is that we use uncertainty and confidence simultaneously 
as the criteria for pseudo-label selection, which helps 
us to select more stable and reliable pseudo-labels. As 
Figure 7 and Figure 8 show, although fewer pseudo-labels 
are used for model optimization, these selected pseudo-
labels are more stable and reliable, providing more useful 
information to the model and reducing the introduction 
of noise. As Table 7 shows, this practice further enhanced 
the accuracy, mAP, and average AUC by 1.0%, 0.6%, and 
0.5% respectively, as compared with the traditional pseudo-
label selection strategy, and in contrast to the supervised 
method, the overall enhancements in accuracy, mAP, and 
average AUC were 5.2%, 7.6%, and 8.1% respectively, 
exceeding those of other advanced methods (Table 8). In 
our experiments, probably due to the limited size of the 
dataset, the performance improvement derived from the 
confidence-and-uncertainty-based pseudo-label selection 
strategy was not significant, but it did improve the quality 
of pseudo-label selection. We believe that our method will 
demonstrate additionally significant advantages on larger 
datasets. In summary, our proposed semi-supervised method 
has great potential for application to other MLC tasks of 
3D medical images.

Our study has some notable limitations which should be 
addressed. First, the CT signs related to lung nodules are 
not limited to the 6 types discussed in this paper. Therefore, 
we will collect additional CT images containing other types 
of signs to expand our model’s classification capability. 
Second, the data we used in this study were gathered from 
3 hospitals, but the domain differences caused by the 
introduction of multicenter data were not considered in our 
experiments. In the actual clinical application scenario, the 
labeled data and unlabeled data that we can use for model 
training are likely to originate from different centers or 
scanners with different parameters, which will inevitably 
lead to the problem of domain shift. In future work, we 

will continue to improve our MLC model and SSL method 
and explore how to integrate domain adaptation techniques 
into our proposed SSL method to further enhance its 
generalizability.

Conclusions

In this paper, we realized the MLC task of lung nodule signs 
with our proposed 3D CNN, which achieved satisfactory 
performance. We also proposed a simple and efficient SSL 
method: USC, which combines consistency regularization 
and confidence-and-uncertainty-based pseudo-label 
selection strategy, and applied it in our experiments. The 
experimental results show that the USC enables a more 
efficient selection of pseudo-labels and can also significantly 
improve model performance, achieving better improvement 
than other advanced SSL methods. We believe that our 
proposed USC method has considerable potential for other 
3D medical image MLC tasks.
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