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ABSTRACT: We present a comprehensive analysis of all ring
systems (both heterocyclic and nonheterocyclic) in clinical trial
compounds and FDA-approved drugs. We show 67% of small
molecules in clinical trials comprise only ring systems found in
marketed drugs, which mirrors previously published findings for
newly approved drugs. We also show there are approximately
450 000 unique ring systems derived from 2.24 billion molecules
currently available in synthesized chemical space, and molecules in
clinical trials utilize only 0.1% of this available pool. Moreover,
there are fewer ring systems in drugs compared with those in
clinical trials, but this is balanced by the drug ring systems being reused more often. Furthermore, systematic changes of up to two
atoms on existing drug and clinical trial ring systems give a set of 3902 future clinical trial ring systems, which are predicted to cover
approximately 50% of the novel ring systems entering clinical trials.

■ INTRODUCTION

Drug-like chemical space is a phrase ubiquitous in drug
discovery. It is of fundamental importance in small molecule
drug discovery and impacts all stages of the design cycle from
screening library design, through to reagent selection, hit to lead,
and lead optimization. However, for such an extensively used
description, which impacts most decisions in drug discovery,
there is no accepted gold standard measure to delineate “drug-
like chemical space” which is universally applicable and
unambiguously encompasses, without exception, any molecule
that is drug-like.
The term drug-like is fraught with ambiguity; for example, it

could mean (i) an exact substructure found in a drug, (ii) a
closely related substructure, (iii) a closely related full molecule
structure, or (iv) a molecule that has similar properties to known
drugs. How to calculate what is close or similar can be achieved
using a plethora of computational techniques ranging from 1-
dimensional (1D) properties such as calculated logP (clogP),
polar surface area (PSA), and hydrogen-bonding groups (H−B
donors or acceptors) to 2-dimensional (2D) metrics such as
fingerprint similarity, the presence or absence of functional
groups, up to 3-dimensional (3D) metrics such as shape or
molecular electrostatic potentials.1,2 A further complication of
drug likeness is the nonbinary nature of the description where
we consider the drug likeness not to be true or false but defined
on a continuum with a relative probability.3

Many early attempts at estimating drug-like space use
weighted combinations of whole molecule properties, often
referred to as 1D properties, such as molecular weight or polar
surface area.4−6 In parallel, 2D and 3D descriptors have been
used to identify molecules that are in drug-like space.7,8 Similar
analysis to drug-like space has been applied to molecules in

clinical trials showing in some cases that molecules in clinical
trials have significantly different property space compared with
molecules that have transitioned successfully to a marketed
drug.9

■ SIZE OF DRUG-LIKE SPACE
The success of combining 1D properties is in part due to the ease
and speed of calculations, enabling rapid assessment of libraries
of molecules, and these approaches clearly had a significant
impact on the field of drug discovery. Notable examples are the
Lipinski ubiquitous “Rule of 5” (Ro5),10 the work of Veber11

based around PSA, and many others including the “GSK 4/400”
for lead-like molecules and “Rule of 3” for fragment
molecules.12−14 However, there are widely accepted drawbacks,
namely, the problem of successful drugs that lie outside of these
models, and as a result many seasoned practitioners in small
molecule drug discovery would typically find utility of these
methods as a probabilistic guide rather than a binary cutoff.
Another less widely discussed difficulty centers around the size
of drug-like chemical space. Even using guides such as the Ro5
the enormity of drug-like space within these guides is still
problematic. This is summarized in Figure 1, which highlights
the size of chemical space for drug discovery along with related
data to give context to the data size. Moreover, we will show an
estimate of currently available chemical ring systems using our
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previously described ring system definitions15,16 is approx-
imately 5 × 105 ring systems (excluding macrocycles), which is
also included in Figure 1.
Although we have the capabilities to experimentally screen

multimillion compound libraries and virtual screens of billions of
molecules have been reported,21 the size of the predicted
chemical space is still beyond the reach for routine screening and
even virtual enumeration. Some examples of current state of the
art libraries include Enamine Real Space22 (2 × 1010), GalaXi/
Wuxi LabNetwork (2 × 109), and GDB 17 (2 × 1011).23 The
obvious question then is how can we reduce this size further with
a measure that is unambiguous, clearly defined, and easy to
calculate to identify pockets of useful molecules in a space that is
larger than the number of stars in the universe.24 As previously
described,15 we chose substructure analysis based around ring
systems and frameworks rather than simple whole molecule
properties or similarity metrics based on 2D or 3D descriptors to
explore drug-like chemical space.

■ HISTORY OF SCAFFOLD ANALYSIS

Ring systems are highly influential in determining the shape,
electrostatics, and often bioactivity of compounds. The concept
of such “privileged” or bioactive scaffolds has been widely
explored in the drug discovery field.25−28 There are many ways
to define amolecular scaffold, but arguably, themost widely used
way would be the Bemis−Murcko (BM) scaffold.29 The BM
scaffold is obtained by removing all terminal acyclic groups from
the ring systems and frameworks. A further simplification of the
BM scaffold can be obtained by ignoring atom types and bond
orders in the graph to give the cyclic skeleton (CSK). The CSK
allows for a more basic comparison of the underlying shape of
each scaffold. BM and CSK scaffolds have been shown to be
powerful tools for analyzing the diversity within any compound
collection. In the original paper by Bemis and Murcko it was
found that one-half of all drug molecules could be represented
with 32 frameworks. A more recent paper by Lipkus et al.30

defined an indicator of the innovation present in a new drug by
comparing their scaffolds to those already in existing drugs. In
this work, they defined an innovative drug, or “Pioneer”, by
whether both the scaffold and the molecular shape had not been

observed in a previous drug molecule. Their analysis was carried
out on all approved drugs over the last 80 years, and they showed
that the percentage of new scaffolds combined with molecular
shape has increased over time, where the scaffolds and shapes are
defined using their reduced representations.
A key use of scaffold generation has been to identify bioactive

ring systems or frameworks. Techniques such as scaffold
trees,31,32 hierarchical scaffold clustering,33 andmatchmolecular
pairs analysis34 (MMPAs) are commonly used to identify
structure−activity relationships (SAR) across a compound
collection and thus identify potential scaffold hops.35 Other
work has combined the use of quantitative structure−activity
relationship (QSAR) models36,37 of full molecules and a
molecule generator to identify bioactive scaffolds.
Visini et al.38 generated a database of all possible rings (1−4

rings, <30 atoms), resulting in around 1 million virtual ring
systems, 98.6% of which had not been observed in any publicly
available compound collections (ZINC,39 PubChem,40

ChEMBL,41 and Reaxys42). It should be noted that these rings
were not filtered by whether they were drug-like or synthetically
feasible; thus, it is not clear how many of these rings are
biologically relevant. An alternative analysis by Pitt et al.43

estimated that there could be over 3000 ring systems that have
not been reported in the literature but are synthetically tractable.
Another study enumerated all possible fused rings up to 3 rings
to give around 570 000 virtual ring systems.44 These 570 000
ring systems were then cross referenced with those available in
the Synthetically Accessible Virtual Inventory45 (SAVI, 1.75
billion molecules) to identify 39 036 ring systems.46 In this
study, data from ChEMBL was used to identify bioactive ring
systems that were selective against certain target classes or
generally bioactive. The chemical space of these ring systems
was visualized by applying PCA on key scaffold descriptors; the
scaffold descriptors are described in previous work.47 The
resulting analysis showed that bioactive scaffolds were spread
across chemical space but with local regions of high density. It
was hypothesized that the regions of high density could be used
to identify future bioactive scaffolds. The identification of such
bioactive islands in chemical space has been explored in the
literature for both scaffolds44,46 and drug-like compounds.23,48

Analysis of kinase inhibitors by Zhao and Caflisch48

Figure 1. Summary of predicted size of chemical space and key comparisons. Some images were sourced from third parties: “Stars in universe”,
permission given by NASA;17 “Grains of sand on Earth”, permission given by FreeImages;18 “FDA Approved Drugs”, permission given by
FreeImages;19 “Miles to Alpha Centauri”, permission given by European Southern Observatory (ESO), Davide De Martin.20
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demonstrated that a huge fraction of synthesizable kinase-
relevant chemical space has been completely unexplored. By
identifying biologically relevant areas of chemical space, the goal
is to reduce the effective chemical space for hit discovery and
increase hit quality while still generating novel chemical matter.
We previously15,16 chose ring systems and frameworks to

analyze drugs and drug-like space based on the seminal work of
Murcko et al.,29 whereby we performed both an exhaustive and a
recursive breakdown of molecules and systematically analyzed
both the individual components and combinations of scaffolds.
It was found that each year 70% of drugs are comprised of only
ring systems found in previously marketed drugs. Most of the
remaining drugs contain only one newly utilized ring system that
has not been seen in marketed drugs. This observation has held
true year on year for the last 30 years. This gives rise to the
question facing seasoned practitioners of drug discovery: how
much chemical novelty is required for a patentable and effective
drug, and how is this novelty achieved? Since 70% of new drugs
coming onto the market each year only contain ring systems
from previously patented drug molecules then most new drugs
achieve novel patent space through either the utilization of new
growth vectors and/or novel combinations of growth vectors or
simply novel combinations of drug ring systems. This suggests
novel ring systems are not a prerequisite for new patent positions
or to tackle new drug targets since we have also shown previously
that known drug rings have been applied across different
therapeutic targets and therapeutic areas.15 In this work, we
address the question of novelty and how it applies to new
candidates by studying molecules before they make it as drugs,
i.e., those in different clinical phases.

■ CLINICAL TRIAL RING SYSTEMS
Assessing compounds that are earlier in the drug discovery cycle
that have not yet made it to market and are currently in clinical
trials can give a further insight into the successful design of future
drug molecules. This is the focus of this study, whereby we
analyzed the chemical novelty in clinical trials using an extended
methodology that we previously applied to drug molecules to
answer the following questions.

(1) Is the amount of molecular novelty (where novelty is
assessed by new chemical ring systems) in drugs reflected
in clinical trials or is there an attrition in clinical trials?

(2) Is the amount of novelty different across the different
clinical phases?

(3) How important are new chemical ring systems to justify
clinical investment and overall clinical success, and how
do we use these data?

(4) Canwe use the novelty from clinical trials to predict future
drug ring systems and prioritize new areas of available
chemical space?

■ FRAGMENTATION METHODOLOGY AND
CLASSIFICATIONS

To answer these questions, we used the same methodology as
described in previous work15,16 to deconstruct molecules,
whereby the fragmentation algorithm recursively breaks each
molecule into ring systems and frameworks with exocyclic
double bonds retained while recording the growth vectors of
each ring system from the frameworks (see Figure 2). We
applied this algorithm to a snapshot of molecules in Phase 1, 2,
and 3 clinical trials from January 2020 and our updated drug data
set reported in the US FDA Orange Book up to January 2020.
This gave us an updated ring system from drugs and/or clinical
trials and associated frequencies and growth vectors. The
fragmentation workflow was implemented using a combination
of RDKit49 and Pipeline Pilot.50

We filtered the sets so that they contain less than 10 bonds in a
ring, no metal-containing molecules, and a molecular weight less
than 1000. The molecular weight cutoff was chosen to capture
larger small molecules that fall outside of Ro5 while removing
excessively large molecules. Previous studies51,52 have shown
that applying a hard cutoff on weight in line with Ro5 can lead to
the loss of a number oral drugs or clinical candidates for difficult
target classes that may contain innovative scaffolds of interest to
our analysis. We also ensured that the molecules in the different
phases must not be present in higher phases or drugs.
Using the sets of different ring systems from molecules in

clinical trials and drugmolecules, we propose a new classification
system based on the ring systems (or scaffolds) present in a
molecule. This classification is to give a simple and clear
description of a molecule to show the degree of chemical novelty
and the importance of reuse of existing scaffolds vs new scaffolds.
This classification is given in Table 1, and as a point of
clarification, a new ring system is one that has not been used
previously in any other drug that has made it to market. For this
analysis, we have not focused on molecules that do not contain
any ring systems (Class 5), which typically accounts for less than
10% of drugs.

Figure 2. Example of rings, ring systems, and frameworks for Chlorthalidone.
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Using the classification from Table 1, our previous work
showed 70% of drugs each year come under the Class 1
molecules; the remaining drugs are formed predominantly from
Class 2molecules. Evenwith a significant representation of Class
2, Class 3, and Class 4 in commercially available molecules and
literature-reported molecules, Class 1 molecules are still the
most successful and dominant class in marketed drugs and have
been, year on year, for the last 30 years. The benefit of Class 1 is
that we can map out the space and cleanly define this data set,
which we have previously enumerated, combined, and
analyzed.16 Class 2, Class 3, and Class 4 can be estimated, but
full and complete enumeration is a significant computational
undertaking. Using these classifications, we analyzed clinical trial
compounds to see whether this distribution is the same for
molecules in U.S. clinical trials.

■ CLASSIFICATION OF CLINICAL TRIAL MOLECULES
The analysis of ring systems present in molecules in the different
phases of clinical trials (for January 2020) is shown in Table 2. It
can be seen from this analysis that most molecules still fall in the
Class 1 bracket with an average of 67% of the compounds across
all phases. This mirrors the 70% of Class 1 molecules in drugs.
Although there is a slight increase in the different clinical phases,
we do not believe this is significant. In terms of novelty in clinical
trials, where novelty is assessed by the ring systems and the
associated ratio of new vs old, it seems there is little difference
between molecules that have made it as a drug and those in
clinical trials.
It is an interesting observation that the percentage of

molecules containing just drug rings (Class 1) is broadly the
same across different clinical trials, and this mirrors new drugs
coming onto the market each year. One might have expected
there to bemore novelty in clinical trials, and this novelty may be
reduced through the clinical trials, but this is not the case when
novelty is defined by the ring system chemistry.
A conclusion from these observations is that using just drug

rings and combining them in novel ways is the principal strategy
employed historically to generate most compounds for both new
drugs and molecules that make it into clinical trials. Moreover,
since on average it takes 9 years for a molecule to pass through

clinical trials53 to make it to market, this data set will encompass
all new drug ring systems for the next 9 years.

■ ANALYSIS OF RING SYSTEMS IN DIFFERENT
CLINICAL PHASES

We have demonstrated a classification of molecules based on
ring systems and whether those ring systems have been used
previously in drugs. To extend this analysis, we have taken the
updated list of drugs and clinical trial molecules and analyzed the
complete database of ring systems that are present in these
molecules (see Table 3). There are 378 ring systems used in

drugs and 450 unique ring systems in clinical trials; 280 (62%) of
these clinical trial ring systems have not been used in drugs
before. This gives a total of 658 unique ring systems covering all
clinical trial molecules and drugs. The fact that there are more
ring systems in clinical trials than in drugs demonstrates that
there is still a significant investment in new ring systems in drug
discovery. However, what is clear is how they are assembled in
real molecules is of equal importance when assessing novelty,
and new ring systems are typically partnered with known drug
ring systems for both clinical trial compounds and drugs. The
top 100 ring systems in drugs and top 100 new ring systems in
clinical trials are shown in Tables 4 and 5, respectively. The
complete lists, ordered by frequency, are available as a pdf
download and smiles download fromZenodo (10.5281/zenodo.
6556751).
Table 3 shows that the sets of ring systems in Phase 2 and

Phase 3 have similar distributions between the new ring systems
and the ring systems seen in drugs or higher clinical phases.
Phase 1 is slightly lower, which could be accounted for by not all
structures in Phase 1 being available, and typically structures are
not released until Phase 2 or higher. From the pool of ring
systems derived from clinical trial molecules, there are more new
ring systems being used than ring systems from drugs (62%
compared with 38%, respectively). However, the drug ring
systems are used in multiple molecules and typically have a
higher frequency in clinical trial molecules than the new ring
systems. Thus, in the final molecules the drug ring systems
dominate through reuse even though it is a smaller pool of ring
systems, indicating how important this set is. If 170 drug ring
systems are used in clinical trials, this means that 98 drug ring

Table 1. Molecule Classification System Based on Historical
Context of Ring Systems

molecule
class description of ring systems contained in the molecule

Class 1 only known drug ring systems, combined in a novel way
Class 2 known drug ring systems combined with only 1 new ring system
Class 3 known drug ring systems combined with more than 1 new ring

system
Class 4a only one ring system in the whole molecule, and that ring system

is new
Class 4b only new ring systems where the total number of ring systems is

more than 1
Class 5 no ring systems present

Table 2. Classification of Molecules in Different Clinical Phases (January 2020)

clinical
trials status

no. of
compounds

Class 1(only drug
ring systems)

Class 2(drug ring systems and
1 new ring system)

Class 3(drug ring systems and
2+ new ring systems)

Class 4a(single
nondrug ring systems)

Class 4b(only 2+
nondrug ring systems)

Phase 1 277 178 (64%) 86 (31%) 4 (1%) 9 (3%) 0 (0%)
Phase 2 525 359 (68%) 123 (23%) 10 (2%) 32 (6%) 1 (<1%)
Phase 3 232 159 (69%) 44 (19%) 8 (3%) 17 (7%) 4 (2%)
all phases 1034 696 (67%) 253 (24%) 22 (2%) 58 (6%) 5 (<1%)

Table 3. Classification of Ring Systems in Different Clinical
Phases and in Drugs

status

total no. of
unique ring
systems

new ring systems
not in higher

phases nor in drugs
ring systems
from drugs

ring systems
present in

higher phases

Phase 1 191 71 (37%) 101 (53%) 19 (10%)
Phase 2 278 131 (47%) 128 (46%) 19 (7%)
Phase 3 169 78 (46%) 91 (54%)
all phases 450 280 (62%) 170 (38%)
drugs 378
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systems are currently not being utilized in clinical trial
molecules. From this analysis, several questions arise. Is there
a difference in those drug ring systems that are being reused and
those that are not? Can we learn anything from those drug ring
systems that have not found utility in current clinical trials?
Moreover, is there a systematic difference between the
properties of ring systems in drugs and those newer ring systems
only found in clinical trials?

■ COMPARISON OF PROPERTIES FOR NOVEL
CLINICAL TRIAL RINGS COMPARED WITH DRUG
RINGS

To answer the questions regarding the differences between ring
systems in clinical trials and drugs we calculated the distributions
of ring sizes, the number of nitrogens, oxygens, sulfurs, and
combined heteroatoms, as well as the number of sp3 centers.
Many of these 1d properties are presented as percentages to
allow for the comparison of ring systems with disparate sizes. For
this analysis, we separated the ring systems into the following
categories:

(a) ring systems from drugs,
(b) ring systems only in Phase 3, Phase 2, or Phase 1 (and not

in higher phases or drugs),
(c) all ring systems combined from all clinical phases (but not

in drugs),
(d) ring systems just from drugs that are not being used in

clinical trials.

The property distributions in Figure 3 highlight that
compounds from clinical trials and drugs tend to have quite
similar 1d property distributions. We can use these distribution
plots when predicting future ring systems to filter out ring
systems where the heteroatom ratio is significantly outside of the
typical distribution plots for drugs and clinical trials. For
example, it is unlikely for a ring system to containmore than 20%
sulfur atoms. Likewise, there is no bias toward the different
percentages of sp3 centers. Furthermore, the most prevalent ring
system size for both drugs and clinical trials is bicycles.

■ FUTURE OF RING SYSTEMS IN DRUGS AND
CLINICAL TRIALS

Using our database of clinical trials and drug ring systems we can
make a prediction of future clinical trial ring systems and
possible new ring systems that will make it as drugs. By simple
visual inspection it became apparent that many of the ring
systems in clinical trials are very small changes on known drug
rings, which could reflect the constraints of biological space and
how we choose to effectively navigate chemical patent space or
for synthetic tractability reasons. We explored this observation
systematically by first restricting the ring systems to a maximum
of five rings per ring system. We then assessed the relationship
between the drug ring systems and new ring systems in clinical
trials. Our systematic approach changes the drug rings by no
more than two atoms (N + 2) where a change is a single atom
substitution, for example, C to N, or the addition or removal of a
new exocyclic double bond. We made these changes for all drug
ring systems and then compared the N + 2 changes to see how
many of the ring systems in clinical trials are covered by this
simple change on the drug set. We also implemented valence
bond checks and substructure-based stability filters on these
sets.
The results for this analysis are given in Table 6, where overall

36% of the new ring systems in clinical trials are single atom

changes on ring systems in drugs. However, more importantly,
approximately one-half of the new ring systems in clinical trials
(47%) are at most two atom changes on ring systems in existing
drugs. We can use this information to predict the ring systems
that will make it into future drugs by applying the same two atom
changes to all ring systems from drugs and clinical trials. From
this we derived a set of future clinical trial ring systems. This
means that from the 30% of drugs that are Class 2 or above (i.e.,
contain at least one novel ring system), approximately one-half
of the molecules could be predicted to have the novel ring
systems from our future clinical trial set. However, to ensure that
these molecules are reasonable, we wanted to compare these
ring systems to those that have been synthesized or reported in
the literature, and so we required a full database of ring systems
for the currently available chemical space.

■ AVAILABLE CHEMICAL SCAFFOLD SPACE: RINGO
DATABASE

To fully understand the magnitude of chemical space associated
with ring systems (or chemical scaffolds), we created a database
of ring systems from real compounds that are either
commercially available and/or synthesized and reported in the
literature or patents. Our internal RINGO database of all
available ring systems uses ring systems from a data set of
approximately 2.24 billion unique molecules taken from
commercial, literature, and academic sources including
ChEMBL,41 eMolecules,54 Enamine Real,22 SureChEMBL,55

etc. We have not included the virtual databases from GDB23,56

(Enamine Real is included as each compound has an associated
synthetic route and corresponding reagents). The full molecules
are first preprocessed and charges and tautomers are calculated
for all 2.24 billionmolecules using the tautomer and protonation
plugins within Chemaxon.57 This is an important step since the
fragmentation rules for molecules require sp3 and sp2 centers to
be correctly defined, for example, keto vs enol forms. These
molecules are then recursively fragmented into the individual
ring systems retaining the growth vectors from the original
molecule and the frequency for each ring system from the 2.24
billion molecules. From this computation we derived our
RINGO database of 458 748 ring systems which covers the
known chemical ring space. It is worth noting that 167 668 of the
ring systems in RINGO have only been recorded in one
compound across our public and commercial sources. Over 80%
of these singletons were predominately from compounds in the
public database PubChem or the patent database SureChEMBL.
Ring systems with high frequencies in RINGO are likely to be
synthetically tractable, and while the reverse statement will not
always be true, ring system frequency is another factor by which
we can filter scaffold space.
We then cross referenced the future clinical trial ring systems

against our internal RINGO database of over 458 748 ring
systems. This allows us to check whether these ring systems of
two atom changes have ever been included in a synthesized
molecule and are reported in the data set over 100 times.We also
used our previous analysis of the content of drug rings to reduce
this set further by applying cut offs for the maximum number of
nitrogens, oxygens, and sulfurs in drug ring systems. This gives a
“future clinical trials” set of 3902 ring systems out of a possible
458 748. We therefore reduced the set of ring systems to a
focused set of around 0.85% of the available chemical ring
systems. This can be compared with the drug ring systems which
are a privileged set of approximately 0.082% of the chemical
scaffolds available.
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We can thus predict 85% of all new drugs (70% of drugs being

Class 1 and one-half of the remaining 30% of Class 2 and above)

will come from a combination of ring systems from drugs (378),

clinical trials (280), and future clinical trials (3902), which is

approximately 1% of the currently reported ring systems. This

analysis thus has practical application to library design and is
summarized in Figure 4.

■ ANALYSIS OF GROWTH VECTORS

An additional layer of complexity to add to the previously
defined classification system is not only the content of the ring

Table 4. Top 100Most Frequently UsedRing Systems from SmallMolecule Drugs Listed in the FDAOrange Book before January
2020 Sorted by Descending Frequency (f) and Then Ascending Molecular Weight
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systems but also how they are combined and the associated
linking vectors, i.e., the points of attachment from the ring
systems. There are subsets of Class 1, Class 2, and Class 3 where
the known ring systems use either (i) only the known vectors for
linking and growth or (ii) a combination of novel and known
vectors or (iii) novel vectors only.

From our database of clinical trials and drug molecules we
recorded all unique growth vector combinations for each ring
system when we generate the frameworks. We collated this set
and compared the clinical growth vectors with those of drugs
(see Table 7), and in both cases, we recorded the enantiomeric
form of each growth vector. There is approximately a 40%

Table 5. Top 100Most Frequently Used Ring Systems in U.S. Clinical Trial Compounds in January 2020 That Were Not Present
in Drugs Sorted by Descending Frequency (f) and Then Ascending Molecular Weight
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overlap of total ring space of clinical trial ring space with drug
ring space, but if the growth vector combinations are included in
the comparison then the overlap drops by about 15%, implying
that for the drug rings being reused in clinical trials one-third of
those utilize a different set of growth vectors which would
achieve additional novelty. This suggests that around three-
quarters of the drug rings that are used in clinical trials are not
only the same rings but also the same points of attachment.

Another area of interest is the total number of growth vectors
used per ring systemwithin drugs and clinical trials. The number
of vectors per scaffold can be used to guide how molecules can
be assembled along with a suggestion for the number of growth
vectors that are typically used for new ring systems.
The average growth vector per ring per ring system was

determined across “drugs”, “all phases”, and “drugs and clinical”
sets (Figure 5). One key observation was that the number of
growth vectors per ring was disproportionately higher for
monocycles (around 2.5). It is unclear whether the preceding
observation just reflected the known chemistry and available
synthetic handles on certain monocycles, or an increase in
complexity in the rings is often balanced by a decrease in
complexity for substitution patterns, or a more physical
justification exists (e.g., ortho substitution in aromatic rings to
influence rotamer populations or specific protein target
interactions based on structure-based design or to prevent a
metabolic process). For bicycles and above, our analysis
suggested that ring systems in drugs and clinical trials usually

Figure 3. Histogram comparisons of ring systems in drugs, clinical trials, and those exclusively in drugs that are not currently in clinical trials for (a)
number of rings per ring system, (b) percentage of heteroatoms per ring system, (c) percentage of nitrogens per ring system, (d) percentage of oxygens
per ring system, (e) percentage of sulfurs per ring system, and (f) percentage of sp3 centers per ring system.

Table 6. Analysis of New Ring Systems and Overlap with
Drug Ring Systems after Applying One or Two Atom
Changesa

status

no. of new
ring

systems

single atom change
overlap with drug ring

systems

two atom changes
overlap with drug ring

systems

Phase 1 71 31 (44%) 35 (49%)
Phase 2 129 36 (28%) 55 (43%)
Phase 3 76 31 (41%) 40 (53%)
all phases 276 98 (36%) 130 (47%)
aFor ring systems containing less than 6 rings.
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have around 1 vector per ring, e.g., a bicycle ring system typically
has 2 vectors and a tricycle has 3 vectors.

■ COMBINING RING SYSTEMS AND NETWORKS
We have shown that current drug and clinical trial ring systems
have a combined total of 678 ring systems out of a possible
458 748 ring systems in available and reported chemical space.
The potential number of combinations of these ring systems is
huge as we have previously demonstrated by just combining two
drug ring systems. A key question when optimizing compounds
or indeed designing a library is which pool of ring systems should

you pick from to maximize the probability of success while
enabling a patent position. Furthermore, this question highlights
the importance of the underlying ring systems as if they do not
bind to the target or they have an intrinsic liability, i.e., are not
productive, then the combinations of rings may also be
nonproductive but on a much larger scale.
In this section, we investigated how ring systems are

combined to form molecules from drugs or clinical trials. To
analyze how ring systems are combined, graph theory was used
whereby a series of graph networks were built for each clinical
phase, a combined clinical set, and drugs. Each node in the
network graph represented a ring system, and if two ring systems
were in the same molecule then they were directly connected in
the graph. These network diagrams can be used to identify
patterns in how ring systems are assembled to form full
compounds that are present in the clinic or drugs. This can
subsequently be used to bias the design of virtual or screening
libraries to clinically relevant chemical space. Similar graph
networks are used in social network analysis, and a common way
to derive patterns across such complex networks is to cluster the
network into sets of nodes (i.e., ring systems) that are densely
connected. In this work, the goal of clustering each network was
to identify groups of ring systems that frequently occurred
together in drugs and/or clinical trials. All networks in this paper
were built and then clustered with the Girvan−Newman
algorithm58 within NetworkX59 and then visualized with
Cytoscape.60 The largest cluster in each network was positioned
at the top left of each diagram.
Common statistics for each network are outlined in Table 8,

including the graph density and the isolated fraction. The graph
density is the fraction of connections in the network compared
to whether all nodes were connected, and the isolated fraction is
the fraction of nodes that are not connected to anything, i.e., the
fraction of molecules where the ring system is not connected to
any other ring systems.
The clustering of nodes within Phases 1−3 was quite similar,

but the densities varied a lot. The density of the drug network
was much smaller than that of the combined clinical set and had
double the fraction of isolated nodes. It seems that the ring
systems in drugs are more sparsely connected than their clinical

Figure 4. Summary of molecular ring systems (scaffolds) in drugs, clinical trials, reported/synthesized chemical space, and predicted future clinical trial
ring systems.

Table 7. Summary of Growth Vectors Used in Ring Systems
from Molecules in Drugs and Clinical Trials

status

total no.
of

unique
rings

rings from
drugs

no. of unique
rings and vector
combinations

overlap of vectors
and ring systems
with drug vectors

Phase 1 191 101 (53%) 377 129 (34%)
Phase 2 278 128 (46%) 583 177 (30%)
Phase 3 169 91 (54%) 290 30 (37%)
all phases 450 170 (38%) 1003 239 (24%)
drugs 378 909

Figure 5. Average number of vectors used per ring vs number of rings
per ring system for sets of molecules from drugs and clinical trials. Error
bars are the standard deviation of each distribution.
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trial counterparts. This implies greater complexity in con-
nections for clinical trial rings.
Next, the property space of the three largest clusters in the

drug network (Figure S1) were compared to the overall scaffold
space. The property distributions (see Figure S2) for ring count,
the number of nitrogens, oxygens, sulfurs, heteroatoms, and the
number of sp3 centers were calculated for the three largest
clusters in the drugs network. There were not many significant
differences between the properties of each cluster. Most notably,
one cluster (cluster 3) was very deficient in oxygen atoms and
monocycles, which could suggest that ring systems with high
oxygen contents are not often paired with other ring systems.
The property distributions of the three largest clusters in the
clinical trial network (Figure 6a) were then determined (Figure
S3). There were a few large differences between clusters in
clinical trials and drugs: (1) a lower proportion of monocycles in
clinical trials and 2) a greater proportion of nitrogen atoms in the
clinical ring systems.
One topic of interest was to determine how target-specific ring

systems were distributed across the scaffold network. For the
sake of simplicity, we focused on the distribution of “kinase-
specific” ring systems within the clinical network. Here, kinase-
specific referred to any ring system for which over one-half of the
compounds it appeared in were kinase inhibitors. It can be seen
in Figure 6b that the kinase-specific scaffolds were distributed

across the entire network. In general, one kinase-specific ring
system would be connected to a popular nonspecific kinase
scaffold, e.g., benzene (top left cluster). However, there are a few
small clusters in which kinase-specific ring systems are
connected to each other. This network clearly identifies
privileged ring system pairs that usually appear together in
kinase inhibitors. These findings can be used to guide the design
of target-specific virtual libraries.
Graph topology measurements, such as how well connected

each node is (degree centrality), can be used to identify key ring
systems in the drug network (Figure S1). The overlap between
the top 10, 20, and 50 scaffolds by frequency and degree
centrality was 80%, 75%, and 68%, respectively. These results
show that ordering nodes by graph topology measurements has
some correlation to ordering by frequency, but these two
approaches do not give identical results. For the sake of
comparison, the top 10 ring systems by degree centrality are
shown in Table 9. The frequency of a ring system in drug
compounds gives an idea of how “privileged” a particular scaffold
is with respect to “drug space”. However, a ring system could be
frequently occurring in drugs but has only been combined with a
limited number of ring systems. It could be argued that the
design of a general hit ID library should be centered around
scaffolds that frequently occur in drugs and those that have
appeared in a variety of contexts. The use of network graphs
allows for the simple identification of scaffold “hubs” that are
frequently occurring and have been reported in a diverse range
of compounds. There are a few other graph metrics of potential
interest to library design: (1) prioritize scaffolds by how well
connected the scaffold and its nearest neighbors are (eigenvalue
centrality) or (2) identify scaffolds that connect different
clusters (betweenness centrality).
The potential practical uses of these graphs fall into a few

camps: library visualization, library generation, and compound
design. The main utility of these graphs is likely for library
visualization and interactive analysis. The graphs provide a visual

Table 8. Network Statistics for the Compounds in Each
Clinical Phase (Phases 1−3), Combined Clinical Set, and
Drug Compounds

status no. of nodes no. of edges isolated fraction density (×10−2)

Phase 1 191 452 0.08 2.45
Phase 2 278 710 0.15 1.83
Phase 3 169 320 0.15 2.22
all phases 450 1184 0.14 1.17
drugs 377 590 0.26 0.83

Figure 6. Network diagram showing how ring systems are connected in (a) all compounds in clinical trials. Color of the node represents the highest
phase that each ring system can be found. Key: Phase 1 = blue, Phase 2 = green, Phase 3 = purple; drugs = black. (b) Network diagram depicting ring
systems in clinical trials that are commonly found in kinase inhibitors (blue nodes); remaining black nodes are all other ring systems present in clinical
trials. Central node of the top left cluster (largest cluster) in each subfigure represents benzene.
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way to determine how central each ring system is to a compound
collection, not just by a simple count but by how many other
scaffolds it is connected to and thus how integral each ring
system is to the chemical diversity of the compound library.
Furthermore, these graphs show how different regions of
scaffold space are connected and the density of such
connections.

■ CONCLUSION

In this work, an in-depth analysis of the scaffold chemical space
of compounds in clinical trials has been carried out, and the
results have been compared to ring systems in FDA drugs. It was
found that around 70% of all clinical trial compounds only
contain ring systems that are present in drugs, and we
introduced a new classification system for these molecules
based on the ring system origins, i.e., Class 1. This result
mirrored findings from previous work15 in which 70% of all
newly released drugs were shown to only contain rings already in
drugs. While we may have expected higher novelty in clinical
trials when using our classification of molecules through the
origin of the ring systems, this was not seen. However, when
considering the complete set of ring systems used across all
molecules in clinical trials there is a different conclusion in that
the overall pool of new ring systems in clinical trials is greater
than those ring systems from drugs; therefore, we are
introducing more new ring systems in clinical trials. However,
this is balanced by more frequent use of known drug ring
systems compared with the new ring systems along with
different growth vectors and combinations. One area we have
not explored in this work is what ring systems are present in
compounds that failed in the clinic. While failures in the clinic
are of great interest to the field, the data presents a few issues that
prohibit drawing meaningful conclusions. Compounds do not
always fail at the clinic for scientific reasons and the reason for
failure is often not included in clinical databases. Thus, any
trends we could draw from failed compounds and the derived
scaffolds are not necessarily a direct result of any underlying
chemical issue.
It was noted that many novel clinical ring systems were closely

related to existing ring systems in drugs. To test this hypothesis,
up to two atom changes were performed on all drug rings and the
enumerated rings matched to novel ring systems. It was found
that around 50% of novel ring systems in clinical trials were
within two atom changes of an existing drug ring system.
We carried out one of the largest recursive fragmentation

protocols to date on over 2.24 billion compounds that cover all
available public and commercial compounds. This “real”
chemical space contained over 450 000 unique ring systems
(named RINGO database). This data set provides an estimation
for all of the rings that are available in synthesizable chemical
space, where previous work in the literature has focused on

virtual space38,44 or bioactive ring space.44,46 This data set builds
on the work of others44,46 to generate drug-like rings via virtual
enumeration. Given our earlier observations that around 50% of
future clinical trials scaffolds will be within two atom changes of
rings in drugs or clinical trials, from 458 748 ring systems, 3902
ring systems were prioritized as future clinical trial scaffolds
using not only the two atom change methodology but also
heteroatom ratios derived from drugs and prevalence in public
and commercial libraries. Using these simple ligand-based rules,
we predicted around 1% of the “real” scaffold chemical space will
encompass the ring systems used in 85% of new drugs.
Moreover, we would highly recommend that the ratios of
heteroatoms in ring systems and simple atom changes be used to
help prioritize new ring systems that fall outside of the current
analysis.
Several analyses were performed to compare growth vectors in

drugs and clinical trials and how compounds were built up.
There was a 40% overlap between the rings in clinical trials and
drugs, but if the growth vector combinations were included in
the comparison then the overlap dropped by about 10%. This
implied that around one-quarter of all drug ring systems in
clinical trials explored novel growth vector combinations. To
analyze how compounds were built up in drugs or clinical trials, a
graph was built for each collection in which scaffolds that
appeared in the same compound were connected by an edge.
This analysis showed that, on average, ring systems in clinical
trials had been combined with a much wider variety of scaffolds
and were half as likely to have never been combined with
another unique scaffold. These observations suggested that a
greater variety of vector and scaffold combinations are used in
clinical trials compared to drugs. This could be symptomatic of
the introduction of more structure-based methods and modern
synthetic routes in newer compounds found in clinical trials.
The number of vectors per ring system as a function of ring
systems remained the same in drug and clinical trials. It was
noted that ring systems with more than one ring had an average
of one growth vector per ring. We believe these observations on
vector count per ring system are useful in focusing the directions
for not only the optimization of molecules but also the number
of vectors used during synthesis of novel ring systems in
molecular libraries.
Over the course of the work guidance on what clinically

relevant clinical space is most likely to look like has been
provided. The authors believe that the analysis described here
will provide value through efficiently directed synthesis of
clinical candidate molecules which feature fewer liabilities,
reducing unknown risk in drug discovery.

Table 9. Top 10 Most Frequently Connected Ring Systems from Small Molecule Drugs Listed in the FDA Orange Book before
January 2020 Sorted by Descending Frequency of Connections (fc) and Then Ascending Molecular Weight
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