
The authors are comprised of students at various stages of academia with an interest in various aspects of applied bioinformatics.
Fantin Mesny is a PhD candidate studying plant–fungal interactions.
Louis Kraft is a masters student studying de novo transcriptome assembly.
Venket Raghavan and Linda Rigerte are scientific research assistants working on RNA-seq and plant–fungal interactions, respectively.
Received: September 9, 2021. Revised: December 3, 2021. Accepted: December 9, 2021
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Briefings in Bioinformatics, 2022, 23(2), 1–30

https://doi.org/10.1093/bib/bbab563

Review

A simple guide to de novo transcriptome assembly
and annotation
Venket Raghavan†, Louis Kraft †, Fantin Mesny‡ and Linda Rigerte‡

Corresponding authors: Venket Raghavan, Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
E-mail: vraghav@mpibpc.mpg.de; Louis Kraft, Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
E-mail: louis.kraft@mpibpc.mpg.de
†These authors are joint first coauthors.
‡These authors are joint second coauthors.

Abstract

A transcriptome constructed from short-read RNA sequencing (RNA-seq) is an easily attainable proxy catalog of protein-coding genes
when genome assembly is unnecessary, expensive or difficult. In the absence of a sequenced genome to guide the reconstruction
process, the transcriptome must be assembled de novo using only the information available in the RNA-seq reads. Subsequently, the
sequences must be annotated in order to identify sequence-intrinsic and evolutionary features in them (for example, protein-coding
regions). Although straightforward at first glance, de novo transcriptome assembly and annotation can quickly prove to be challenging
undertakings. In addition to familiarizing themselves with the conceptual and technical intricacies of the tasks at hand and the
numerous pre- and post-processing steps involved, those interested must also grapple with an overwhelmingly large choice of tools.
The lack of standardized workflows, fast pace of development of new tools and techniques and paucity of authoritative literature
have served to exacerbate the difficulty of the task even further. Here, we present a comprehensive overview of de novo transcriptome
assembly and annotation. We discuss the procedures involved, including pre- and post-processing steps, and present a compendium
of corresponding tools.

Keywords: de novo, transcriptome, assembly, annotation, tools, RNA-seq

Introduction

Ribonucleic acids (RNAs) are an important class of
biomolecules in cells and organisms. They represent the
output of the genome being transcribed or expressed—
the transcriptome. Numerous types of RNA exist, with
each playing an important role in gene expression, and
ultimately, in linking the genotype to the phenotype [1].
Ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), for
instance, constitute the translation machinery that syn-
thesizes proteins. The latter along with non-coding RNA
(ncRNA) species also exert regulatory control over impor-
tant biological processes [2, 3] including gene expression
itself [4]. Messenger RNAs (mRNAs) constitute an
important class of RNA. The sequences of mRNAs encode
information that is used by the ribosomal machinery to
synthesize proteins (translation). Hitherto non-mRNA
species have been considered ‘non-coding’, assuming
that they cannot be translated. However, this has been
challenged by recent evidence indicating that regulatory
long non-coding RNAs (lncRNAs) can in fact code for
short peptides [5], underscoring the need for improving
our understanding of these important molecules.

With the advent of affordable next-generation sequenc-
ing (NGS) platforms [6], high-throughput profiling of
RNA using sequencing (RNA-seq) [7, 8] has become the
preferred method of interrogating transcriptomes [7, 9].
RNA-seq can be used for a variety of purposes [7, 10]. The
most popular use cases are establishing a catalog of an
organism’s genes and proteins (transcriptome functional
annotation) and studying changes in gene expression
(differential expression analysis). ‘RNA-seq’ commonly
refers to the so-called ‘bulk’ RNA-seq approach wherein
material from a population of cells are pooled together
for sequencing (e.g. all cells in a protozoan organism) as
opposed to the increasingly popular single-cell RNA-seq
(scRNA-seq) approach [11] wherein RNAs are isolated
individually from single cells. We focus on the bulk RNA-
seq approach in this paper.

Most RNA-seq studies today rely on short-read
sequencing [7, 12, 13]. Here, the RNA molecules are
isolated and enriched (usually for mRNA [7]), and reverse
transcribed into complementary DNA (cDNA). The
cDNA sequences are fragmented, randomly primed and
amplified using PCR to yield an RNA-seq cDNA library
which is then processed by the sequencing instrument

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6465-4973

2 | Raghavan et al.

[12, 14]. The sequencing output is in the form of millions
of ‘short’ reads, which are sequences over an alphabet
denoting a series of nucleotides (e.g. GATTACA). Such
short-read sequences may be anywhere between 50 and
250 bp (base pairs) long; the library used for sequencing
is often ‘sized’ (i.e. filtered) to retain only fragments
of a certain length (e.g. 350 bp). The short reads must
then be assembled into the sequences they originated
from. This is the computationally challenging task of
transcriptome assembly [15].

The sequences can be assembled either reference-
guided or de novo [15]. The reference-guided approach
requires the genome of the organism or a closely related
species as an input. The reads can then be mapped to
this ‘reference’ genome to determine which genes the
reads originated from, and subsequently reconstruct the
corresponding transcripts [15]. De novo transcriptome
assembly, in contrast, is ‘reference-free’. The process is
de novo (Latin for ‘from the beginning’) as there is no
external information available to guide the reconstruc-
tion process. It must be accomplished using the informa-
tion contained in the reads alone. This approach is useful
when a genome is unavailable, or when a reference-
guided assembly is undesirable. For instance, in opposi-
tion to a de novo assembler successfully producing a tran-
script, a reference-guided approach might not be able to
reconstruct it correctly if it were to correspond to a region
on the reference containing sequencing or assembly gaps
[15, 16]. De novo assembly is discussed in detail in Section
De novo transcriptome assembly. However, de novo assem-
bled sequences are uninformative on their own. They
must be assigned human-readable identifiers and have
their functional and evolutionary properties character-
ized in order to have their biological relevance elucidated.
This is the process of transcriptome annotation. As the
objective of the procedure is to elucidate the functions of
the sequences, it is also often referred to as ‘functional’
annotation.

Short-read RNA-seq is affordable, easily accessible
and has low error rates. And importantly, it has a large
community of established practitioners, literature, tools
and other resources. As a result, the popularity of the
approach continues to proliferate across the biological
sciences. It has become especially popular for studying
non-model organisms (for example, in the ecological
sciences [17]), as a de novo transcriptome is an acceptable
substitute for an absent genome. For example, it has
been used to study zooplankton [18], bats [19], fruits
[20] and pathogens [21]. There is now also considerable
interest in ‘in-housing’ the in silico assembly and
annotation workflows as the required computational
resources have become easily accessible [22, 23]. It
is now possible to sequence, assemble de novo and
annotate a transcriptome within the confines of one’s
own laboratory. However, the path to an annotated, de
novo assembled transcriptome can be challenging. Those
interested must not only acquaint themselves with the
procedures involved, but also select the right set of tools
for this purpose. These issues are non-trivial, and can

become overwhelming. RNA-seq literature reveals many
variations on the same theme, with a variety of tools
and combinations of processing steps having been used.
Furthermore, RNA-seq is a computationally intensive
task. Becoming acquainted with the computational
resources necessary can also be a hurdle.

Here, we present a step-by-step overview of the de
novo transcriptome assembly and annotation workflow
(Figure 1). In brief, the RNA-seq data must first be quality
controlled (Figure 1 panel (A), Section ‘Pre-assembly
quality control and filtering’). For instance, this can
include excluding reads originating from rRNAs, and
removing adapter sequences. Subsequently, the data
can be assembled de novo to obtain the transcriptome,
whereafter they must be quality controlled once again in
order to produce a final assembly free of assembly arti-
facts (Figure 1 panel (B), Sections ‘De novo transcriptome
assembly’, ‘Post-assembly quality control’, ‘Alignment
and abundance estimation’ and ‘Assembly thinning and
redundancy reduction’). Read alignment and transcript
abundance estimation (Figure 1 panel (C), Section
‘Alignment and abundance estimation’) are performed
both as quality control measures, and to estimate
gene/transcript expression levels for differential expres-
sion analysis (Figure 1 panel (D), Section ‘Differential
expression analysis’). If the RNA-seq data are suspected
to contain non-mRNA species, RNA classification can
be carried out to classify and filter the data (Figure 1
panel (E), Section ‘RNA classification’). Protein sequences
are useful in many contexts (including annotation),
and therefore, the transcriptomic sequences can be
translated into their amino acid counterparts (Figure 1
panel (E), Section ‘Sequence translation’). Finally, the
nucleotide (and/or translated protein) sequences can
be annotated to assign human-readable identifiers to
them, and elucidate their biological roles (Figure 1 panel
(F), Section ‘Transcriptome functional annotation’).

In the subsequent sections, alongside a brief con-
ceptual introduction of each procedure, we present
a compendium of the relevant state-of-the-art-tools.
As transcriptome annotation is not well-addressed in
literature, we have discussed this procedure in detail.
Transcriptome annotation involves a myriad of processes
which we present and discuss as independent, compart-
mentalized steps. We also discuss a number of transcrip-
tome annotation pipelines that automate the entire pro-
cedure (Section ‘Transcriptome annotation suites’). The
need may arise to compare multiple transcriptomes, for
instance to infer conserved orthologs [24]. We have dis-
cussed comparison of transcriptomes and relevant tools
in the Section ‘Comparing transcriptome assemblies’.
De novo assembly and annotation workflows continue
to grow in complexity, both in terms of the number of
tools used and samples processed. Therefore, automated
workflows are needed to make the procedures tractable,
scalable and reproducible. To this end, we have devoted
an entire section to the important topic of bioinformatic
workflow managers which can be used to construct
and orchestrate such workflows (Section ‘Workflow

De novo transcriptome assembly and annotation | 3

Figure 1. Assembly and annotation workflow. (A) Quality control of the raw reads by filtering for erroneous reads and sequencing artifacts. (B) Sequence
assembly including clustering into groups of isoforms and removing redundant sequences (isoforms are transcript variants arising from alternative
splicing). (C) Mapping the raw reads to the assembled sequences for either quality control of the assembly or for differential expression analysis.
(D) Applying statistical tests for identification of changes in expression levels. (E) Classifying sequences by RNA species and translating into protein
sequences before annotation. (F) Annotating sequences on the basis of sequence similarity, identifying sequence features (such as functional domains)
and annotating Gene Ontology terms.

managers’). For the interested newcomer to the field,
we briefly summarize some of the computational pre-
requisites to be aware of in Section ‘Computational and
programmatic considerations’. Finally, it can potentially
be unclear as to what one should annotate in a de novo
transcriptome, and where these annotations can be

published. We address these issues in the final section of
this document (Section ‘What to annotate and where to
publish’). As we name and discuss well over 100 different
tools in this paper, we have also supplied a spreadsheet
summarizing these as a supplement (Table S2). Our hope
is that this publication can serve as a primer to the topic,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab563#supplementary-data

4 | Raghavan et al.

Figure 2. Short-read quality control and data cleansing involve procedures such as adapter trimming, removing short reads and erroneous reads
containing N-bases, read correction by comparison to other reads, and excluding reads originating from contaminant sources (e.g. pathogens in a
host species). In silico read normalization can be a useful pre-processing step for very large data sets (>200M reads) where it can significantly improve
assembler performance by selectively reducing the reads in a manner such that the transcriptomic complexity of the original data set is retained.

and as a ‘directory’ of procedures, tools and literature
that users can consult and use in pursuit of the perfect
de novo assembled transcriptome.

Pre-assembly quality control and filtering
The reads generated by the sequencer constitute the data
underpinning the assembly. While modern sequencers
have low error rates, the data they produce are not error-
free [25]. Properties of the reads including their abun-
dance, read length, stranded-ness, paired-ness, overall
GC content, k-mer composition and embedded errors
directly affect the quality of the assembly, and by exten-
sion all subsequent procedures [26]. Therefore, the first
step in de novo transcriptome assembly involves qual-
ity controlling the raw read data (Figure 2 highlights
some such procedures). Quality control here implies both
inspection of the data, and subsequent correction or
filtering if considered necessary.

The short-read sequence inspection tool FastQC

can be deployed as the first step of the pre-assembly
quality control process. The tool provides a summarized
overview of read quality metrics such as per-base PHRED
quality scores, average incidence of ‘N’ (i.e. undefined)
bases, GC content, read length distributions, identities
of overrepresented sequences and presence of adapter
sequences. A brief perusal of the report should indicate
the measures that need to be taken. For instance,
adapter sequences present in the reads may have to
be removed, and the reads may perhaps have to be
screened for contamination from non-target species.
A recent alternative to FastQC is Falco [27], which
can perform many of the same functions as FastQC.
If multiple read data sets are being handled together,

the bioinformatics report aggregator MultiQC [28] can
be used to simultaneously inspect reports from not
only FastQC but also numerous other tools (see https://
multiqc.info/#supported-tools).

Subsequently, several measures can be applied to
either correct or exclude aberrant reads. The first such
procedure that can be applied is k-mer based read error
correction using the tool Rcorrector [29]. This can be
used to fix random errors generated during sequencing.
However, such errors can be indistinguishable from
single nucleotide polymorphisms (SNPs), and can lead
to sequence variants being lost from the assembly.

If quality control metrics indicate the presence of
adapter sequences in the data, these should be removed
prior to assembly. Although adapter removal may have
been performed by the sequencing facility, it is a good
practice to scan for and eliminate residual adapters
all the same. If only adapter trimming is desired, the
dedicated trimming software cutadapt [30] is a good
option as it is capable of error-tolerant adapter detection.
The tool TrimGalore is a wrapper built around cutadapt
and FastQC featuring some added functionality such as
length-based sequence filtering which can be useful for
discarding extremely short reads resulting from adapter
removal. Finally, BBDuk from the BBTools [31] suite can
also be used for the purpose of adapter removal. All three
tools accept user-defined adapter sequences. BBDuk

includes a set of common adapters and contaminants
such as vectors. Therefore, explicit user input is not
required in most cases.

It is often insufficient to perform only adapter removal.
For instance, sequencing data often include reads con-
taining ambiguous base calls (identified via the character

https://multiqc.info/#supported-tools
https://multiqc.info/#supported-tools

De novo transcriptome assembly and annotation | 5

N in the sequence). Retaining such sequences only serves
to confound the assembly and downstream analyses, as
the exact nucleotide at that position in the read cannot
be ascertained. Similarly, the data may also be filtered to
retain only those reads (or portions thereof) containing
bases with a certain minimum quality (Q) score. These
quality scores [32] encode the probability of that partic-
ular base-call being wrong; for instance, a base with a
Q value of 30 has a 0.001% chance of being erroneous.
Reads carrying some maximum number of low-quality
base calls can either be discarded entirely, or trimmed
if the bases occur on the flanks. Likewise, it may be
beneficial to discard reads that are extremely short (e.g.
∼30 nt). Although these steps can be performed by user-
written scripts, it is more efficient to carry them out
using purpose-built tools. One such all-in-one tool for
NGS read quality control is fastp [33]. It can perform a
wide variety of read quality control procedures including
(but not limited to) automated adapter detection and
removal, N-containing read removal, low-quality base
filtering, overlap-based read correction (with paired-end
reads), paired-end read merging and poly-X read trim-
ming. An equivalent alternative is the tool Trimmomatic
[34] which shares many of its features.

Once basic cleaning has been performed, the data
can be assessed for the presence of contaminants.
These are typically reads that do not originate from the
organism and/or RNA species of interest. Contaminants
can be broadly classified into two categories: foreign
sequences and cognate contaminants. As the name
suggests, foreign contaminants are reads belonging
to off-target species (for instance, reads originating
from an endosymbiont bacterium in an eukaryote
organism of interest). Foreign contaminants can be
detected—and optionally removed—using a short-read
taxonomic classifier. kraken2 [35] is a fast short-read
taxonomic classifier intended for metagenomic analysis.
In the RNA-seq context, it can be used to classify and
remove all reads not originating from the taxon of
interest. For instance, with a eukaryotic read dataset,
kraken2 could be used to exclude reads classified as
bacterial, archaeal, fungal or from plants. kraken2 offers
ready-made reference sequence databases for classi-
fication; these can be found at https://benlangmead.
github.io/aws-indexes/k2. An alternative to kraken2 is
Centrifuge [36] which can perform the same classi-
fications, but with a smaller memory footprint. FastQ
Screen is a screen-only alternative that can detect—
but not remove—contaminants based on a user-supplied
database.

In contrast, cognate contaminants are reads originat-
ing from off-target RNA species. For instance, although
most RNA-seq methods select for mRNA sequences, it
is still possible for off-target species to get represented
in the data set in sizable quantities. This is especially
true for rRNA sequences[37–39]. Reads originating from
rRNAs are best detected and removed using SortMeRNA

[40]. This tool was originally designed to filter out rRNA
reads from metatranscriptomic data, but it can also be
used with RNA-seq data. The tool maps inputs against
custom rRNA databases (derived from Rfam [41] and
SILVA [42]) to classify them as rRNA or non-rRNA reads.
This is useful for enriching the data for reads from coding
sequences prior to assembly. Other cognate contami-
nants such as long non-coding RNAs (lncRNAs) are best
detected and dealt with post-assembly. This has been
discussed further in the Section ’RNA classification’.

Modern RNA-seq studies now routinely sequence
hundreds of millions of reads with the objective of
reconstructing all expressed transcripts to full length to
construct so-called ‘reference’ transcriptomes. Although
this enhances sensitivity for recovery of lowly expressed
transcripts [43, 44], it also has the side effect of producing
a large number of reads for transcripts that are already
well represented with significantly fewer total reads.
Such an overabundance of reads (for well-represented
transcripts) can quickly lead to unacceptable assembler
performance and very long runtimes. This typically
appears to occur at read depths exceeding 200 million
reads [45]. In such situations, performing in silico
normalization on the reads prior to assembly can
significantly alleviate the aforementioned performance
issues. Here, reads are quantified on the basis of their
k-mer abundances, and are either retained or rejected
based on user-defined thresholds [45]. The outcome is a
strong reduction of the read volume in such a manner
that full length reconstruction of a large majority of the
transcript cohort can be achieved despite fewer reads
being input to the assembler [45, 46]. Some tools that can
perform in silico read normalization include khmer (using
the diginorm algorithm) [47], Bignorm [48], NeatFreq
[49] and ORNA [50]. The Trinity [46] assembler also offers
in-built in silico normalization [45, 46].

Links:
BBTools - https://sourceforge.net/projects/bbmap/,

https://jgi.doe.gov/data-and-tools/bbtools/
Bignorm - https://git.informatik.uni-kiel.de/axw/

Bignorm
Centrifuge - https://github.com/DaehwanKimLab/

centrifuge
cutadapt - https://github.com/marcelm/cutadapt
Falco - https://github.com/smithlabcode/falco
fastp - https://github.com/OpenGene/fastp
FastQC - https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/
FastQ Screen - https://www.bioinformatics.babraham.

ac.uk/projects/fastq_screen/
khmer - https://github.com/dib-lab/khmer
Kraken2 - https://github.com/DerrickWood/kraken2
MultiQC - https://multiqc.info
NeatFreq - https://github.com/bioh4x/NeatFreq
ORNA - https://github.com/SchulzLab/ORNA
rCorrector - https://github.com/mourisl/Rcorrector
SortMeRNA - https://github.com/biocore/sortmerna

https://benlangmead.github.io/aws-indexes/k2
https://benlangmead.github.io/aws-indexes/k2
https://sourceforge.net/projects/bbmap/
https://jgi.doe.gov/data-and-tools/bbtools/
https://git.informatik.uni-kiel.de/axw/Bignorm
https://git.informatik.uni-kiel.de/axw/Bignorm
https://github.com/DaehwanKimLab/centrifuge
https://github.com/DaehwanKimLab/centrifuge
https://github.com/marcelm/cutadapt
https://github.com/smithlabcode/falco
https://github.com/OpenGene/fastp
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
https://github.com/dib-lab/khmer
https://github.com/DerrickWood/kraken2
https://multiqc.info
https://github.com/bioh4x/NeatFreq
https://github.com/SchulzLab/ORNA
https://github.com/mourisl/Rcorrector
https://github.com/biocore/sortmerna

6 | Raghavan et al.

TrimGalore - https://github.com/FelixKrueger/
TrimGalore, https://www.bioinformatics.babraham.ac.
uk/projects/trim_galore/
Trimmomatic - https://github.com/usadellab/

Trimmomatic

De novo transcriptome assembly
RNA-seq reads contain a mixture of fragments corre-
sponding to different parts of different transcripts. Tran-
scriptional noise [51, 52], sequencing artifacts [53] and
transcript isoforms originating from alternative splicing
[54, 55] are also represented in these data. The objective
of assembly is to accurately disambiguate the origin of
the reads and reconstruct an accurate representation of
the parent sequences. This is typically achieved by exam-
ining overlaps between reads (or subsequences thereof)
in order to concatenate them into longer contiguous
sequences (contigs) [15, 56].

Assembly algorithms are mostly based on using
k-mers as assembly units instead of whole reads. A k-mer
is a sub-string of length k derived from a particular read
[46]. The first step in the assembly process is to construct
a dictionary of all possible k-mers (for a given k) and
the reads these k-mers originate from. Most modern
assemblers are graph-based in that they represent the
k-mers as nodes in a so-called De Bruijn graph (Figure 3).
Subsequently a contig is a path through the graph,
where each distinct k-mer represents a vertex in the
graph. Edges are formed between two k-mer vertices
if they have an overlap of exactly k-1 nucleotides. In
this way paths through the graph correspond to possible
sequences the k-mers originated from (Figure 3). Paths
are extended until no further overlap-based extensions
are possible [46]. Then each possible path through the
graph is traversed and recovered as a separate contig
corresponding to a single transcript.

De novo assembly does not produce a single, large De
Bruijn graph like in a genome assembly but instead many
disconnected subgraphs that, when disentangled, corre-
spond to groups of related sequences (transcript isoforms
or very closely related paralogs). Subsequently, post-
processing steps may be implemented to filter and group
contigs to yield a representative set of the assembled
sequences. De Bruijn graph-based assembly is sensitive
to the choice of k-mer length as it dictates the set of
contigs assembled by controlling the complexity of the
graphs. Generally speaking, shorter k-mer lengths imply
a higher chance of error-free k-1 overlap between any
two k-mers. As such, shorter k-mer lengths contribute
to the recovery of lowly expressed transcripts, but also
lead to a larger number of false positive (incorrect/non-
existent) contigs being assembled by connecting k-mers
from unrelated reads [56, 57]. On the other hand,
choosing a longer k-mer length would reduce the total
number of contigs assembled, but also suppress the
recovery of lowly expressed transcripts as fewer reads
would be able to satisfy the k-1 overlap requirement
in an error-free manner. Therefore, the choice of the

Figure 3. A typical graph-based approach to de novo transcriptome
assembly. The basic idea is to establish a catalog of sub-strings from
the RNA-seq reads, and compose these into a graph (or set of graphs)
wherein the sub-strings are connected if an overlap between them exists.
This establishes paths through the graph(s) which correspond to the
transcripts the reads (potentially) originated from. (A) Short nucleotide
reads 50–250 nt in length are the inputs for the assembly process. If
paired-end reads are supplied, the respective mates are merged into a
single contiguous read prior to assembly. Highlighted here is a 6 nt portion
of a single read (CGTTAG). (B) For each read, all possible sub-sequences
of length k are generated (k-mers). The 4-mers (k = 4) originating
from the 6 nt nucleotide fragment from the previous step are indicated
here as examples. (C) Subsequently, each k-mer becomes a node (also
called vertex) in the graph, and an edge is established between any two
nodes that share a k-1 nucleotide overlap with each other. Edges are
established between any two nodes that satisfy this overlap requirement.
As a simplified example, an edge connecting the first and second 4-mers
from the previous step is highlighted here as existing as a part of a De
Brujin graph. (D) Finally, different paths through the graph(s) are traversed
and recovered as independent sequences. Not all paths through the graph
are recovered; the subset of paths that represent valid transcripts is
determined algorithmically.

k-mer length defines a major trade-off in the assembly
process [56]. Assembly tools usually supply a default
value (or range thereof) for k which can be modified by
the user.

A large number of tools are available for de novo assem-
bly, and choosing one is a critical step in the workflow.

https://github.com/FelixKrueger/TrimGalore
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/usadellab/Trimmomatic

De novo transcriptome assembly and annotation | 7

The most prominent De Bruijn graph-based assembler
is Trinity [45, 46]. Since its release in 2011, the cor-
responding publication [46] has been cited over 10 000
times. It is robust and easy to use with an extensive set
of associated tools, and a large user community. Most
importantly, its general performance is consistently high
and on par with other novel assemblers [56, 58], making
it a trustworthy choice for assembly. A salient feature
of Trinity is that it identifies sets of contigs that may
be biologically related to one another (e.g. splice variants
[59, 60]), and designates these as gene isoforms. This fea-
ture is especially useful for differential gene expression
analysis with de novo assembled data, where it is common
practice to aggregate the expression of related transcript
isoforms into that of a representative ‘gene’, as this is
considered to be robust [61, 62]. There are numerous
other equally capable de novo assemblers [58]. A non-
exhaustive list includes SOAPdenovo-Trans [63], Oases
[64], Trans-ABySS [65], IDBA-Tran [66], inGAP-CDG [66],
RNA-Bloom [67] and rnaSPAdes [56]. All of these tools
except for SOAPdenovo-Trans apply a multiple k-mer

strategy, aiming to make use of the advantages of small
and large k-mer lengths to maximize transcript recov-
ery. RNA-Bloom is actually specialized toward assem-
bling single-cell RNA-seq but can also assemble bulk
RNA-seq. In terms of performance and assembly output,
rnaSPAdes and Trans-ABySS are similar to Trinity

[58].
Splicing graph assemblers are a variant of De Bruijn

graph assemblers. In this approach, each vertex corre-
sponds to an exon, while the edges represent splice junc-
tions [68, 69]. The paths through the graphs correspond to
transcript isoforms. The graphs generated are less entan-
gled in comparison to a traditional De Bruijn graph [70].
Representatives assemblers from this category include
Bridger [71], BinPacker [57], TransLig [72], DTA-SiST
[68] and IsoTree [70].

Choosing an assembler can be a difficult task. Holzer
et al. [58] recently concluded in a broad evaluation of
common transcriptome assemblers—using a variety of
data sets from different species—that assembler perfor-
mance is very dependent on the data supplied to it. As a
consequence, they were unable to declare an unanimous
‘best’ assembler. We concur, and recommend comparing
at least two different assemblers and multiple k-mer
lengths.

Links:
BinPacker - https://github.com/macmanes-lab/

BINPACKER
Bridger - https://github.com/fmaguire/Bridger_

Assembler
inGAP-CDG - https://sourceforge.net/projects/ingap-

cdg/
DTA-SiST - https://github.com/jzbio/DTA-SiST
IDBA-tran - https://github.com/loneknightpy/idba
IsoTree - https://github.com/david-cortes/isotree
Oases - https://github.com/dzerbino/oases
RNA-Bloom - https://github.com/bcgsc/RNA-Bloom

rnaSPAdes - https://github.com/ablab/spades
SOAPdenovo-Trans - https://github.com/aquaskyline/

SOAPdenovo-Trans
Trans-ABySS - https://github.com/bcgsc/transabyss
TransLig - https://sourceforge.net/projects/

transcriptomeassembly/
Trinity - https://github.com/trinityrnaseq/trinityrnaseq

Post-assembly quality control
Due to the noisy nature of RNA-seq data, de novo
assemblies can contain intronic sequences and other
‘transcriptional’ byproducts. Further, the assembly
process itself is not error-free [61]. For instance, unrelated
but highly similar transcripts may be incorrectly fused
together into a single contig during the assembly process
(i.e. a chimera [73]). Or the choice of k-mer length
might have been inappropriate, leading to a highly
fragmented assembly wherein multiple contigs together
would yield a longer, complete sequence (that might
have been otherwise assembled with a different choice
of k-mer length). Therefore, assessing the quality of a
de novo transcriptome assembly is a crucial step before
annotation and other downstream procedures. A low-
quality assembly can lead to erroneous interpretations
in a variety of scenarios including gene identification and
differential expression analysis.

The quality of an assembly can be assessed from sev-
eral perspectives. First is sequence length and fragmen-
tation. An assembly with many short contigs can be con-
sidered fragmented. It is possible that this is the result
of improper assembly or poor sequencing. Tools such as
SeqKit [74] can be used to calculate sequence length
statistics (such as the N50 value) that are helpful in this
regard. Second is read support—the fraction of all reads
that map back to the assembly. A good quality assembly
will have made use of most of the reads that went into
it. Further, the proportion of reads that map to multiple
sequences would be low (but this cannot be guaranteed,
as a gene may genuinely have many transcript isoforms).
All of these metrics can be checked easily by aligning
the reads against the assembled sequences. Read support
and alignment estimation tools are discussed in Sec-
tion ‘Alignment and abundance estimation’. The GitHub
Wiki of the Trinity de novo assembler https://github.
com/trinityrnaseq/trinityrnaseq/wiki lists several other
methods to assess the quality of an assembly including
interrogating the strand-specificity of the assembly in
case of prior strand-specific sequencing, and calculating
the ExN50 statistic [58, 75].

At this juncture, we would like to take a moment to
caution readers with regards to the application of the N50
statistic to transcriptome assemblies. The N50 is a simple
metric which describes the sequence length at which half
the nucleotides in the genome assembly are in sequences
equal in or longer than this length [76]. The goal would
then be to maximize the N50 value as this would indicate
complete assembly of all genomic elements (e.g. multiple

https://github.com/macmanes-lab/BINPACKER
https://github.com/fmaguire/Bridger_Assembler
https://sourceforge.net/projects/ingap-cdg/
https://sourceforge.net/projects/ingap-cdg/
https://github.com/jzbio/DTA-SiST
https://github.com/loneknightpy/idba
https://github.com/david-cortes/isotree
https://github.com/dzerbino/oases
https://github.com/bcgsc/RNA-Bloom
https://github.com/ablab/spades
https://github.com/aquaskyline/SOAPdenovo-Trans
https://github.com/aquaskyline/SOAPdenovo-Trans
https://github.com/bcgsc/transabyss
https://sourceforge.net/projects/transcriptomeassembly/
https://github.com/trinityrnaseq/trinityrnaseq
https://github.com/trinityrnaseq/trinityrnaseq/wiki
https://github.com/trinityrnaseq/trinityrnaseq/wiki

8 | Raghavan et al.

chromosomes). This is inappropriate for transcriptome
assemblies as the objective is recovery of many (rela-
tively) short full-length sequences, and not the construc-
tion of a few very long contigs. Given the presence of
transcript isoforms, short contigs resultant from tran-
scripts with low coverage, and overly long contigs resul-
tant from overzealous assembly of multiple isoforms,
the N50 statistic can become heavily skewed, thereby
presenting a biased overview of the assembly. The ExN50
metric is a modification to the traditional N50 making
it suitable for assessing transcriptome assemblies. Here,
the N50 value is calculated only for the top X% of the
cumulative expression levels. The length reported as
corresponding to ExN50 is a ‘gene’ length obtained as the
expression-weighted sum of the corresponding isoform
lengths. This approach neatly sidesteps the issues posed
by the plurality of short, lowly expressed transcripts
and long isoforms from highly expressed transcripts, as
these are now gathered into representative genes. This
metric is currently only implemented for the Trinity

assembler.
An alternative approach to checking the quality of the

assembly is to assess its composition. A good quality
assembly would ideally have recovered a large fraction
of the transcriptome that had been sequenced. The most
popular method in this regard is to test the assembly for
the presence of orthologs to certain genes that are univer-
sal, persistently expressed and occur almost exclusively
as single copies in the genome. If a transcriptome has
been properly sequenced and assembled, orthologs to a
large majority of these should be found. This analysis
can be performed using the tool BUSCO (Benchmarking
Universal Single-Copy Orthologs) [77]. The tool maintains
curated sets of universal single-copy genes from OrthoDB

[78]. The ‘completeness’ of the assembly is assessed by
how many of the universal genes have matches in the
input data and whether these matches are duplicated,
fragmented or full length. As a general rule a good quality
assembly should have fairly high BUSCO completeness
scores: > 80% BUSCO genes should have matches in the
transcriptome, and very few matches should be missing
or fragmented. If an assembly has a high proportion of
missing and fragmented BUSCO genes, this is indicative
of poor quality. In general, de novo transcriptome assem-
blies will have many duplicate matches to the BUSCO

sequences. This is caused by the presence of closely
related transcripts that represent splicing isoforms, and
thus is not necessarily indicative of unwanted redun-
dancy in the assembly. The issue of redundancy is dis-
cussed in detail in Section ‘Assembly thinning and redun-
dancy reduction’. As the tool was originally designed for
genomic assemblies, BUSCO does not account for this
phenomenon. An alternative to BUSCO is the domain-
based quality assessment tool DOGMA [79]. In this case,
instead of scoring on the basis of conserved genes, com-
pleteness is instead assessed on the basis of conserved
protein domains.

In a similar vein, the assembly quality can also be
checked on the basis of the provenance of the assembled
sequences. Ideally, for a given organism, a vast majority
of the assembled transcriptome sequences should map
to its own sequences in an external database (e.g.
from genomic sequencing; or those from closely related
species). Concomitantly, sequences that do not map in
this manner (or map to off-target organisms) can be
considered contaminants and filtered out, yielding an
improved assembly. But this may potentially discard
novel, un-annotated sequences, so it must be done
with caution. There are several popular sequence
search/alignment tools and sequence databases that can
be used for checking the provenance of the assembled
sequences. These are discussed in Section ‘Identity
assignment via homology transfer’. If the sequencing
reads have been processed prior to assembly (as
discussed in Section Pre-assembly quality control and
filtering), this quality control may not be as useful.

Several integrative tools have been developed over the
years with an eye on assessing the quality of de novo
transcriptome assemblies. These tools generally expand
upon the basic read mapping metrics mentioned above
and calculate additional statistics. They may also offer
the option to run BUSCO and other tools internally, com-
pare two or more versions of an assembly and com-
pare the assembled sequences against a genome or a
database of known sequences (as an example, see met-
rics indicated in thiswebsite). The most popular tool in
this regard is TransRate [80] which incorporates many
of the metrics mentioned above. The tool also checks
for the presence of chimeric sequences, whose removal
generally improves transcriptome assemblies [56, 81].
DETONATE [82] and rnaQUAST [83] are tools developed
in the same vein as TransRate, but only rnaQUAST is
still being developed (as of this publication). TransRate
and DETONATE, however, appear to continue to be in
use judging from recent citations (for instance, see sup-
plementary materials from Ceschin et al. [84]). A recent
development is the Bellerophon pipeline [85], which
offers a comprehensive quality assessment and filtration
tool that integrates several tools including TransRate,
the clustering suite CD-HIT [86] and BUSCO. In addition
to assessing quality, the tool also automatically applies
measures (such as filtering out very lowly expressed
transcripts) to improve the quality of the assembly. The
only inputs required are the assembly and the reads.

Quality controlling a de novo assembly can require
multiple rounds of assembly (for instance to test
different k-mer lengths), which can quickly become
a tedious undertaking. There are several tools that
encapsulate pre-processing, assembly, quality control
measures and even annotation together (often using
bioinformatic workflow managers; see Section ‘Work-
flow managers’) to enable turnkey production of high-
quality transcriptomes. Some of the popular tools in
this regard include DRAP [87], EvidentialGene and

this website

De novo transcriptome assembly and annotation | 9

the multi-assembler approach-based pipelines Oyster

River Protocol [88], TransPi [89] and Pincho [90].
Links:
Bellerophon Pipeline - https://github.com/

JesseKerkvliet/Bellerophon
BUSCO - https://busco.ezlab.org/
DETONATE - https://github.com/deweylab/detonate
DOGMA - https://domainworld-services.uni-muenster.

de/dogma/ (web server), https://ebbgit.uni-muenster.de/
domainWorld/DOGMA (source code)
DRAP - http://www.sigenae.org/drap/
EvidentialGene - http://arthropods.eugenes.org/

EvidentialGene/
The Oyster River Protocol - https://oyster-river-

protocol.readthedocs.io/en/latest/index.html
Pincho - https://github.com/RandyOrtiz/Pincho
rnaQUAST - https://github.com/ablab/rnaquast
TransRate - https://github.com/blahah/transrate

and http://hibberdlab.com/transrate/
SeqKit - https://github.com/shenwei356/seqkit
TransPi - https://github.com/palmuc/TransPi
Trinity Wiki - https://github.com/trinityrnaseq/

trinityrnaseq/wiki

Alignment and abundance estimation
Read alignment and transcript abundance estimation
are typically used for differential expression analysis
in the broader context of RNA-seq. Read mapping is a
pre-requisite for abundance estimation [91]. However,
alignment metrics can also be used to quality control
the assembly. A ‘good quality’ de novo assembled tran-
scriptome would have a large majority of the reads map-
ping/aligning to the assembly, i.e. most reads will have
had been used in its construction. This is assessed as
the ‘read support’ for the assembly. As a thumb rule,
a good assembly would have > 80% read support, and
would have a low proportion of un-mapped reads. Reads
can also map to more than one contig (multi-mapping
reads). This can occur, for instance, when the assembly
contains transcript isoforms that share exons. (Multi-
mapping reads are discussed also in Section ‘Assembly
thinning and redundancy reduction’.)

Abundance estimation, as the name implies, refers
to the process of inferring the expression level of the
transcripts in the assembly. Abundances are estimated
because it is impossible to disambiguate the source of
multi-mapping reads, and the true expression levels of
transcripts are usually unknown. As such, most tech-
niques typically produce maximum likelihood values
for transcript abundances. These values which include
read support (on a per-transcript basis) and a normalized
expression metric such as transcript per million

(TPM) [91]. These values are crucial for differential
expression analysis (see Section ‘Differential expres-
sion analysis’), but can also be used for assembly
quality control purposes. For instance, transcripts of
questionable biological significance typically have low

expression levels, and can be filtered out from the
assembly based on their TPM metrics. TPM calculations
can be easily performed using a dedicated tool such as
TPMCalculator [92].

Read alignment and abundance estimation can
usually be done together. There are two main approaches
to the combined procedure. The first is a two-step process
where the reads are first aligned to the assembled contigs
using a general purpose aligner such as Bowtie2 [93] or
STAR [94]. The output is typically a BAM file which lists the
sequences and the reads aligned to them (Li et al. [95] and
http://www.htslib.org). This is then fed to a tool such as
RSEM [96] (RNA-seq by Expectation-Maximization)
to obtain abundance estimates. The alternative is
a single-step approach known as pseudoalignment.
Read alignment is computationally expensive as every
nucleotide from the reads and assembled contigs must
be compared. Pseudoalignment eschews this in favor
of establishing the association between reads and
contigs on the basis of k-mer similarities between them.
There are two popular pseudoalignment tools, namely
Kallisto [97] and Salmon [98]. Both tools are based on
very similar approaches.

We would recommend using one of the pseudoalign-
ment tools as opposed to the alignment-estimation
workflow due to their speed [99], comparably high
accuracy [100–102] and ease of use. Additionally, these
tools can also run under an alignment-based mode if
necessary, making them the versatile choice.

Links:
Bowtie2 - https://github.com/BenLangmead/bowtie2
Kallisto - https://github.com/pachterlab/kallisto
RSEM - https://github.com/deweylab/RSEM
Salmon - https://github.com/COMBINE-lab/salmon
STAR - https://github.com/alexdobin/STAR
TPMCalculator - https://github.com/ncbi/TPMCalculator

Assembly thinning and redundancy
reduction
De novo transcriptome assemblers typically produce
many more sequences than would be expected based
on number genes in the genome. For example, Bryant
et al. [75] report having assembled over 1.5 million
sequences for a transcriptome of the axolotl (Ambystoma
mexicanum). The genome, in comparison, has ca. 23
000 genes [103]. The discrepancy between the number
of genes and the number of transcripts assembled de
novo boils down to the perception that transcription is
a noisy, pervasive process. For instance, Dunham et al.
[104] state that over 80% of the Homo sapiens genome
gets transcribed even though less than 3% [105] of the
transcribed products code for proteins. As such, the de
novo assembled contigs include transcriptional artifacts,
pre-mRNA and ncRNA in addition to the protein-coding
transcripts [61]. Another source of extra sequences is
alternative splicing [59, 60, 106] which manifests as
transcript isoforms. It may not always be necessary

https://github.com/JesseKerkvliet/Bellerophon
https://busco.ezlab.org/
https://github.com/deweylab/detonate
https://domainworld-services.uni-muenster.de/dogma/
https://domainworld-services.uni-muenster.de/dogma/
https://ebbgit.uni-muenster.de/domainWorld/DOGMA
https://ebbgit.uni-muenster.de/domainWorld/DOGMA
http://www.sigenae.org/drap/
http://arthropods.eugenes.org/EvidentialGene/
http://arthropods.eugenes.org/EvidentialGene/
https://oyster-river-protocol.readthedocs.io/en/latest/index.html
https://oyster-river-protocol.readthedocs.io/en/latest/index.html
https://github.com/RandyOrtiz/Pincho
https://github.com/ablab/rnaquast
https://github.com/blahah/transrate
http://hibberdlab.com/transrate/
https://github.com/shenwei356/seqkit
https://github.com/palmuc/TransPi
https://github.com/trinityrnaseq/trinityrnaseq/wiki
https://github.com/trinityrnaseq/trinityrnaseq/wiki
http://www.htslib.org
https://github.com/BenLangmead/bowtie2
https://github.com/pachterlab/kallisto
https://github.com/deweylab/RSEM
https://github.com/COMBINE-lab/salmon
https://github.com/alexdobin/STAR
https://github.com/ncbi/TPMCalculator

10 | Raghavan et al.

to retain all such sequences. Assembly thinning can
therefore be an important step toward obtaining a
sequence set of a manageable size.

A straightforward approach to thinning is to manu-
ally select contigs that can be considered representative
with respect to the entire assembly. This is infeasible
unless the relationships between the assembled contigs
is known a priori. Luckily, most popular assemblers clas-
sify the transcripts into groups of isoforms automatically.
A representative isoform can be chosen in several dif-
ferent ways: the isoform with the highest read support,
the longest isoform, or the isoform that produces the
longest translated amino acid sequence, or even the
isoform whose coding sequence (CDS) has the highest
read support. All of these approaches may be equally
effective, and are likely to be data set-dependent. It is
recommended to choose a method based on the BUSCO

scores and other quality metrics.
Should the gene-isoform relationship be unavailable,

a simple approach to thinning would be to exclude tran-
scripts that can be considered as being lowly expressed
on the basis of abundance metrics such as TPM. These
metrics can be calculated easily using one of the tools
mentioned in the Section ‘Alignment and abundance
estimation’. Thereafter, contigs with read support below
some threshold (e.g. TPM < 1.00) could be discarded from
the assembly.

A more rigorous approach for assembly thinning is to
use a clustering tool. This is especially useful in cases
where the assembled contigs do not have the gene–
isoform relationship disambiguated or the assembly
is genuinely redundant (i.e. many contigs with nearly
identical sequence have been assembled). The clustering
tools CD-HIT [86, 107] and MMSeqs2 [108–111] use a
combination of sequence identity and sequence coverage
thresholds to group sequences together into clusters and
extract representative sequences. The representatives
are typically either the longest sequence in each cluster
or the sequence with the most commonality with
the cluster members. There are also several tools
that have been developed specifically with de novo
transcriptome assemblies in mind. Many of these tools
work on the premise that shared read support—i.e. high
proportions of multi-mapping reads within a set of reads
corresponding to a set of transcripts—can be used to
cluster the sequences together. Tools in this category
include Corset [62], Grouper [112] and Compacta [113].

An interesting approach to assembly thinning is pre-
sented by the SuperTranscripts [114] tool. Instead of
choosing a representative isoform for each gene clus-
ter, the tool simply stitches all unique exons from the
isoforms into a single, linear sequence. This ‘transcript-
hybrid’ does not necessarily exist in a real biological
context, but can nevertheless be useful. Super transcripts
have great potential not only for analysis, e.g. for studying
differential transcript usage, but also for assembly thin-
ning without any sequence information loss. Assembly
thinning is not the main objective but rather a side-effect.

It is important to note that assembly thinning should
be performed only if absolutely necessary. The prove-
nance of de novo assembled contigs are unknown, and
they all therefore can carry significant biological infor-
mation. Assembly thinning is an inherently heuristic
task. It is entirely possible, for instance, to tune the
parameters such that closely related paralogs get clus-
tered together. In such an event, sequences that should
be represented in the assembly will be lost. Further, in the
case of isoforms, it is often impossible to identify a single
best isoform [45]. For instance, the longest isoform is not
necessarily the most expressed (and vice versa). It is not
even necessary that the longest or the most expressed
isoform is the one that is actually representative of the
gene and the concomitant protein. The longest isoform
may be the result of the assembler erroneously overex-
tending the biologically relevant contig, or the result of
an intron being retained in the transcript. Subsequently,
the corresponding protein may not be the longest protein
in the cohort, or may even be absent as a result of the cor-
responding ORF being aberrant. As such, extreme caution
must be exercised when performing assembly thinning
and redundancy reduction, as irreverent thinning can
result in the loss of otherwise informative sequences
from downstream analyses.

Links:
CD-HIT - http://weizhongli-lab.org/cd-hit/
Corset - https://github.com/Oshlack/Corset
Compacta - https://github.com/bioCompU/Compacta
Grouper - https://github.com/COMBINE-lab/grouper
MMseqs2 - https://github.com/soedinglab/MMseqs2
SuperTranscripts - https://github.com/Oshlack/

Lace

Differential expression analysis
Assessing changes in gene expression in response to
changes in physiological or environmental conditions is
one of the main objectives of the RNA-seq approach.
In the simplest case, this is achieved by capturing the
RNA from independent samples (in replicate) exposed
to experimental and control conditions. Thereafter, the
sequenced reads can be mapped to the organism’s genes
to assess how differently the genes are expressed under
the experimental circumstances as opposed to the con-
trol scenario. This is known as differential expression
(DE) analysis [115]. Through such comparisons of expres-
sion, it is possible to obtain an understanding of the
activity of genes under various circumstances.

In order to perform a DE analysis, a collection of gene
sequences from the organism is required. The genes
themselves can be used if an annotated genome is avail-
able. If no genome is available, a de novo assembled
transcriptome can be used, with the transcripts acting
as proxies for the genes. In a de novo transcriptome
assembly for a DE analysis, the reads from all conditions
and all replicates are pooled together for assembly: this
produces a single, common ‘reference’ transcriptome

http://weizhongli-lab.org/cd-hit/
https://github.com/Oshlack/Corset
https://github.com/bioCompU/Compacta
https://github.com/COMBINE-lab/grouper
https://github.com/soedinglab/MMseqs2
https://github.com/Oshlack/Lace

De novo transcriptome assembly and annotation | 11

against which the reads can then be mapped and quan-
tified.

Subsequently, the data can be analyzed for indications
of differential expression. The analytical procedure is
the same irrespective of whether a genome or a tran-
scriptome was used as the reference. In both cases, the
result is a table wherein each row represents a unique
sequence, and each column represents a unique sam-
ple and replicate. Each cell in this table indicates the
number of reads assigned to that particular sequence in
that particular sample-replicate. A statistical approach is
adopted wherein the mean value of the read counts for
each sequence over the sample replicates is compared
between the conditions of interest.

There are a number of packages in various program-
ming languages that are capable of performing DE anal-
ysis. Although the methods they implement differ [91],
they all perform the following tasks: (1) normalizing the
read counts to account for differences in sequencing
depths between the samples [116], (2) noise reduction
[117] (optional), (3) fitting a read counts distribution to
the data, and using it to test differential expression of
each gene between the conditions of interest and (4)
correcting the produced P-values for multiple testing.

Whether or not a gene or transcript has been differen-
tially expressed is indicated through a set of numerical
values, of which two are of particular importance in the
context of biological interpretation. The aforementioned
corrected P-values indicate whether the difference in
expression of a gene/transcript between two conditions
is statistically significant. A small P-value indicates that
the probability of the read counts being different between
the two conditions purely due to chance is very low: i.e.
it is highly probable that the source of the difference is
a biological phenomenon. The log2FoldChange value
describes the magnitude of the difference in expression:
one of the two conditions is taken as the baseline and
the change in expression in the other is calculated rel-
ative to this. As the name suggests, this is the log2

value of the ratio of the mean counts of the two condi-
tions being compared. A positive log2FoldChange (lfc)
value indicates upregulation, and a negative value indi-
cates downregulation with respect to the condition being
adopted as the basis for comparison. Lowly expressed
genes/transcripts tend to have higher variability in their
support, leading to the lfc being overestimated for these.
Therefore, an important—but often overlooked—step is
to correct the lfc estimates with a shrinkage algorithm
(such as apeglm [118] or ashr [119]) before using them
for biological interpretation. It is conventional to consider
only those genes/transcripts that have a certain level of
statistical significance and magnitude of difference in
expression (e.g. P-value <= 0.05 and log2FoldChange

/∈ {−1, 1}) as being differentially expressed.
The most popular packages for DE analysis today have

all been developed for use with the R [120] statistical
programming language. The three popular packages in
this regard are DESeq2 [121], edgeR [122] and limma

[123, 124]. Among the three packages, DESeq2 appears to
be the most conservative, detecting fewer differentially
expressed genes in general in comparison to edgeR and
limma [125]. A number of tools have also been devel-
oped to facilitate import/export of the requisite data into
the R environment, and pre-process them for DE analy-
sis. In this regard, we recommend the use of tximport
[126] which is capable of preparing data from commonly
used abundance estimators such as RSEM, Kallisto and
Salmon for analysis with all three aforementioned DE
packages. Other packages to facilitate DE analyses exist.
For example, RUVSeq [127] can be used to correct for
batch effects in the data, SARTools [128] can be used to
obtain standardized DE analysis templates, MetaCycle
[129] can be used to perform time-series RNA-seq analy-
sis [130] and consensusDE [131] can be used to perform
DE analysis employing a multi-algorithmic approach.

Finally, we like to point out that DE analysis has been
covered in much detail elsewhere (e.g. Conesa et al. [91],
Van den Berge et al. [132], Schurch et al. [133], Finotello and Di
Camillo[134], Li and Li[135], McDermaid et al. [124]), and we
defer to those publications for an in-depth discussion of
the topic. In specific, McDermaid et al.[124] offer an excel-
lent overview of DE analysis packages, and Conesa et al.
[91] offer a comprehensive review plus recommendations
for RNA-seq experiments with a focus on DE applications.

Links:
apeglm - https://bioconductor.org/packages/release/

bioc/html/apeglm.html
ashr - https://github.com/stephens999/ashr, https://

cran.r-project.org/web/packages/ashr/index.html
consensusDE - https://bioconductor.org/packages/

release/bioc/html/consensusDE.html
DESeq2 - https://bioconductor.org/packages/release/

bioc/html/DESeq2.html
edgeR - https://bioconductor.org/packages/release/

bioc/html/edgeR.html
limma - https://kasperdanielhansen.github.io/

genbioconductor/html/limma.html https://bioconductor.
org/packages/release/bioc/html/limma.html
MetaCycle - https://cran.r-project.org/web/packages/

MetaCycle/index.html, https://github.com/gangwug/
MetaCycle
RUVSeq - https://bioconductor.org/packages/release/

bioc/html/RUVSeq.html
SARTools - https://github.com/PF2-pasteur-fr/SARTools
tximport - https://github.com/mikelove/tximport

RNA classification
The method used to isolate, enrich and sequence a sam-
ple will affect the composition of the sequencing data
in terms of the types of RNA species represented and
their relative abundances [12, 14, 39, 136]. Most RNA-seq
studies are interested in protein-coding transcripts, and
appropriately use Poly-A capture—or rRNA depletion if
focusing on prokaryotes—to enrich for mRNA molecules
[14]. Such enrichment is especially necessary to diminish

https://bioconductor.org/packages/release/bioc/html/apeglm.html
https://bioconductor.org/packages/release/bioc/html/apeglm.html
https://github.com/stephens999/ashr
https://cran.r-project.org/web/packages/ashr/index.html
https://cran.r-project.org/web/packages/ashr/index.html
https://bioconductor.org/packages/release/bioc/html/consensusDE.html
https://bioconductor.org/packages/release/bioc/html/consensusDE.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://kasperdanielhansen.github.io/genbioconductor/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/MetaCycle/index.html
https://cran.r-project.org/web/packages/MetaCycle/index.html
https://github.com/gangwug/MetaCycle
https://github.com/gangwug/MetaCycle
https://bioconductor.org/packages/release/bioc/html/RUVSeq.html
https://bioconductor.org/packages/release/bioc/html/RUVSeq.html
https://github.com/PF2-pasteur-fr/SARTools
https://github.com/mikelove/tximport

12 | Raghavan et al.

the abundance of rRNAs, which would otherwise repre-
sent a majority of the sequenced molecules [12, 39]. How-
ever, ‘contaminant’ RNA species can still make their way
into the assembled data, despite applying pre-assembly
filtering measures to exclude such species (see section 2).
In silico RNA sequence classification can therefore be
used to enrich the data post-assembly for the RNA of
interest.

In silico classification is mostly performed ad hoc. If the
purpose of classification is simply to sieve out mRNAs
from the rest, this can be easily achieved by assessing
the coding potentials of the assembled contigs using
tools like CPC2 [137] or CPAT [138], and retaining only
those contigs that score above some satisfactory coding
potential threshold. An alternative path to the same end
result would be to retain only those contigs that produce
a peptide sequence when passed through a translation
tool (see Section ‘Sequence translation’ for an overview
of these tools).

More granular classification can be obtained by using
the tool Infernal [139]. Infernal (INFERence of RNA
ALignment) is capable of classifying input sequences into
rRNAs, tRNAs and lncRNAs on the basis of sequence
comparison against a reference database.Infernal uses
co-variance models and the Rfam [41] database to clas-
sify the input sequences. By process of elimination (i.e.
whatever is not an rRNA/tRNA/lncRNA), Infernal can
indirectly help identify mRNAs from the assembly. The
Infernal-Rfam workflow’s output can be difficult to
parse for the purpose of RNA classification, and we there-
fore recommend reading this portion (https://docs.rfam.
org/en/latest/faq.html#rfam-and-infernal) of the Rfam

documentation.
If only rRNA classification is needed, barrnap is a

fast and lightweight option. It uses the Rfam, SILVA [42]
and NCBI RefSeq mitochondrial [140] databases to
identify and annotate rRNAs. If SortMeRNA or other an
equivalent classification tool has been deployed before
assembly, then the reads will have to be assembled sepa-
rately prior to annotation with barrnap. An older tool,
RNAmmer [141], continues to be available for use as in
stand-alone and web server formats for the purpose of
rRNA identification also.
lncRNAs are RNA molecules longer than 200 nucleotides
with low coding potential [142, 143]. These molecules
typically play regulatory roles in the cell, either directly
as RNA entities, or via the short ‘micropeptides’ that
result from their translation [5, 143]. Classification/iden-
tification of lncRNAs is typically achieved by elimination;
that is, all sequences that are of sufficient length and
have not been classified as some other RNA species (e.g.
mRNA or rRNA) and have a low coding potential must
be lncRNAs. We direct the interested reader to consult
Motheramgari et al. [144] and Kashyap et al. [145] for
demonstrations of elimination techniques for classifying
lcnRNAs.

Finally, RNA classification can also be achieved via
sequence searches against appropriate databases (e.g.

NCBI RefSeq RNA). We discuss sequence searches in
Section ‘Identity assignment via homology transfer’.

Links:
barrnap - https://github.com/tseemann/barrnap
CPAT - https://github.com/liguowang/cpat, http://lilab.

research.bcm.edu/ (web server)
CPC2 - https://github.com/gao-lab/CPC2_standalone,

http://cpc2.gao-lab.org/ (web server)
Infernal - http://eddylab.org/infernal/, https://github.

com/EddyRivasLab/infernal
NCBI RefSeq - https://www.ncbi.nlm.nih.gov/refseq/
Rfam - http://rfam.xfam.org/, https://docs.rfam.org/

en/latest/index.html
SILVA - https://www.arb-silva.de/
RNAmmer - http://www.cbs.dtu.dk/services/RNAmmer/

(web server, standalone download link)

Sequence translation
A core element in the downstream analysis for RNA-
seq data involves the translation of assembled sequences
into their corresponding amino acid sequences, and on
the nucleotide level into the protein coding sequences
(CDS) not containing any untranslated regions (UTRs). A
correct characterization of CDS is not only important for
profiling the protein-coding fraction of a transcriptome,
but also for an accurate classification of UTRs and non-
coding sequences/regions which may be of interest in the
context of gene regulation [146].

There are a number of tools that can predict coding
regions, and subsequently translate them into amino
acid sequences. These tools are based on probabilistic
models that take nucleotide composition as well as
length of open reading frames (ORFs) into account for
their predictions [45]. Tools like TransDecoder [45],
Prodigal [147], GeneMarkS-T [148] and CodAn [146] are
so-called ab initio predictors, meaning that the prediction
model is based on self-training methods. This includes
identifying a certain number of long ORFs from within
the assembly, which serve as test set for predicting CDS
from the remaining contigs afterwards [146, 148]. A
recently released tool named BOrf [149] focuses on ORF
prediction for strand-specific RNA-seq, but also performs
acceptably with non-specific data.

Alternatively, translations can also be obtained by
simply scanning the inputs for ORFs in all six reading
frames, and reporting all translations. There are many
tools that can perform this including the web-based
NCBI ORFfinder and EBI EMBOSS-Sixpack [150], as
well as esl-translate from the HMMER suite [151] and
extractorfs from MMseqs2 [108–111]. Finally, a novel
approach to recovering a protein data set from RNA-
seq data is presented in the tool PLASS [152] which
directly scans short reads for ORFs and extends these
into amino acid contigs by examining overlaps between
the translations.

CDS prediction and sequence translation is not
always performed, but it is recommended as sequence

https://docs.rfam.org/en/latest/faq.html#rfam-and-infernal
https://docs.rfam.org/en/latest/faq.html#rfam-and-infernal
https://github.com/tseemann/barrnap
https://github.com/liguowang/cpat
http://lilab.research.bcm.edu/
http://lilab.research.bcm.edu/
https://github.com/gao-lab/CPC2_standalone
http://cpc2.gao-lab.org/
http://eddylab.org/infernal/
https://github.com/EddyRivasLab/infernal
https://github.com/EddyRivasLab/infernal
https://www.ncbi.nlm.nih.gov/refseq/
http://rfam.xfam.org/
https://docs.rfam.org/en/latest/index.html
https://docs.rfam.org/en/latest/index.html
https://www.arb-silva.de/
http://www.cbs.dtu.dk/services/RNAmmer/

De novo transcriptome assembly and annotation | 13

comparisons (necessary for annotation, see Section
‘Transcriptome functional annotation’) are more sen-
sitive with protein sequences rather than with the
corresponding nucleotide counterparts. We direct the
interested reader to refer to Section 4.2, Chapter 4
of Koonin and Galperin [153] and Pearson [154] for
explanations.

Links:
BOrf - https://github.com/betsig/borf
CodAn - https://github.com/pedronachtigall/CodAn
EMBOSS-Sixpack - https://www.ebi.ac.uk/Tools/st/

emboss_sixpack/
esl-translate - http://hmmer.org/, https://github.

com/EddyRivasLab/easel
GeneMarkS-T - http://exon.gatech.edu/GeneMark/

license_download.cgi
ORFfinder - https://www.ncbi.nlm.nih.gov/orffinder/

(web server)
PLASS - https://github.com/soedinglab/plass
Prodigal - https://github.com/hyattpd/Prodigal
TransDecoder - https://github.com/TransDecoder/

TransDecoder

Transcriptome functional annotation
Once a transcriptome has been assembled and quality
controlled, its sequences can be studied to elucidate
the functionality they individually and collectively rep-
resent in the circumstances under which the data were
obtained. For instance, an assembled transcript that is
overrepresented in the assembled transcriptome may
code for a structural protein, indicating that the cell was
in a state of enhanced structural modification activity at
the time of sampling.

Functional annotation is the process of inferring and
assigning information concerning the biological func-
tionality of the sequence using in silico methods. Func-
tional annotation is usually understood to refer to the
annotation of mRNAs, as it is the proteins, which these
sequences are translated into, that carry out the various
activities within the cell (and hence contribute to the
functioning of the cell). As such it can be argued that the
process of functional annotation begins with RNA clas-
sification and amino acid sequence prediction (Sections
‘RNA classification’ and ‘Sequence translation’). How-
ever, as these steps do not yield information regarding the
exact functionality of the transcripts, we do not include
them under the aegis of functional annotation.

There appears to be no given definition for what con-
stitutes a standard approach to transcriptome functional
annotation. A survey of relevant literature reveals that
a variety of methods have been adopted in the past.
For instance Chabikwa et al. [20] only used homology
transfer (see Section ‘Identity assignment via homology
transfer’), while Sayadi et al. [155] used a combination
of different approaches to annotate their transcriptome.
Based on a review of 18 papers describing annotations of
de novo assembled transcriptomes (Table S1), we describe
the transcriptome functional annotation procedure as
comprising of the following steps (see also Figure 4):

• Homology transfer and identity assignment via
sequence search.

• Sequence feature annotation.
• Gene ontology (GO) and biochemical pathway anno-

tation.

We caution that these aforementioned steps are not
necessarily independent nor strictly compartmentalized.
For instance, sequence features can be annotated based
on homology transfer, and need not always be performed
as an independent step. Nor is it the case that all three
indicated steps are mandatory to establish an annotated
transcriptome. Instead, the objective is to delineate the
myriad of aspects involved in transcriptome annota-
tion—and introduce the associated tools and resources—
in a succinct and concise manner.

Identity assignment via homology transfer
Homology transfer can be considered the most basic
form of transcriptome annotation. Here, a descriptive
identity (e.g. ‘Protein kinase’) and functional properties
are assigned to a hitherto undecorated sequence on
the basis of a sequence search. In this method the
assembled sequences are supplied to sequence search
tools as queries. A database of well-annotated reference
sequences are provided as the targets. The tools then
use heuristic methods [156] to find matches between
these inputs. Typically, each query has more than one
matched target. The best match is usually chosen
based on the significance of the so-called e-value (more
on this below). This leaves each query with a single
match, whose identity and annotation are assigned to
the query. It is appropriate to transfer annotations in
this manner because the e-value is an indicator of the
likelihood of the observed sequence similarity arising
purely by chance [154]. In other words, a sufficiently
low e-value (e.g. 0.00000001) is indicative of homology
(shared evolutionary ancestry) which subsequently
implies conserved function [154, 157]. Hence the name
‘homology transfer’ [154].

Homology transfer can be performed both with
nucleotide sequences as well as (translated) protein
sequences from transcriptomes. Proteins are more
conserved than their corresponding mRNA sequences
(see Chapter 4 of Koonin and Galperin [153]). Protein
sequence searches are also more sensitive and faster, due
to the expanded alphabet of 21 amino acids and shorter
sequence length in comparison to their nucleotide
counterparts. Further most functional properties (e.g.
enzymatic domains) are only really meaningful in the
context of a protein sequence. Because of these reasons,
it is customary to either use translated searches, or
pre-translated sequence sets (see Section ‘Sequence
translation’), for functional annotation.

In addition to identifying homologs to the sequence,
sequence features such as domains can also be trans-
ferred if the sequences are similar enough (if, for
instance, they have the same length). However, such

https://github.com/betsig/borf
https://github.com/pedronachtigall/CodAn
https://www.ebi.ac.uk/Tools/st/emboss_sixpack/
https://www.ebi.ac.uk/Tools/st/emboss_sixpack/
http://hmmer.org/
https://github.com/EddyRivasLab/easel
https://github.com/EddyRivasLab/easel
http://exon.gatech.edu/GeneMark/license_download.cgi
http://exon.gatech.edu/GeneMark/license_download.cgi
https://www.ncbi.nlm.nih.gov/orffinder/
https://github.com/soedinglab/plass
https://github.com/hyattpd/Prodigal
https://github.com/TransDecoder/TransDecoder
https://github.com/TransDecoder/TransDecoder
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab563#supplementary-data

14 | Raghavan et al.

Figure 4. Transcriptome functional annotation comprises of techniques to assign human-comprehensible identifiers and functional characteristics to
the transcripts. It includes searching for homologs based on sequence similarities and identifying assembled sequences (homology transfer), domain
and other sequence feature identification (sequence feature annotation) and assigning standardized descriptors for the sequences’ biological properties
(Gene Ontology terms).

annotations would be insufficiently resolved as they
would have been transferred only on the basis of
sequence similarity. For instance, although two sequences
are highly similar, they might not necessarily share all
domains, and annotating one of them with the domains
of the other on the basis of similarity alone could yield
erroneous domain attributions.

TOOLS: The most commonly used sequence search
tool for this purpose is the famous BLAST [158] suite
(more precisely BLAST+ [159]). BLAST comprises of
several sub-tools specialized for different types of
search strategies. blastn can be used to perform
searches with nucleotide sequence queries versus
nucleotide sequence targets. blastp is its counterpart
for amino acid queries and targets. The suite can
also perform translated searches with blastx. Here,
query nucleotide sequences are translated and searched
against an amino acid sequence targets database. The
inverse search operation (amino acid queries versus
nucleotide targets) can be performed with tblastn.
The suite offers rpsblast and rpsblastn to facilitate
identification of conserved domains in amino acid and
nucleotide queries, respectively. Finally, two options
are offered by BLAST for high sensitivity searches.
deltablast can perform highly sensitive searches with
amino acid queries against amino acid databases.
psiblast can be to identify protein homologs for amino
acid queries against a database of amino acid targets

using sequence-profile searches.
Although BLAST is the mainstay of sequence search

tools, it is very slow, and does not scale well in terms
of speed with growing input size. For instance, Buchfink
et al. [160] indicate blastp running on ca. 21 000

CPUs would take around 2 months to scan 280 million
queries against 40 million targets. Given that de
novo transcriptomes may contain upwards of 100 000
transcripts to annotate, BLAST becomes an infeasible
option—especially as a part of larger workflows. Luckily,
alternatives to BLAST exist that are just as sensitive but
magnitudes faster. Two such tools are discussed in the
next few paragraphs below.
Diamond [160] is a special-purpose tool that is exclu-

sively geared toward searching against protein databases.
As of version v2.0.9.147, Diamond is as sensitive as
blastp while being 80× faster. The tool is an almost
drop-in replacement for blastp, both due to its speed,
and due to the fact that it mimics the BLAST command
line function calls and output formats. The main draw-
back of the tool is that it can only operate with amino
acid sequences as targets. However, it does accept both
nucleotide and protein queries. Therefore, it is a great
choice for performing protein versus protein (or trans-
lated nucleotide versus protein) searches while annotat-
ing de novo assembled transcriptomes.

The other main alternative to BLAST is MMseqs2 [108–
111] (Many-against-Many sequence searching). In some
senses, it is the more equivalent alternative to BLAST as
it is also a modular software suite in its own right with
extensive capabilities. MMseqs2 supports nucleotide and
amino acid sequences as both queries and targets,
and supports translated searches via a bespoke search

module. Although not nearly as fast as Diamond at equal
levels of sensitivity, MMseqs2 is still 8–10× faster than
BLAST at comparable levels of sensitivity. One drawback
of MMseqs2 is that it uses its own database format
which is incompatible with the BLAST database format.

De novo transcriptome assembly and annotation | 15

However, it can present outputs in the default BLAST

format. But on the other hand MMseqs2 offers sequence–
sequence search, sequence–profile search, sequence
clustering and taxonomy assignment, making it a one-
stop solution transcriptome annotation workflows. For
instance, it can be used to replace CD-HIT for clustering
and BLAST for sequence search.

DATABASES: The quality of annotation via homol-
ogy transfer depends upon the quality of the reference
databases used. It is advisable to use multiple databases
encompassing different standards of curation and taxo-
nomic scope. While a single database of references from
closely related species will potentially result in fewer
false annotations, a database that is taxonomy-agnostic
will be invaluable in annotating novel sequences that
might have otherwise been missed.

There are several general-purpose sequence databases
which can be used in their entirety as reference
databases, or as sources for a manually curated ref-
erence sequence set. NCBI’s [161] NR (protein) and
NT (nucleotide) are non-curated, and are the largest
sequence databases available today. For a well-curated
set, the non-redundant NCBI RefSeq database might be
preferable. The UniProt [162] consortium’s Swiss-Prot
database contains the highest quality, manually curated
protein sequence set available anywhere. It can be
considered the gold standard annotation source. The
UniProt/TrEMBL database is the uncurated counterpart
with a larger number of sequences. If all UniProt

sequences are desired, the UniRef [163, 164] series of
databases may be of interest, which represent subsets
obtained by clustering at various levels of sequence iden-
tity. There are also taxon-specific databases maintained
by various consortia. Some examples include FlyBase

[165] (Drosophila),WormBase [166] (nematodes) and PLAZA

[167, 168] (plants). Such sequence repositories are best
found by reviewing relevant literature.

Links:
BLAST - https://blast.ncbi.nlm.nih.gov/Blast.cgi (web

server), https://ftp.ncbi.nlm.nih.gov/blast/executables/
blast+/LATEST/ (standalone tool download page)
Diamond - https://github.com/bbuchfink/diamond
FlyBase - https://flybase.org/
MMseqs2 - https://github.com/soedinglab/MMseqs2,

https://search.mmseqs.com/search (web server)
NCBI RefSeq - https://www.ncbi.nlm.nih.gov/refseq/,

https://ftp.ncbi.nlm.nih.gov/refseq/release/ (FTP)
NCBI NR and NCBI NT - https://ftp.ncbi.nlm.nih.gov/

blast/db/FASTA/ (FTP)
PLAZA - https://bioinformatics.psb.ugent.be/plaza/
UniProt - https://www.uniprot.org/
WormBase - https://wormbase.org/

Sequence feature annotation
A very important aspect of annotation is the precise
identification of functional sequence features such as
protein domains, disordered regions, motifs, transmem-
brane helices and so forth. While these can be annotated

via homology transfer, the process can be error prone
and have poor resolution. For instance, an assembled
partial sequence may be identified as being homologous
to a protein containing a bZIP domain, without explic-
itly aligning to the sub-sequence corresponding to that
domain. Annotating the sequence with a bZIP domain
would be erroneous in this case. Therefore, approaches
that explicitly detect the presence of such features is
preferable for the purposes of such annotations.

Sequence features such as domains are typically
annotated by comparing the query sequence against
databases of Hidden Markov Model (HMM) [169] repre-
sentations of sequence profiles [170, 171]. Sequence pro-
files are compact representations of multiple sequence
alignments (MSAs) [172] of protein families wherein
the aligned residues correspond to domains or other
conserved features. Domains on the query sequence(s)
can be detected by performing a sequence-profile
alignment against the HMMs using a tool such as HMMER3
[151]. But not all sequence features are predicted this
way. For instance, signal peptides are predicted by the
tool SignalP using a deep learning method [173], the tool
fLPS [174] uses a statistical approach called probability
minimization to predicted biased regions in amino acid
sequences and protein motifs [175] can be predicted
using simple pattern matching techniques. As such a
large variety of tools and databases exist to facilitate
annotation of various sequence features.
InterProScan [176] is a metatool that integrates

a number of feature prediction methods, databases
and analyses into a single user-friendly interface. It
negates the need for having to install and maintain
a variety of databases and tooling manually. In addi-
tion to annotating protein functional and structural
domains, it can also be used to classify sequences (e.g.
into protein families on the basis of gene ontology),
and detect transmembrane and disordered regions.
InterProScan can be run on both nucleotide and amino
acid sequneces. A web server version of the tool is also
available. The interested reader can refer to https://
interproscan-docs.readthedocs.io/en/latest/HowToRun.
html#included-analyses for a complete list of analyses
included in the tool.

A large number of resources are available for anno-
tating a myriad variety of sequence features. It is
advisable to scan recent literature for relevant tools
for niche use-cases. In addition to InterProScan, we
would like to highlight two tool repositories that should
be of interest. The software portal at DTU Health

Tech (https://services.healthtech.dtu.dk/software.php)
hosts a number of useful annotation tools including
predictors for post-translational modifications. The
European Bioinformatics Institute (EMBL-EBI)
provides a wide variety of tools and data resources at
https://www.ebi.ac.uk/services that may also be of
interest in the context of sequence annotation.

The huge variety of annotatable sequence features
can be overwhelming to choose from. It is advisable to

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://github.com/bbuchfink/diamond
https://flybase.org/
https://github.com/soedinglab/MMseqs2
https://search.mmseqs.com/search
https://www.ncbi.nlm.nih.gov/refseq/
https://ftp.ncbi.nlm.nih.gov/refseq/release/
https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
https://bioinformatics.psb.ugent.be/plaza/
https://www.uniprot.org/
https://wormbase.org/
https://interproscan-docs.readthedocs.io/en/latest/HowToRun.html#included-analyses
https://interproscan-docs.readthedocs.io/en/latest/HowToRun.html#included-analyses
https://interproscan-docs.readthedocs.io/en/latest/HowToRun.html#included-analyses
https://services.healthtech.dtu.dk/software.php
https://www.ebi.ac.uk/services

16 | Raghavan et al.

only annotate those features that will be of interest for
downstream applications. For a standard transcriptome
annotation workflow, it should suffice to annotate pro-
tein functional domains (e.g. against PFam [177]) and
structural domains (e.g. against CATH-Gene3D [178, 179])
using a tool such as InterProScan.

Links:
CATH-Gene3D - https://www.cathdb.info/
fLPS - https://biology.mcgill.ca/faculty/harrison/flps.

html, https://github.com/pmharrison/flps
HMMER3 - http://hmmer.org/, https://www.ebi.ac.uk/

Tools/hmmer/ (web server)
InterProScan - https://github.com/ebi-pf-team/

interproscan, https://www.ebi.ac.uk/interpro/ (web server)
Pfam - http://pfam.xfam.org/
Tools at DTU Health Tech - https://services.

healthtech.dtu.dk/software.php
Tools at EMBL-EBI - https://www.ebi.ac.uk/services

Gene ontology and pathway annotation
It is useful to assign descriptors from a controlled vocab-
ulary (ontology) that associates the sequences with spe-
cific biological phenomena in a consistent manner. For
this purpose the assembled sequences can be annotated
with Gene Ontology (GO) terms [180, 181] (see Dessimoz
and Škunca [182] for details on GO terms and their usage).
There are several possibilities for annotating sequences
with GO terms.

Firstly, GO terms can be transferred from homolo-
gous sequences via sequence search (Section ‘Identity
assignment via homology transfer’). If InterProScan

[176] (Section ‘Sequence feature annotation’) is being
used, it can be asked to annotate GO terms using the
--goterms commandline switch. If a standalone GO

annotation tool is required, the functional annotation
tool eggNOG-mapper [183, 184] is one of the only open
source, free-to-use options (see Section ‘Transcriptome
annotation suites’). Alternatively, the Orthologous

Matrix Browser (OMA Browser) [185] offers some
web-based options for GO annotation. For those willing
to pay a licensing fee (or use a free version with limited
capabilities), the BLAST2GO [186] functional annotation
suite is available as an alternative.

Pathway annotation refers to assigning the sequences
to one or more biochemical pathways. There are two
popular pathway annotation databases: the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [187–
189] and reactome [190]. The latter is more human-
centric, making KEGG the more widely used database,
especially for non-model organisms. InterProScan,
eggNOG-mapper, and BLAST2GO all transfer pathway
annotations alongside GO annotations, so no additional
tooling is usually necessary. The annotation suite
Trinotate mentioned in Section ‘Transcriptome anno-
tation suites’ also provides GO annotations by transitive
assignment from Swiss-Prot to BLAST hits. If only
a homology transfer (Section ‘Identity assignment via

homology transfer’) is being performed, pathway annota-
tions can be transferred akin to GO annotations. Pathway
assignments can also be obtained independently by
annotating the transcriptome via the KEGG Automatic

Annotation Server (KAAS) or reactome web servers,
respectively. For KEGG annotations, the GhostKOALA [191],
BlastKOALA [191] and KofamKOALA provide additional
functional annotation options.

Links:
BLAST2GO - https://www.blast2go.com/
eggNOG-mapper - https://github.com/eggnogdb/eggnog-

mapper, http://eggnog-mapper.embl.de/ (web server),
http://eggnog5.embl.de/#/app/home (eggNOG database)
InterProScan - https://github.com/ebi-pf-team/

interproscan, https://www.ebi.ac.uk/interpro/ (web server)
KAAS - https://www.genome.jp/kegg/kaas/
KEGG - https://www.genome.jp/kegg/
BlastKOALA - https://www.kegg.jp/blastkoala/
GhostKOALA - https://www.kegg.jp/ghostkoala/
KofamKOALA - https://www.genome.jp/tools/kofamkoala/
OMA Browser - https://omabrowser.org/oma/home/
reactome - https://reactome.org/ (including analysis

web server)

Transcriptome annotation suites
Transcriptome annotation involves a number of different
tools and databases, dealing with which can quickly
become a cumbersome task in of itself. In recent years,
a number of annotation suites have been developed with
the objective of making this an easier process. In most
cases, these wrap existing tools into a single easy-to-
use interface while adding features useful for transcrip-
tome annotation (e.g. expression-based filtering). In all
cases, some combination of sequence identity assign-
ment, sequence feature detection and gene ontology/-
pathway assignment are performed as a part of the anno-
tation procedure (as described in Section ‘Transcriptome
functional annotation’).
Trinotate [192] is arguably the most well-known

open source, free-to-use annotation suite. It accepts
both nucleotide and amino acid sequences as inputs.
The former are translated using TransDecoder. It uses
BLAST+ for homology search, and HMMER3 (against
Pfam) for sequence feature annotation. Optionally,
it can run rnammer for RNA classification, Signalp

for signal peptide identification and tmhmm [193] for
predicting transmembrane domains. User-supplied
databases are also accepted in addition to the default
UniProt/Swiss-Prot database for the homology search
step. GO annotations are provided via transitive assign-
ments from top homology search hits. Trinotate uses a
SQLite to collate and summarize the results. A graphical
user interface (GUI)–TrinotateWeb–is available for
visualizing and navigating the results. The tool’s main
advantage is its tight integration with the Trinity

assembler.

https://www.cathdb.info/
https://biology.mcgill.ca/faculty/harrison/flps.html
https://biology.mcgill.ca/faculty/harrison/flps.html
https://github.com/pmharrison/flps
http://hmmer.org/
https://www.ebi.ac.uk/Tools/hmmer/
https://www.ebi.ac.uk/Tools/hmmer/
https://github.com/ebi-pf-team/interproscan
https://github.com/ebi-pf-team/interproscan
https://www.ebi.ac.uk/interpro/
http://pfam.xfam.org/
https://services.healthtech.dtu.dk/software.php
https://www.ebi.ac.uk/services
https://www.blast2go.com/
https://github.com/eggnogdb/eggnog-mapper
https://github.com/eggnogdb/eggnog-mapper
http://eggnog-mapper.embl.de/
http://eggnog5.embl.de/#/app/home
https://github.com/ebi-pf-team/interproscan
https://github.com/ebi-pf-team/interproscan
https://www.ebi.ac.uk/interpro/
https://www.genome.jp/kegg/kaas/
https://www.genome.jp/kegg/
https://www.kegg.jp/blastkoala/
https://www.kegg.jp/ghostkoala/
https://www.genome.jp/tools/kofamkoala/
https://omabrowser.org/oma/home/
https://reactome.org/

De novo transcriptome assembly and annotation | 17

Dammit is a popular alternative to Trinotate. The
tool is written in python, and is available via the
conda package management system. This ensures ease
of installation (all dependencies come pre-packaged),
upgrade and use. The tool offers a default set of
reference databases (including NCBI NR) but also accepts
user-supplied ones. Rather than relying on homologs
for annotation, Dammit searches with a specialized
reciprocal best hit method for orthologs (using LAST),
while accounting for issues caused by the presence
of transcript isoforms in the assembly. Annotating via
orthology is superior as these are genes related by
speciation that have the same function as opposed to
generic homologs which may be paralogs where function
need not be conserved (see Altenhoff et al. [194–196]).
Sequence feature annotation is performed using HMMER3
against the Pfam database, and RNA classification using
Infernal against Rfam. BUSCO scores are included in the
annotation report as the tool is a part of the pipeline as
well.
EnTAP [197] is a recently released annotation suite with

a focus on de novo assemblies of non-model eukaryotes.
It uses the fast Diamond aligner internally for identity
assignment via homology, and uses eggNOG-mapper

for gene ontology annotation. Sequence features can
be annotated via homology transfer or via an optional
InterProScan run. EnTAP accepts both nucleotide and
amino acid sequences. With the former it is possible
to filter on the basis of expression level using an FPKM

threshold before translation with TransDecoder or
GeneMarkS-T. No nucleotide-level annotations (e.g. RNA
classification) are possible as of the current release
(v0.10.8). EnTAP offers several unique features helpful
for annotations of non-model organisms. For instance, if
NCBI or UniProt are used, annotations can be enriched
and/or filtered out on the basis of taxonomic scope with
regards to the species being annotated. e.g. metazoan
matches in the sequence search can be prioritized while
bacterial sequences can be indicated as contaminants
when annotating an arthropod. The tool also presents the
annotation results in multiple formats, and incorporates
useful statistics and figures.
Annocript [198] is an annotation suite built around

BLAST+. Annotations via homology transfer are based
on either user-defined reference sets or a default
UniProt database. Sequence features are annotated
using rps-blast and NCBI’s Conserved Domain

Database (CDD) [199]. Annotations are stored and
summarized via a MySQL database. Annotations include
GO terms and pathways.
Sma3s (Sequence massive annotator using 3

modules) [200] is a general purpose annotation suite that
can also be used with transcriptomes. Written in perl,
its only dependency is the BLAST+ suite. Annotations are
made against the UniProt/UniRef90 database using
homology transfer, and include sequence identifiers, GO
terms, as well as pathways. The tool can also be used
with custom reference databases.

TOA (Taxonomy-oriented Annotation) [201] and TRAPID
2.0 [202, 203] are transcriptome annotation platforms
with a focus on plant species. The former is a platform-
agnostic, offline tool while the latter is a web server that
requires registration. Both tools use methods similar to
the more mainstream annotation suites, but restrict the
reference databases to select plant-related ones.

The Transcriptome Computational Workbench

(TCW) [204] is an interesting annotation tool written in
Java that can not only annotate multiple transcriptomes
but can also perform comparisons between them. In
addition, the tool has built-in functionality to carry out
differential expression analysis. TCW is arguably one of
the oldest transcriptome annotation tool in existence,
having undergone continuous development since 2013
[205].

Given the increasing complexity of RNA-seq experi-
ments and concerns regarding reproducibility, the use of
bioinformatics workflow managers (see Section ‘Work-
flow managers’) to orchestrate reproducible and exten-
sible workflows has become a popular approach. The
domain of de novo transcriptome assembly and annota-
tion has not been exempted from this revolution. FA-nf
[206] and transXpress are two such annotation plat-
form. The former is functional annotation suite billed
as being specialized for non-model organisms, while the
latter is a complete assembly and annotation pipeline
that can be operated almost turnkey.

The functional annotator eggNOG-mapper deserves
a honorable mention here, since it provides a full set
of relevant annotations including orthologs, domains
(from Pfam), GO terms and pathways despite not being
billed as a transcriptome annotation tool. Likewise,
the Orthologous Matrix (OMA) Browser mentioned
in Section ‘Transcriptome annotation suites’ offers a
stand-alone option (OMA StandAlone [207]). This tool
can perform orthology predictions and GO annotations,
but does not provide domain annotations. Other general
purpose functional annotation tools such as the WebMGA

[208] web server and PANNZER2 [209] can also be used to
annotate transcriptomes via their translated sequence
sets.

Finally, BLAST2GO is perhaps the most popular
transcriptome annotation tool. It is not open-source
and requires a paid subscription for full functionality.
The tool is built around annotation transfer based
on BLAST+ homology searches, coupled with a user-
friendly GUI. A ‘basic’ version with limited capabilities
is available for free use. The BLAST2GO tool is a part
of the larger OmicsBox (https://www.biobam.com/)
bioinformatics platform which offers a wide variety of
bioinformatics-related tools and analysis (including de
novo transcriptome assembly).

Links:
Annocript - https://github.com/frankMusacchia/

Annocript
Dammit - https://github.com/dib-lab/dammit, http://

dib-lab.github.io/dammit

https://www.biobam.com/
https://github.com/frankMusacchia/Annocript
https://github.com/frankMusacchia/Annocript
https://github.com/dib-lab/dammit
http://dib-lab.github.io/dammit
http://dib-lab.github.io/dammit

18 | Raghavan et al.

eggnog-mapper - https://github.com/eggnogdb/eggnog-
mapper, http://eggnog-mapper.embl.de/ (web server)
EnTAP - https://github.com/harta55/EnTAP
FA-nf - https://github.com/guigolab/FA-nf/tree/0.3.1
OMA StandAlone - https://omabrowser.org/standalone/
PANNZER2 - http://ekhidna2.biocenter.helsinki.fi/

sanspanz/
Sma3s - https://github.com/UPOBioinfo/sma3s, http://

www.bioinfocabd.upo.es/web_bioinfo/sma3s
TCW - http://www.agcol.arizona.edu/software/tcw/,

https://github.com/csoderlund/TCW
TOA - https://github.com/GGFHF/TOA
TRAPID 2.0 - http://bioinformatics.psb.ugent.be/

trapid_02/
transXpress - https://github.com/transXpress/

transXpress-nextflow (Nextflow version), https://github.
com/transXpress/transXpress-snakemake (Snakeake
version)
Trinotate - https://github.com/Trinotate
WebMGA - http://weizhong-lab.ucsd.edu/webMGA/

server/

Comparing transcriptome assemblies
A set of assemblies can be used in a comparative
transcriptomics approach, for instance, to identify
conserved genes or specific gene expression patterns
associated with different organisms of interest. If more
than two organisms are studied, a first step in such
analysis consists in constructing a phylogenetic tree
describing the evolutionary relationship between the
representative transcriptomes. To do so, a suitable
approach taking advantage of the previously identified
BUSCO genes (during post-assembly quality control, see
Section Post-assembly quality control) can be used
[77]. BUSCO genes have been curated to represent a
conserved set of slowly evolving housekeeping genes
which can be used for phylogenetic analysis. A common
approach consists of retrieving the translated transcript
sequences associated with each BUSCO gene in the
different transcriptomes. Then, MSAs are performed with
tools like MAFFT [210] or FAMSA [211], for each house-
keeping gene with a single copy in every transcriptome
of interest. These MSAs can then be used to construct
phylogenetic trees. There are many tools that can be used
to build such trees, e.g. RAxML [212]. A representative
consensus species tree reflecting the phylogeny of
the total set of single copy BUSCO gene trees can
then be reconstructed, using dedicated methods like
ASTRAL-III [213]. To analyze the presence or absence
of genes across multiple transcriptomes, and be able
to compare the expression of the conserved ones, it
is essential to identify orthologs and paralogs within
the studied data set [194]. While numerous orthology
prediction methods have been developed over the last
two decades, OrthoFinder [214] has become widely
adopted and quasi-standardized, due to its speed and
ease of use. The tool uses a combination of sequence
clustering and tree building methods to group sequences

(from all input samples) into orthogroups. Orthogroups
basically represent collections of sequences that are
related at their root node by speciation [194]. From
these data, OrthoFinder is able to estimate gene copy
numbers, orthogroup trees, a consensus species tree and
other useful evolutionary data (e.g. sets of single-copy
orthologs, pairwise orthologs, etc.). A recent alternative
to OrthoFinder is the very fast JustOrthologs method
[215]. As it performs comparisons between pairs of
organisms, it is especially adapted to the study of
pairs of transcriptomes, but its use can be extended
to the comparison of numerous ones using the asso-
ciated CombineOrthoGroups script, which combines
pairs of orthologs into orthogroups. Likewise, the OMA

StandAlone [207] function annotation tool can also
perform comparisons between the input assemblies.

While BUSCO-derived phylogenies and orthlogy pre-
diction have been commonly adopted in the last decade
for comparing assembled transcriptomes, a recent study
addressed the biases and limits of such approach [216].
By comparing low- and high-quality transcriptome
assemblies (scored with TransRate [80], see Section
‘Post-assembly quality control’), it highlighted that some
important skews in phylogenetic and orthology predic-
tion data can come from using low-quality assemblies.
Not to draw any wrong biological interpretation from
comparative transcriptomics, it is therefore important
to consider assembly quality at every point in such an
analysis.

Links:
BUSCO - https://busco.ezlab.org/
FAMSA - http://sun.aei.polsl.pl/REFRESH/famsa
JustOrthologs - https://github.com/ridgelab/

JustOrthologs
MAFFT - https://mafft.cbrc.jp/alignment/server
OMA StandAlone - https://omabrowser.org/standalone/
OrthoFinder - https://github.com/davidemms/

OrthoFinder
RAxML - https://raxml-ng.vital-it.ch

Workflow managers
Modern biological science is high-throughput and highly
data-driven. Investigations often deploy composite com-
putational analyses using multiple tools to process the
data. A collection of such tools/programs organized in a
specific manner to produce results from which biolog-
ical inferences can be drawn is known as a workflow

or pipeline [217]. Similar to how a ‘wet-lab’ protocol
represents the set of steps required to transform a ‘raw’
sample into comprehensible output (e.g. sequencing an
RNA molecule), a bioinformatics workflow/pipeline rep-
resents an equivalent collection of steps to do the same
with digital data [218] (e.g. identifying an RNA sequence
as an mRNA). A workflow consisting of a small number
of tools and/or a small amount of data can be handled by
the investigator(s) by executing each step/tool manually.
However, for projects dealing with large volumes of data

https://github.com/eggnogdb/eggnog-mapper
https://github.com/eggnogdb/eggnog-mapper
http://eggnog-mapper.embl.de/
https://github.com/harta55/EnTAP
https://github.com/guigolab/FA-nf/tree/0.3.1
https://omabrowser.org/standalone/
http://ekhidna2.biocenter.helsinki.fi/sanspanz/
http://ekhidna2.biocenter.helsinki.fi/sanspanz/
https://github.com/UPOBioinfo/sma3s
http://www.bioinfocabd.upo.es/web_bioinfo/sma3s
http://www.bioinfocabd.upo.es/web_bioinfo/sma3s
http://www.agcol.arizona.edu/software/tcw/
https://github.com/csoderlund/TCW
https://github.com/GGFHF/TOA
http://bioinformatics.psb.ugent.be/trapid_02/
http://bioinformatics.psb.ugent.be/trapid_02/
https://github.com/transXpress/transXpress-nextflow
https://github.com/transXpress/transXpress-snakemake
https://github.com/transXpress/transXpress-snakemake
https://github.com/Trinotate
http://weizhong-lab.ucsd.edu/webMGA/server/
http://weizhong-lab.ucsd.edu/webMGA/server/
https://busco.ezlab.org/
http://sun.aei.polsl.pl/REFRESH/famsa
https://github.com/ridgelab/JustOrthologs
https://mafft.cbrc.jp/alignment/server
https://omabrowser.org/standalone/
https://github.com/davidemms/OrthoFinder
https://raxml-ng.vital-it.ch

De novo transcriptome assembly and annotation | 19

and/or a complex, interconnected collection of tools,
automatization of the workflow becomes unavoidable
[219].

It is in such cases that workflow managers/workflow
management systems (WfMS) become useful. A WfMS is
a specially designed programmatic framework that can
be used to automate a pipeline consisting of numerous
steps that must be manually executed [217]. It allows
the user to define the computational pipeline as graph
wherein each node represents a particular processing
step. The edges connecting the nodes are directed
and represent data flowing from one node after being
processed by it (its output) to another node as its input.
Thus, the graph also describes the order in which the
components of the pipeline will be executed. The user
must define the individual steps of the workflow in terms
of the inputs, expected outputs and the tool(s) required
to generate them. Typically, it is required that the user
specifies the exact command to run the tool using
placeholder values to define the inputs and outputs
(for example mytool inputfile outputfile). The
workflow manager then handles the execution of the
pipeline. This includes allocating resources (processing
threads, memory, etc.) and deducing the order in which
the individual commands have to be executed. The
advantage of using a workflow manager is that analyses
become optimized, especially when dealing with large
volumes of data and metadata as the execution details
are abstracted away from the user [217]. Further, as
the user only needs to define the workflow but not
the specifics of execution, the same pipeline can be
executed on a local server, cluster or in the cloud,
making pipelines scalable and easy to prototype [220].
Finally, using a workflow manager also makes analyses
reproducible, shareable and easy to run as workflows
can be run anywhere, and can often also install the
correct versions of the tools by themselves [221]. This
also makes bioinformatics accessible—as non-experts
can avail themselves of pre-existing workflows for their
own research [222].

Workflow managers can be sorted into two groups—
command-line interface-based (CLI) and GUI-based. The
two groups primarily differ in how the workflow manager
itself is presented to the user. A CLI-based WfMS is a
command-line program that executes a text document
(script) describing the analytical workflow. Most WfMS
have a particular programming language they can rec-
ognize, and the script must be written in this language.
In comparison, a GUI-based manager exposes the same
equipment to the user via a point-and-click environment.
Users are able to construct workflows by dragging and
dropping and interconnecting icons representing tools
and data. Experienced users will save time by working
with CLI managers, since writing a command for a partic-
ular process is faster than manually navigating the inter-
face panels of a GUI program. On the other hand, GUI
WfMS are much more user-friendly and do not demand
knowledge of programming.

Recent publications [217, 222, 223] indicate that the
most popular WfMS today include Nextflow [224],
Snakmake [221] and Common Workflow Language (CWL)
[225]. All three are CLI-based, open-source and free-to-
use, but have their differences.
Snakemake is based on Python which is among the

most popular programming languages [226]. As a result
of Python’s user-friendly syntax, workflows written
in Snakemake are not only very readable but also
approachable for beginners. In addition to facilitating
custom workflows, users can also import external
pipelines, and merge and edit them depending on their
needs [221]. In this regard, some so-called wrapper
scripts are offered through the Snakemake Wrapper

Repository (https://snakemake-wrappers.readthedocs.
io/en/stable/) that are templated for common bioin-
formatics tasks. Snakemake pipelines are portable and
scalable. They can be executed on a wide range of
environments starting from single-core workstations to
HPC clusters [227]. The only requirements are Python

and Snakemake itself.
Nextflow is a powerful WfMS based on the Groovy

programming language. The central idea is that most
bioinformatics tools are Unix-based, and data are passed
between the tools (and processed additionally) using cus-
tom scripts often written in different languages (e.g.
Python and R). Consequently, Nextflow permits chain-
ing together scripts (and tools) written in different lan-
guages as long as they can be executed on a Unix-like
operating system [228]. Like Snakemake Nextflow is also
scalable and platform-agnostic with regards to execution
capabilities. A salient feature of Nextflow is nf-core

(https://nf-co.re/) [229]. This is a curated repository of
bioinformatics pipelines written in Nextflow that cover
a range of use cases including RNA-seq, sequence assem-
bly, phylogenetics and sequence annotation.
Common Workflow Language (CWL) is another CLI-

based WfMS. However, while the previous two are
focused on pipeline development, CWL also represents
a set of standards defining what a workflow language
should look like and contain. This is because the advent
of ‘big data’ in biology has led to the introduction
many WfMS implementations (not discussed here) all
of which use different approaches for describing their
pipelines [230]. Adherence to CWL standards would
allow pipelines to be shared, easing the process of
testing and comparing new methods acquired from
other researchers, despite having been implemented
in different WfMS [218]. CWL itself represents a set of
standards, and cannot be used to draft a workflow.
A set of CWL-compliant WfMS implementations—
e.g. CWL-Airflow (https://github.com/Barski-lab/cwl-
airflow) [230]—can be found on its website (https://
www.commonwl.org/#Implementations); a reference
implementation (cwltool) developed by the CWL team
is also available.
Workflow Description Language [231] (WDL) is a

WfMS with straightforward syntax. Analogous to CWL,

https://snakemake-wrappers.readthedocs.io/en/stable/
https://snakemake-wrappers.readthedocs.io/en/stable/
https://nf-co.re/
https://github.com/Barski-lab/cwl-airflow
https://github.com/Barski-lab/cwl-airflow
https://www.commonwl.org/#Implementations
https://www.commonwl.org/#Implementations

20 | Raghavan et al.

it also represents a language definition and is not exe-
cutable in of itself: a WDL-compliant execution engine is
required to execute workflows. The two main execution
engines are Cromwell and miniwdl. WDL is under active
development, supports multiple programming languages
and has a growing ecosystem of tools and pre-defined
workflows. Finally, as suggested above, tooling to design
and execute workflows (bioinformatics or otherwise)
exists elsewhere—often as language-specific implemen-
tations. For instance, the Targets [232] package enables
this in the R programming language popular among
biologists and bioinformaticians. Such implementations
permit users to design and execute workflows using a
language familiar to them.
Galaxy [23] is arguably the most used web-based data

analysis platform for biology [233]. It is intended to serve
researchers from a broad variety of backgrounds look-
ing to investigate large quantities of data with complex
tools, even those with limited programming experience
[234]. It is an open-source WfMS with a GUI that allows
for work to be carried out entirely in a web browser.
Galaxy is analysis-agnostic: although originally written
for genomic analyses in mind, it has since been used for
a vast variety of research (e.g. biophysics [235]). A large,
open repository of tools contributed by the user com-
munity is available through the Galaxy ToolShed [236];
installation is easy as Galaxy automatically activates
the required dependencies also. A large collection of pre-
scripted workflows for a variety of common analytical
tasks are also available, reducing the need for recre-
ating boilerplate routines. The Galaxy approach also
ensure easy documentation of workflows as workflow
components can be directly annotated through the GUI.
Needless to say, the platform ensure easy reproducibility
of workflows. In addition, the platform not only takes
care of resource allocation for workflow execution, but
also provides the resources themselves in the event that
the user is operating on the free public server (https://
usegalaxy.org/). Alternatively, the platform itself is avail-
able as an open-source tool that can be downloaded,
installed and configured for local use (e.g. on a personal
computer or an HPC environment). A plethora of cus-
tomizations to make Galaxy even more user-friendly
(e.g. Galaksio [237]) are available and continue to be
developed.

Although Galaxy dominates the GUI-based WfMS
space, there are a few other alternatives worth men-
tioning. The Unipro UGENE [238] bioinformatics suite
offers an integrated WfMS for constructing workflows
with in-built tools. Although the suite is open source and
cross-platform, it cannot be used on HPC environments.
GenePattern [239] is a more equivalent competitor to
Galaxy offering many of the same features including a
public server and a version for stand-alone installation.

Links:
Cromwell - https://github.com/broadinstitute/cromwell
CWL - https://www.commonwl.org/

Galaxy - https://galaxyproject.org/ (homepage of the
project), https://usegalaxy.org/ (free to use public server)
GenePattern - https://www.genepattern.org/#, https://

genepattern.org/ (public server), https://github.com/
genepattern (GitHub repository)
miniwdl - https://github.com/chanzuckerberg/miniwdl
Nextflow - https://www.nextflow.io/
Snakemake - https://snakemake.github.io/
Unipro UGENE - https://ugene.net/
WDL - https://github.com/openwdl/wdl

Computational and programmatic
considerations
All the necessary tools must be acquired and installed
before embarking on the task of assembling and anno-
tating a transcriptomic data set. There is a large variety
of tools, all with varying levels of availability and support.
It is often the case that the tool is available only on
a specific operating system (OS) or requires specialized
domain knowledge for installation. Executing tools can
be all the more challenging than acquiring them, espe-
cially when multiple tools need to be used in concert on
extremely large data sets. Assessing the computational
resources for deploying these tools can also be very
difficult. All these aspects invoke additional considera-
tions that the researcher must take into account before
and during the analysis. Addressing all these topics in a
thorough manner is a non-trivial endeavor. However, in
the interest of signposting useful resources that could be
consulted, we address these in an introductory manner
below.

Operating systems, programming languages
and computational resources
Most tools and software for bioinformatics and analy-
sis in biology have been written for Unix-like oper-
ating systems (https://en.wikipedia.org/wiki/Unix-like),
and are often designed to be run from within a command

line shell [240]. Thus, it is preferable to have access
to a computer or computing environment equipped with
such an OS.

The most popular Unix-like OSes in use today
are Apple’s closed-source macOS(https://www.apple.
com/macos) and the various ‘flavors’ of the open-
source and free-to-use Linux [241] family. Users of
Microsoft Windows (https://www.microsoft.com/en-
us/windows/) can install the Windows Subsystem for

Linux application to avail themselves of a Unix-like
environment on this operating system. macOS users have
access to an in-built command line shell.

As a general recommendation, we suggest using the
Linux-based Ubuntu operating system and the included
GNU Bash shell. This combination is well documented
due to a large install base, and is open source, free to use
and continually maintained by the developers and com-
munity. Many tools of interest are also readily available

https://usegalaxy.org/
https://usegalaxy.org/
https://github.com/broadinstitute/cromwell
https://www.commonwl.org/
https://galaxyproject.org/
https://usegalaxy.org/
https://www.genepattern.org/#
https://genepattern.org/
https://genepattern.org/
https://github.com/genepattern
https://github.com/genepattern
https://github.com/chanzuckerberg/miniwdl
https://www.nextflow.io/
https://snakemake.github.io/
https://ugene.net/
https://github.com/openwdl/wdl
https://en.wikipedia.org/wiki/Unix-like
https://www.apple.com/macos
https://www.apple.com/macos
https://www.microsoft.com/en-us/windows/
https://www.microsoft.com/en-us/windows/

De novo transcriptome assembly and annotation | 21

for this platform via Ubuntu’s package manager (https://
ubuntu.com/server/docs/package-management), as pre-
compiled binaries/executables from the developers, or as
source code that can be compiled easily. External package
management systems (refer Section ‘Tool management’)
are also easily available for this platform.

Interfacing with one or more programming languages
is an aspect potential users of RNA-seq tools will have
to consider. Users will often encounter situations where
the output from one tool must be fed to another tool as its
input, but the output and input formats are incompatible
(e.g. a table with four columns is required as an input, but
it exists as a table with five columns). In such cases, the
user will have to intervene and transform/manipulate
the data in order to pass it on through subsequent steps
of the analysis. There may also be situations where some
portion of the analysis must be done in a programming
language; for example, almost all popular DE analysis
tools (see Section ‘Differential expression analysis’) are
packages that must be accessed through a programming
language. In any case, in the interest of reproducibility,
efficiency and making problems tractable, it is advisable
to become familiar with one or more programming lan-
guages.

There are a number of such languages that are pop-
ular in bioinformatics (and in biology in general). This
includes the eponymous scripting language of the GNU

bash shell itself, Python [242] and R [120]. Each of these
have their own strengths and weaknesses. Bash is ubiq-
uitous and powerful but has a cumbersome syntax and
is only really convenient for short programs. Python is
a general purpose language with a very friendly syntax,
and is nearly as ubiquitous as Bash. However, its ecosys-
tem for bioinformatics analyses is relatively limited. R
is not as prevalent as the other two but is excellent
for manipulating and analyzing large amounts of data.
Furthermore, it is the language of choice for bioinfor-
matics analysis due to the large number of packages
and tools it supports in this regard—especially for ‘-
omics’ analyses through the Bioconductor [243] ecosys-
tem.

It is very common to see bioinformatics workflows
interspersed with scripts written by the researcher. In
larger analytical workflows, e.g. hundreds of samples,
20–30 different tools, bioinformatics workflow managers
come into play to ensure that the procedures can be
orchestrated automatically in a fully reproducible man-
ner (see Section ‘Workflow managers’ for a brief-but-
thorough introduction to this topic).

The question of computational resources is another
issue that researchers must tackle in order to be
effective in their analyses. Computational resources
is a catch-all phrase, and has multiple aspects to it,
importantly, the number of central processing units
(CPUs) and their clock speeds, the amount of random-
access memory (RAM) available per CPU and storage
type and capacity (hard disk drives/HDDs and/or solid
state disks/SSDs). A personal computer (e.g. laptop)

with a dual core CPU, 8GB (Gigabytes) of RAM and a
250GB SSD is sufficient for executing a small analysis
in R or python. However, it will be grossly insufficient
for running a de novo transcriptome assembler; for
instance, the Trinity assembler (see Section De novo
transcriptome assembly) can consume upwards of 27GB
of RAM during its execution [58]. The runtime—the
duration it takes for the tool to finish executing—would
also be excessively long with constrained resources; case
in point, even with 48 CPU cores and 512GB of RAM,
Trinity can take about 6–7 h (or even days) to run [58].
Likewise, storage capacity on the order of at least 1–2TB
would be required. Our personal experience indicates
tools such as Trinity can routinely consume several
100GBs of both disk space and RAM during execution,
and produce output directories that are themselves
at least 10–20GB in size. Therefore, researchers must
factor in having to acquire computational resources on
this order of magnitude for workflows incorporating
de novo assemblies. Broadly speaking, there are two
ways in which such resources can be requisitioned.
Depending on the usage frequency, a workstation/server
with the necessary capacity may be rented or purchased
outright for institutional/departmental use [244]. Very
often, research and educational institutions will have
their own centralized computational infrastructure
(e.g. high performance compute clusters) from which
such resources can be requested [244]. Computational
resources may also be acquired from national-scale
compute infrastructure projects [245, 246], non-profit
foundations that offer bioinformatic-as-a-service (e.g.
Galaxy [23]; see Section ‘Workflow managers’) or private
cloud compute providers (e.g. Google Cloud Life

Sciences, Amazon Web Services and Microsoft

Azure).
Links:
Amazon Web Services - https://aws.amazon.com/

health/
Bash - https://www.gnu.org/software/bash/
Bioconductor - http://bioconductor.org/
Google Cloud Life Sciences - https://cloud.google.

com/life-sciences
Microsoft Azure - https://azure.microsoft.com/en-

us/solutions/high-performance-computing/health-and-
life-sciences/
Linux - https://www.linux.org/
Python - https://www.python.org/
R - https://www.r-project.org/
Ubuntu - https://ubuntu.com/
Windows Subsystem for Linux - https://docs.microsoft.

com/en-us/windows/wsl/about

Tool management
Almost all tools indicated in this publication are available
online for download and installation. In a vast majority of
the cases, the tools are available via a GitHub or GitLab
repository. In some instances, tools may either be found
on the author’s (e.g. a particular research group) website

https://ubuntu.com/server/docs/package-management
https://ubuntu.com/server/docs/package-management
https://aws.amazon.com/health/
https://aws.amazon.com/health/
https://www.gnu.org/software/bash/
http://bioconductor.org/
https://cloud.google.com/life-sciences
https://cloud.google.com/life-sciences
https://azure.microsoft.com/en-us/solutions/high-performance-computing/health-and-life-sciences/
https://azure.microsoft.com/en-us/solutions/high-performance-computing/health-and-life-sciences/
https://azure.microsoft.com/en-us/solutions/high-performance-computing/health-and-life-sciences/
https://www.linux.org/
https://www.python.org/
https://www.r-project.org/
https://ubuntu.com/
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about

22 | Raghavan et al.

or on other code repositories such as SourceForge. Most
tools are accompanied by a descriptive academic publi-
cation that also normally indicates where the tool can be
found: e.g. the publication for the rnaSPAdes assembler
[56] cites https://github.com/ablab/spades. The reposi-
tories of most tools are also usually easily found via
appropriate search engine queries.

Tool installation may be as simple as de-compressing
and extracting from an archive (e.g. a .tar.gz file), or
can be a complicated procedure that requires compi-
lation (ref. https://www.linuxjournal.com/article/216 for
an introduction to compilation). Typically both the source
code for compilation as well as pre-compiled binaries
targeting a few chosen platforms are made available for
download by the tool developers.

However, the best method for installing tools today
would be via the open-source package manager Conda.
Almost all major standalone bioinformatics tools are
available via the Bioconda [243] channel, and installa-
tion in most cases is as simple as creating a new conda

environment and issuing the command conda install

-c bioconda exampletoolname. Most dependencies
(i.e. other tools/software required for operation) are
also available via conda and should be installed auto-
matically alongside. The conda package manager also
permits easy updating of installed tools and packages.
This is in sharp contrast to a compiled installation where
an update would typically require compiling the newly
downloaded source code again and also ensuring that all
dependencies are also updated without compromising
the functionality of the OS.

Some tools are also available as Docker and/or
Singularity containers. A container is basically the
software and everything that is needed to run it
enclosed into a single unit (see https://www.docker.com/
resources/what-container for an explanation). Bioinfor-
matics tools made available as containers are typically
those that are either too big to be shipped stand-alone,
are too complicated to be installed directly by the user, or
a combination of both. These are mostly tools that have a
multitude of dependencies (i.e. other software) required
to run and/or come with large amounts of bundled
data. Docker containers require root privileges

(https://www.ssh.com/academy/iam/user/root) to run
while their Singularity counterparts normally do not.
Root access is typically a no-go in high performance
computing (HPC) environments [247], and therefore
Singularity containers are more popular in that
particular context. We direct readers to documentation
from Docker and Singularity for instructions on how
to execute containerized software.

Executing a command line tool requires an under-
standing of the inputs, options and outputs as related
to the tool. The first point of contact for help informa-
tion/documentation is typically the tool itself. Issuing the
command toolname –h, toolname –help or toolname
--help should print the in-built help page. Documen-
tation can also be found in the included README files

and often in the ‘wiki’ sections of the tool reposito-
ries. If tools have associated publications, these are also
a good source of information and documentation. For
more advanced support it may be necessary to either
contact the developers/maintainers directly via e-mail
or by opening an issue on the tool repository’s issue
tracker. It is inevitable that the researcher will encounter
non-specific (but nevertheless important) questions/is-
sues over the course of a bioinformatics analysis. Luck-
ily, there are several popular online communities where
such topics could be raised (e.g. Biostars).

More general questions can also be addressed to mem-
bers of the bioinformatics community at large via online
forums like Biostars, BioinformaticsStackExchange,
BiologyStackExchange and StackOverflow among others.

Links:
Bioconda - https://bioconda.github.io/
Biostars - https://www.biostars.org/
Conda - https://docs.conda.io/en/latest/
Docker - https://www.docker.com/
GitHub - https://github.com/
GitLab - https://gitlab.com/
Singularity - https://sylabs.io/singularity/
SourceForge - https://sourceforge.net/

What to annotate and where to publish
What to annotate: Sequence annotations should ulti-
mately serve the purposes of the study. Identity assign-
ment via homology could be considered the bare min-
imum, as it allows the assembled sequences to be tied
to human-comprehensible identifiers. GO terms are nor-
mally annotated because these can be aggregated to
reveal the distribution of the transcriptomic output over
various biological aspects (e.g. what percent of the tran-
scriptome is involved in a biological process, etc.). They
are also useful for differential expression studies wherein
the GO terms of differentially expressed transcripts can
be aggregated to obtain an overview of which biological
phenomena are being influenced (GO enrichment anal-
ysis). It is also useful to annotate functional domains
against a standard database such as Pfam.

Other annotations can be performed as the need
arises. For instance, the objective of the study may
be to profile simple sequence repeats in the mRNA
alongside establishing a de novo transcriptome. In this
case, the assembled sequences may be passed through
an appropriate tool (e.g. the MISA web server [248])
to obtain the necessary annotations in addition to
the aforementioned ‘standard’ annotations. In general,
once the assembled sequences have been translated,
a relatively broad variety of tools become available,
opening up additional avenues for sequence annotation
that can be pursued as necessary. The necessary tools
are best found by consulting the literature. Continuing
with the example above, MISA can be found cited in a
relevant study such as Pinosio et al. [249].

https://github.com/ablab/spades
https://www.linuxjournal.com/article/216
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.ssh.com/academy/iam/user/root
Biostars
Bioinformatics StackExchange
Biology StackExchange
StackOverflow
https://bioconda.github.io/
https://www.biostars.org/
https://docs.conda.io/en/latest/
https://www.docker.com/
https://github.com/
https://gitlab.com/
https://sylabs.io/singularity/
https://sourceforge.net/

De novo transcriptome assembly and annotation | 23

Where to publish: Typically, an assembly and anno-
tation workflow would result in at least one FASTA

file containing the assembled sequences, and at least
one tabular file (e.g. a TSV file) containing one row
per sequence with individual columns representing
the various annotations. Almost all studies submit
their raw sequencing data (i.e. the FASTQ files) and the
assembly to NCBI’s Sequence Read Archive (SRA)[250],
and Transcriptome Shotgun Assembly Sequence

Database (TSA), respectively. In contrast annotation files
do not seem to have a standard destination. Some studies
prefer to upload data to research data dissemination
portals such as figshare and Zenodo [251] that can
generate stable Digital Object Identifiers (DOIs)
[252] to the data themselves. Annotations can also be
submitted to the TSA (see https://www.ncbi.nlm.nih.gov/
genbank/tsaguide/), but this is allegedly a cumbersome
and tedious process. In some instances, annotation
files have been provided alongside the publication as a
supplementary file (e.g. Thunders, Cavanagh and Li [253]).
Depending on the volume of data, creative solutions such
as hosting the annotations on the cloud may also be valid
solutions.

Links:
Digital Object Identifiers - https://www.doi.

org/
figshare - https://figshare.com/
NCBI Sequence Read Archive - https://www.ncbi.

nlm.nih.gov/sra
NCBI Transcriptome Shotgun Assembly Sequence

Database - https://www.ncbi.nlm.nih.gov/genbank/tsa/
Zenodo - https://zenodo.org/

Conclusions
As Stark, Grzelak and Hadfield [7] highlight in their
review ‘RNA sequencing: the teenage years’, RNA-
seq has become a ubiquitous tool in biology, and has
steadily proliferated into allied fields of research such
as ecology [17]. The advent of long-read RNA-seq [254–
257] has proffered exciting prospects such as direct
sequencing of RNA molecules sans cDNA synthesis
[258] and sequencing RNA from single cells [259].
Despite these challenges, bulk RNA-seq via short-read
sequencing remains a prominent method. One reason
is the sustained (and growing) popularity of de novo
transcriptome assembly and annotation for the purposes
of studying non-model organisms. Here, well-annotated
de novo assembled transcriptomes represent an inex-
pensive route for thoroughly cataloging transcripts, and
identifying interesting gene products.

This enduring and widespread interest has ensured
an unabated deluge of ever-improving tools, databases
and workflows to facilitate assembly, annotation and
associated analyses. While these utilities have greatly
eased the effort of scientific discovery, the staggering
variety of resources available has nevertheless made
the task of choosing a suitable approach for a specific

research question a complex and confusing exercise. This
is perhaps especially true for non-expert practitioners
who now have the means to perform RNA-seq experi-
ments entirely in-house. For these individuals, de novo
transcriptomics holds great promise as they can now
study nearly any organism(s) of their choosing.

To this end, we presented a comprehensive and
beginner-friendly overview of the major processes and
tools involved in de novo transcriptome assembly and
annotation of short-read bulk RNA-seq data. We hope
that this material will aid both incoming and established
researchers alike in their quest to obtain high-quality
transcriptomes.

Key Points

• De novo transcriptome assembly and annotation ideal
for studying non-model organisms and establishing gene
catalogs thereof.

• In-housing marred by overabundance of tools, paucity
of authoritative literature and non-standardized work-
flows.

• We present a comprehensive-but-beginner-friendly step-
by-step review featuring accessible conceptual explana-
tions and an overview of popular tools.

Acknowledgments
We would like to thank Dr. Brian J. Haas (The Broad
Institute, USA) and Dr. Johannes Söding (Max Planck
Institute for Biophysical Chemistry, Germany) for valu-
able discussions, and for providing critical feedback on
the manuscript. We also gratefully acknowledge helpful
feedback from Abrar Aljahani (Max Planck Institute for
Biophysical Chemistry, Germany), Magdalena Karpin-
ska (Max Planck Institute for Biophysical Chemistry,
Germany), Ruoshi Zhang (Max Planck Institute for
Biophysical Chemistry, Germany), and Yajie Zhu (Univer-
sitäts Medizin Göttingen, Germany). F.M. thanks the SPP
DECRyPT 2125 funding program for covering his salary.
We also gratefully acknowledge Matt Crook, whose
bacterium pictogram (http://phylopic.org/name/4fc5
abf4-3c1a-4edd-bec4-58bf6382ad00) was used in Figure
2: Contaminant removal (Creative Common license
https://creativecommons.org/licenses/by-sa/3.0/).

Author contributions statement
V.R. and L.K. conceived the idea for the manuscript. L.R.
contributed the section on workflow managers and to
the section on Computational and programmatic con-
siderations, and F.M. contributed the sections on differ-
ential expression analysis and comparing transcriptome
assemblies. V.R. and L.K. contributed all other sections.
All authors contributed to proofreading and correcting
the manuscript.

https://www.ncbi.nlm.nih.gov/genbank/tsaguide/
https://www.ncbi.nlm.nih.gov/genbank/tsaguide/
https://www.doi.org/
https://www.doi.org/
https://figshare.com/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/genbank/tsa/
https://zenodo.org/
http://phylopic.org/name/4fc5abf4-3c1a-4edd-bec4-58bf6382ad00
http://phylopic.org/name/4fc5abf4-3c1a-4edd-bec4-58bf6382ad00
https://creativecommons.org/licenses/by-sa/3.0/

24 | Raghavan et al.

References

1. Buccitelli C, Selbach M. mRNAs, proteins and the emerging
principles of gene expression control. Nat Rev Genet October
2020;21(10):630–44.

2. Schimmel P. The emerging complexity of the tRNA world:
mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell
Biol January 2018;19(1):45–58.

3. Statello L, Guo C-J, Chen L-L, et al. Gene regulation by long non-
coding RNAs and its biological functions. Nat Rev Mol Cell Biol
February 2021;22(2):96–118.

4. Holoch D, Moazed D. RNA-mediated epigenetic regulation of
gene expression. Nat Rev Genet February 2015;16(2):71–84.

5. Li J, Liu C. Coding or noncoding, the converging concepts of
RNAs. Front Genet May 2019;10:496.

6. Slatko BE, Gardner AF, Ausubel FM. Overview of next-
generation sequencing technologies. Curr Protoc Mol Biol April
2018;122(1):e59.

7. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage
years. Nat Rev Genet November 2019;20(11):631–56.

8. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool
for transcriptomics. Nat Rev Genet January 2009;10(1):57–63.

9. Mantione KJ, Kream RM, Kuzelova H, et al. Comparing bioinfor-
matic gene expression profiling methods: microarray and RNA-
Seq. Med Sci Monit Basic Res August 2014;20:138–42.

10. Han Y, Gao S, Muegge K, et al. Advanced applications of RNA
sequencing and challenges. Bioinform Biol Insights November
2015;9(Suppl 1):29–46.

11. Chen G, Ning B, Shi T. Single-cell RNA-seq technologies
and related computational data analysis. Front Genet April
2019;10:317.

12. Kukurba KR, Montgomery SB. RNA sequencing and analysis.
Cold Spring Harb Protoc April 2015;2015(11):951–69.

13. Salzberg SL. Next-generation genome annotation: we still
struggle to get it right. Genome Biol May 2019;20(1):92.

14. Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcrip-
tome analysis. Wiley Interdiscip Rev RNA January 2017;8(1).

15. Martin JA, Wang Z. Next-generation transcriptome assembly.
Nat Rev Genet September 2011;12(10):671–82.

16. Peona V, Weissensteiner MH, Suh A. How complete are “com-
plete” genome assemblies?-an avian perspective. Mol Ecol
Resour November 2018;18(6):1188–95.

17. Todd EV, Black MA, Gemmell NJ. The power and promise
of RNA-seq in ecology and evolution. Mol Ecol March
2016;25(6):1224–41.

18. Sneha Asai, Remo Sanges, Chiara Lauritano, Penelope K Lin-
deque, Francesco Esposito, Adrianna Ianora, and Ylenia
Carotenuto. DE novo transcriptome assembly and gene expres-
sion profiling of the copepod calanus helgolandicus feeding on
the PUA-producing diatom skeletonema marinoi. Mar Drugs,
18(8):392, July 2020.

19. Moreno-Santillán DD, Machain-Williams C, Hernández-
Montes G, et al. De novo transcriptome assembly and functional
annotation in five species of bats. Sci Rep April 2019;9(1):
6222.

20. Chabikwa TG, Barbier FF, Tanurdzic M, et al. De novo tran-
scriptome assembly and annotation for gene discovery in
avocado, macadamia and mango. Sci Data January 2020;
7(1):9.

21. Rosen R, Lebedev G, Kontsedalov S, et al. A de novo tran-
scriptomics approach reveals genes involved in thrips tabaci
resistance to spinosad. Insects January 2021;12(1):67.

22. Alvarez RV, Mariño-Ramírez L, Landsman D. Transcriptome
annotation in the cloud: complexity, best practices, and cost.
Gigascience January 2021;10(2).

23. Afgan E, Baker D, Batut B, et al. The galaxy platform
for accessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic Acids Res July 2018;46(W1):
W537–44.

24. Carruthers M, Yurchenko AA, Augley JJ, et al. De novo transcrip-
tome assembly, annotation and comparison of four ecological
and evolutionary model salmonid fish species. BMC Genomics
January 2018;19(1):32.

25. Stoler N, Nekrutenko A. Sequencing error profiles of illu-
mina sequencing instruments. NAR Genom Bioinform March
2021;3(1):lqab019.

26. Garcia TI, Shen Y, Catchen J, et al. Effects of short read quality
and quantity on a de novo vertebrate transcriptome assembly.
Comp Biochem Physiol C Toxicol Pharmacol January 2012;155(1):95–
101.

27. de Sena Brandine G, Smith AD. Falco: high-speed FastQC emu-
lation for quality control of sequencing data. F1000Res Novem-
ber 2019;8:1874.

28. Ewels P, Magnusson M, Lundin S, et al. MultiQC: summarize
analysis results for multiple tools and samples in a single
report. Bioinformatics October 2016;32(19):3047–8.

29. Song L, Florea L. Rcorrector: efficient and accurate error
correction for illumina RNA-seq reads. Gigascience October
2015;4(1):48.

30. Martin M. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet J May 2011;17(1):10.

31. Bushnell B, Rood J, Singer E. BBMerge – accurate paired
shotgun read merging via overlap. PLoS One October
2017;12(10):e0185056.

32. Ewing B, Green P. Base-calling of automated sequencer
traces using phred. II. Error probabilities. Genome Res March
1998;8(3):186–94.

33. Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-
in-one FASTQ preprocessor. Bioinformatics September
2018;34(17):i884–90.

34. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible
trimmer for illumina sequence data. Bioinformatics August
2014;30(15):2114–20.

35. Wood DE, Lu J, Langmead B. Improved metagenomic analysis
with kraken 2. Genome Biol November 2019;20(1):257.

36. Kim D, Song L, Breitwieser FP, et al. Centrifuge: rapid and
sensitive classification of metagenomic sequences. Genome Res
December 2016;26(12):1721–9.

37. Zhao S, Zhang Y, Gamini R, et al. Evaluation of two main
RNA-seq approaches for gene quantification in clinical RNA
sequencing: polya+ selection versus rRNA depletion. Sci Rep
December 2018;8(1).

38. Li X, Nair A, Wang S, et al. Quality control of RNA-seq exper-
iments. In: RNA Bioinformatics, Vol. 1269. New York: Springer,
2015, 137–46.

39. Morlan JD, Qu K, Sinicropi DV. Selective depletion of rRNA
enables whole transcriptome profiling of archival fixed tissue.
PLoS One August 2012;7(8):e42882.

40. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate
filtering of ribosomal RNAs in metatranscriptomic data. Bioin-
formatics December 2012;28(24):3211–7.

41. Kalvari I, Nawrocki EP, Ontiveros-Palacios N, et al. Rfam 14:
expanded coverage of metagenomic, viral and microRNA fam-
ilies. Nucleic Acids Res January 2021;49(D1):D192–200.

De novo transcriptome assembly and annotation | 25

42. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal
RNA gene database project: improved data processing and
web-based tools. Nucleic Acids Res January 2013;41(Database
issue):D590–6.

43. Wang Y, Ghaffari N, Johnson CD, et al. Evaluation of the cover-
age and depth of transcriptome by RNA-Seq in chickens. BMC
Bioinformatics October 2011;12Suppl 10(S10):S5.

44. Tarazona S, García-Alcalde F, Dopazo J, et al. Differential
expression in RNA-seq: a matter of depth. Genome Res Decem-
ber 2011;21(12):2213–23.

45. Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript
sequence reconstruction from RNA-seq using the trinity plat-
form for reference generation and analysis. Nat Protoc August
2013;8(8):1494–512.

46. Grabherr MG, Haas BJ, Yassour M, et al. Full-length tran-
scriptome assembly from RNA-Seq data without a reference
genome. Nat Biotechnol May 2011;29(7):644–52.

47. Crusoe MR, Alameldin HF, Awad S, et al. The khmer soft-
ware package: enabling efficient nucleotide sequence analysis.
F1000Res September 2015;4:900.

48. Wedemeyer A, Kliemann L, Srivastav A, et al. An improved
filtering algorithm for big read datasets and its application to
single-cell assembly. BMC Bioinformatics July 2017;18(1):324.

49. McCorrison JM, Venepally P, Singh I, et al. NeatFreq: reference-
free data reduction and coverage normalization for de
novo sequence assembly. BMC Bioinformatics November
2014;15(1):357.

50. Durai DA, Schulz MH. Improving in-silico normalization using
read weights. Sci Rep March 2019;9(1):5133.

51. Cavallaro M, Walsh MD, Jones M, et al. 3 ’-5 ’ crosstalk
contributes to transcriptional bursting. Genome Biol February
2021;22(1):56.

52. Struhl K. Transcriptional noise and the fidelity of initiation by
RNA polymerase II. Nat Struct Mol Biol February 2007;14(2):103–
5.

53. Hansen KD, Brenner SE, Dudoit S. Biases in illumina transcrip-
tome sequencing caused by random hexamer priming. Nucleic
Acids Res July 2010;38(12):e131.

54. Ozsolak F, Milos PM. RNA sequencing: advances, chal-
lenges and opportunities. Nat Rev Genet February 2011;12(2):
87–98.

55. Canzar S, Andreotti S, Weese D, et al. CIDANE: comprehensive
isoform discovery and abundance estimation. Genome Biol Jan-
uary 2016;17(1):16.

56. Bushmanova E, Antipov D, Lapidus A, et al. rnaSPAdes: a de novo
transcriptome assembler and its application to RNA-Seq data.
Gigascience September 2019;8(9).

57. Liu J, Li G, Zheng C, et al. BinPacker: packing-based DE novo
transcriptome assembly from RNA-seq data. PLoS Comput Biol
February 2016;12(2):e1004772.

58. Hölzer M, Marz M. De novo transcriptome assembly: a com-
prehensive cross-species comparison of short-read RNA-Seq
assemblers. Gigascience May 2019;8(5).

59. Zhang Y, Qian J, Chunyan G, et al. Alternative splicing and can-
cer: a systematic review. Signal Transduct Target Ther February
2021;6(1):78.

60. McManus CJ, Graveley BR. RNA structure and the mecha-
nisms of alternative splicing. Curr Opin Genet Dev August
2011;21(4):373–9.

61. Freedman AH, Clamp M, Sackton TB. Error, noise and bias
in de novo transcriptome assemblies. Mol Ecol Resour January
2021;21(1):18–29.

62. Davidson NM, Oshlack A. Corset: enabling differential gene
expression analysis for de novo assembled transcriptomes.
Genome Biol July 2014;15(7):410.

63. Xie Y, Wu G, Tang J, et al. SOAPdenovo-trans: de novo transcrip-
tome assembly with short RNA-Seq reads. Bioinformatics June
2014;30(12):1660–6.

64. Schulz MH, Zerbino DR, Vingron M, et al. Oases: robust de novo
RNA-seq assembly across the dynamic range of expression
levels. Bioinformatics April 2012;28(8):1086–92.

65. Robertson G, Schein J, Chiu R, et al. De novo assembly and anal-
ysis of RNA-seq data. Nat Methods November 2010;7(11):909–12.

66. Yu P, Leung HCM, Yiu S-M, et al. IDBA-Tran: a more robust
de novo de bruijn graph assembler for transcriptomes with
uneven expression levels. Bioinformatics July 2013;29(13):i326–
34.

67. Nip KM, Chiu R, Yang C, et al. RNA-bloom enables reference-
free and reference-guided sequence assembly for single-cell
transcriptomes. Genome Res August 2020;30(8):1191–200.

68. Zhao J, Feng H, Zhu D, et al. DTA-SiST: de novo transcriptome
assembly by using simplified suffix trees. BMC Bioinformatics
December 2019;20(Suppl 25):698.

69. Heber S, Alekseyev M, Sze S-H, et al. Splicing graphs and EST
assembly problem. Bioinformatics 2002;18(Suppl 1):S181–8.

70. Zhao J, Feng H, Zhu D, et al. IsoTree: a new framework for de
novo transcriptome assembly from RNA-seq reads. IEEE/ACM
Trans Comput Biol Bioinform May 2020;17(3):938–48.

71. Chang Z, Li G, Liu J, et al. Bridger: a new framework for de
novo transcriptome assembly using RNA-seq data. Genome Biol
February 2015;16(1):30.

72. Liu J, Yu T, Zengchao M, et al. TransLiG: a de novo transcriptome
assembler that uses line graph iteration. Genome Biol April
2019;20(1):81.

73. Mühr LSA, Lagheden C, Hassan SS, et al. De novo sequence
assembly requires bioinformatic checking of chimeric
sequences. PLoS One August 2020;15(8):e0237455.

74. Shen W, Le S, Li Y, et al. SeqKit: a cross-platform and ultra-
fast toolkit for FASTA/Q file manipulation. PLoS One October
2016;11(10):e0163962.

75. Bryant DM, Johnson K, DiTommaso T, et al. A tissue-mapped
axolotl DE novo transcriptome enables identification of limb
regeneration factors. Cell Rep January 2017;18(3):762–76.

76. International Human Genome Sequencing Consortium. Initial
sequencing and analysis of the human genome. Nature Febru-
ary 2001;409(6822):860–921.

77. Seppey M, Manni M, Zdobnov EM. BUSCO: Assessing genome
assembly and annotation completeness. In: Gene Prediction, Vol.
1962. New York: Springer, 2019, 227–45.

78. Zdobnov EM, Kuznetsov D, Tegenfeldt F, et al. OrthoDB in 2020:
evolutionary and functional annotations of orthologs. Nucleic
Acids Res January 2021;49(D1):D389–93.

79. Dohmen E, Kremer LPM, Bornberg-Bauer E, et al. DOGMA:
domain-based transcriptome and proteome quality assess-
ment. Bioinformatics September 2016;32(17):2577–81.

80. Smith-Unna R, Boursnell C, Patro R, et al. TransRate: reference-
free quality assessment of de novo transcriptome assemblies.
Genome Res August 2016;26(8):1134–44.

81. Smith-Unna R, Boursnell C, Patro R, et al. TransRate: reference-
free quality assessment of de novo transcriptome assemblies.
Genome Res August 2016;26(8):1134–44.

82. Li B, Fillmore N, Bai Y, et al. Evaluation of de novo transcrip-
tome assemblies from RNA-Seq data. Genome Biol December
2014;15(12):553.

26 | Raghavan et al.

83. Bushmanova E, Antipov D, Lapidus A, et al. rnaQUAST: a quality
assessment tool forde novotranscriptome assemblies: table 1.
Bioinformatics July 2016;32(14):2210–2.

84. Ceschin DG, Pires NS, Mardirosian MN, et al. The rhinella are-
narum transcriptome: de novo assembly, annotation and gene
prediction. Sci Rep January 2020;10(1):1053.

85. Kerkvliet J, de Fouchier A, van Wijk M, et al. The bellerophon
pipeline, improving de novo transcriptomes and removing
chimeras. Ecol Evol September 2019;9(18):10513–21.

86. Limin F, Niu B, Zhu Z, et al. CD-HIT: accelerated for clustering
the next-generation sequencing data. Bioinformatics December
2012;28(23):3150–2.

87. Cabau C, Escudié F, Djari A, et al. Compacting and correcting
trinity and oases RNA-Seq de novo assemblies. PeerJ February
2017;5(e2988):e2988.

88. MacManes MD. The oyster river protocol: a multi-assembler
and kmer approach for de novo transcriptome assembly. PeerJ
August 2018;6:e5428.

89. Rivera-Vicéns RE, Garcia-Escudero CA, Conci N, et al. TransPi –
a comprehensive TRanscriptome ANalysiS PIpeline for de novo
transcriptome assemblybioRxiv. February 2021.

90. Ortiz R, Gera P, Rivera C, et al. Pincho: a modular approach
to high quality DE novo transcriptomics. Genes (Basel) June
2021;12(7):953.

91. Conesa A, Madrigal P, Tarazona S, et al. A survey of best prac-
tices for RNA-seq data analysis. Genome Biol January 2016;17:13.

92. Alvarez RV, Pongor LS, Mariño-Ramírez L, et al. TPMCalculator:
one-step software to quantify mRNA abundance of genomic
features. Bioinformatics June 2019;35(11):1960–2.

93. Langmead B, Salzberg SL. Fast gapped-read alignment with
bowtie 2. Nat Methods March 2012;9(4):357–9.

94. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal
RNA-seq aligner. Bioinformatics January 2013;29(1):15–21.

95. Li H, Handsaker B, Wysoker A, et al. The sequence
alignment/map format and SAMtools. Bioinformatics August
2009;25(16):2078–9.

96. Li B, Dewey CN. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioin-
formatics August 2011;12(1):323.

97. Bray NL, Pimentel H, Melsted P, et al. Near-optimal probabilistic
RNA-seq quantification. Nat Biotechnol May 2016;34(5):525–7.

98. Patro R, Duggal G, Love MI, et al. Salmon provides fast and
bias-aware quantification of transcript expression. Nat Methods
April 2017;14(4):417–9.

99. Zhang C, Zhang B, Lin L-L, et al. Evaluation and comparison of
computational tools for RNA-seq isoform quantification. BMC
Genomics December 2017;18(1).

100. Everaert C, Luypaert M, Maag JLV, et al. Benchmarking of RNA-
sequencing analysis workflows using whole-transcriptome RT-
qPCR expression data. Sci Rep May 2017;7(1):1559.

101. Schaarschmidt S, Fischer A, Zuther E, et al. Evaluation of seven
different RNA-Seq alignment tools based on experimental data
from the model plant arabidopsis thaliana. Int J Mol Sci March
2020;21(5):1720.

102. Wu DC, Yao J, Ho KS, et al. Limitations of alignment-free
tools in total RNA-seq quantification. BMC Genomics December
2018;19(1).

103. Nowoshilow S, Schloissnig S, Fei J-F, et al. The axolotl genome
and the evolution of key tissue formation regulators. Nature
February 2018;554(7690):50–5.

104. The ENCODE Project Consortium. An integrated encyclopedia
of DNA elements in the human genome. Nature September
2012;489(7414):57–74.

105. Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcrip-
tion of the human genome produces thousands of previously
unidentified long intergenic noncoding RNAs. PLoS Genet June
2013;9(6):e1003569.

106. Zhao S. Alternative splicing, RNA-seq and drug discovery. Drug
Discov Today June 2019;24(6):1258–67.

107. Li W, Godzik A. Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences. Bioin-
formatics July 2006;22(13):1658–9.

108. Steinegger M, Söding J. MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets. Nat
Biotechnol November 2017;35(11):1026–8.

109. Steinegger M, Söding J. Clustering huge protein sequence sets
in linear time. Nat Commun December 2018;9(1).

110. Mirdita M, Steinegger M, Söding J. MMseqs2 desktop and local
web server app for fast, interactive sequence searches. Bioinfor-
matics August 2019;35(16):2856–8.

111. Mirdita M, Steinegger M, Breitwieser F, et al. Fast and sensitive
taxonomic assignment to metagenomic contigs. Bioinformatics
March 2021;37(18):3029–31.

112. Malik L, Almodaresi F, Patro R. Grouper: graph-based clustering
and annotation for improved de novo transcriptome analysis.
Bioinformatics October 2018;34(19):3265–72.

113. Razo-Mendivil FG, Martínez O, Hayano-Kanashiro C.
Compacta: a fast contig clustering tool for de novo
assembled transcriptomes. BMC Genomics February 2020;21(1):
148.

114. Davidson NM, Hawkins ADK, Oshlack A. SuperTranscripts: a
data driven reference for analysis and visualisation of tran-
scriptomes. Genome Biol December 2017;18(1).

115. Oshlack A, Robinson MD, Young MD. From RNA-seq reads
to differential expression results. Genome Biol December
2010;11(12):220.

116. Zyprych-Walczak J, Szabelska A, Handschuh L, et al. The impact
of normalization methods on RNA-seq data analysis. Biomed Res
Int 2015, June 2015;621690.

117. Wilfinger WW, Miller R, Eghbalnia HR, et al. Strategies for
detecting and identifying biological signals amidst the varia-
tion commonly found in RNA sequencing data. BMC Genomics
May 2021;22(1):322.

118. Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for
sequence count data: removing the noise and preserving large
differences. Bioinformatics 2019;35.

119. Stephens M. False discovery rates: a new deal. Biostatistics
2017;18.

120. R Core Team. R: a language and environment for statistical
computing. 2021.

121. Love MI, Huber W, Anders S. Moderated estimation of fold
change and dispersion for rna-seq data with deseq2. Genome
Biol 2014;15.

122. Robinson MD, McCarthy DJ, Smyth GK. Edger: a bioconductor
package for differential expression analysis of digital gene
expression data. Bioinformatics 2010;26.

123. Ritchie ME, Phipson B, Wu DI, et al. Limma powers differential
expression analyses for rna-sequencing and microarray stud-
ies. Nucleic Acids Res 2015;43.

124. McDermaid A, Monier B, Zhao J, et al. Interpretation of
differential gene expression results of RNA-seq data:
review and integration. Brief Bioinform November 2019;20(6):
2044–54.

125. Shahjaman M, Akter H, Rashid MM, et al. Robust and efficient
identification of biomarkers from rna-seq data using median
control chart. F1000Research 2019;8.

De novo transcriptome assembly and annotation | 27

126. Love MI, Soneson C, Robinson MD. Importing transcript abun-
dance datasets with tximport. Dim Txi Inf Rep Sample1 2017;1.

127. Risso D, Ngai J, Speed TP, et al. Normalization of RNA-seq data
using factor analysis of control genes or samples. Nat Biotechnol
September 2014;32(9):896–902.

128. Varet H, Brillet-Guéguen L, Coppée J-Y, et al. SARTools:
a DESeq2- and EdgeR-based R pipeline for comprehen-
sive differential analysis of RNA-Seq data. PLoS One June
2016;11(6):e0157022.

129. Wu G, Anafi RC, Hughes ME, et al. MetaCycle: an integrated R
package to evaluate periodicity in large scale data. Bioinformat-
ics November 2016;32(21):3351–3.

130. Vera-Khlara SO, Li RW. Temporal dynamic methods for bulk
RNA-Seq time series data. Genes (Basel) February 2021;12(3):352.

131. Waardenberg AJ, Field MA. consensusDE: an R package for
assessing consensus of multiple RNA-seq algorithms with RUV
correction. PeerJ December 2019;7:e8206.

132. Van den Berge K, Hembach KM, Soneson C, et al. RNA sequenc-
ing data: Hitchhiker’s guide to expression analysis. Annu Rev
Biomed Data Sci July 2019;2(1):139–73.

133. Schurch NJ, Schofield P, Gierliński M, et al. How many bio-
logical replicates are needed in an RNA-seq experiment and
which differential expression tool should you use? RNA June
2016;22(6):839–51.

134. Finotello F, Di Camillo B. Measuring differential gene expres-
sion with RNA-seq: challenges and strategies for data analysis.
Brief Funct Genomics March 2015;14(2):130–42.

135. Li WV, Li JJ. Modeling and analysis of RNA-seq data: a
review from a statistical perspective. Quant Biol September
2018;6(3):195–209.

136. Guo Y, Zhao S, Sheng Q, et al. RNAseq by total RNA library
identifies additional RNAs compared to poly(a) RNA library.
Biomed Res Int 2015, October 2015;862130.

137. Kang Y-J, Yang D-C, Kong L, et al. CPC2: a fast and accurate cod-
ing potential calculator based on sequence intrinsic features.
Nucleic Acids Res July 2017;45(W1):W12–6.

138. Wang L, Park HJ, Dasari S, et al. CPAT: coding-potential assess-
ment tool using an alignment-free logistic regression model.
Nucleic Acids Res April 2013;41(6):e74.

139. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homol-
ogy searches. Bioinformatics November 2013;29(22):2933–5.

140. O’Leary NA, Wright MW, Brister JR, et al. Reference sequence
(RefSeq) database at NCBI: current status, taxonomic expan-
sion, and functional annotation. Nucleic Acids Res January
2016;44(D1):D733–45.

141. Lagesen K, Hallin P, Rødland EA, et al. RNAmmer: consistent
and rapid annotation of ribosomal RNA genes. Nucleic Acids Res
April 2007;35(9):3100–8.

142. Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA
classes and a possible function for pervasive transcription.
Science June 2007;316(5830):1484–8.

143. Amaral PP, Dinger ME, Mattick JS. Non-coding RNAs in home-
ostasis, disease and stress responses: an evolutionary perspec-
tive. Brief Funct Genomics May 2013;12(3):254–78.

144. Motheramgari K, Curell RV-B, Tzani I, et al. Expanding the
chinese hamster ovary cell long noncoding RNA transcriptome
using RNASeq. Biotechnol Bioeng July 2020;117(10):3224–31.

145. Kashyap A, Rhodes A, Kronmiller B, et al. Pan-tissue transcrip-
tome analysis of long noncoding RNAs in the american beaver
castor canadensis. BMC Genomics February 2020;21(1):153.

146. Nachtigall PG, Kashiwabara AY, Durham AM. CodAn: predictive
models for precise identification of coding regions in eukary-
otic transcripts. Brief Bioinform May 2021;22(3).

147. Hyatt D, Chen G-L, Locascio PF, et al. Prodigal: prokaryotic gene
recognition and translation initiation site identification. BMC
Bioinformatics March 2010;11(1):119.

148. Tang S, Lomsadze A, Borodovsky M. Identification of pro-
tein coding regions in RNA transcripts. Nucleic Acids Res July
2015;43(12):e78.

149. Signal B, Kahlke T. Borf: improved ORF prediction in de-novo
assembled transcriptome annotationbioRxiv. April 2021.

150. Madeira F, Park YM, Lee J, et al. The EMBL-EBI search and
sequence analysis tools APIs in 2019. Nucleic Acids Res July
2019;47(W1):W636–41.

151. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol
October 2011;7(10):e1002195.

152. Steinegger M, Mirdita M, Söding J. Protein-level assembly
increases protein sequence recovery from metagenomic sam-
ples manyfold. Nat Methods July 2019;16(7):603–6.

153. Koonin EV, Galperin MY. Sequence - Evolution - Function: Compu-
tational Approaches in Comparative Genomics. Kluwer Academic,
2003.

154. Pearson WR. An introduction to sequence similarity
(“homology”) searching. Curr Protoc Bioinformatics June
2013;Chapter 3(1):Unit3.1.

155. Sayadi A, Immonen E, Bayram H, et al. The de novo tran-
scriptome and its functional annotation in the seed beetle
callosobruchus maculatus. PLoS One July 2016;11(7):e0158565.

156. Pearson WR. BLAST and FASTA similarity searching for multi-
ple sequence alignment. In: Multiple Sequence Alignment Methods,
Vol. 1079. Humana Press, 2014, 75–101.

157. Punta M, Ofran Y. The rough guide to in silico function
prediction, or how to use sequence and structure informa-
tion to predict protein function. PLoS Comput Biol October
2008;4(10):e1000160.

158. Altschul SF, Gish W, Miller W, et al. Basic local alignment search
tool. J Mol Biol October 1990;215(3):403–10.

159. Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architec-
ture and applications. BMC Bioinformatics December 2009;10(1):
421.

160. Buchfink B, Reuter K, Drost H-G. Sensitive protein align-
ments at tree-of-life scale using DIAMOND. Nat Methods April
2021;18(4):366–8.

161. NCBI Resource Coordinators. Database resources of the
national center for biotechnology information. Nucleic Acids Res
January 2018;46(D1):D8–13.

162. UniProt Consortium. UniProt: the universal protein knowledge-
base in 2021. Nucleic Acids Res January 2021;49(D1):D480–9.

163. Suzek BE, Wang Y, Huang H, et al. UniRef clusters: a comprehen-
sive and scalable alternative for improving sequence similarity
searches. Bioinformatics March 2015;31(6):926–32.

164. Suzek BE, Huang H, McGarvey P, et al. UniRef: comprehensive
and non-redundant UniProt reference clusters. Bioinformatics
May 2007;23(10):1282–8.

165. Larkin A, Marygold SJ, Antonazzo G, et al. FlyBase: updates to
the drosophila melanogaster knowledge base. Nucleic Acids Res
January 2021;49(D1):D899–907.

166. Harris TW, Arnaboldi V, Cain S, et al. WormBase: a modern
model organism information resource. Nucleic Acids Res January
2020;48(D1):D762–7.

167. Bel, Diels T, Vancaester E, et al. PLAZA 4.0: an integrative
resource for functional, evolutionary and comparative plant
genomics. Nucleic Acids Res January 2018;46(D1):D1190–6.

168. Vandepoele K, Van Bel M, Richard G, et al. Pico-PLAZA, a
genome database of microbial photosynthetic eukaryotes. Env-
iron Microbiol August 2013;15(8):2147–53.

28 | Raghavan et al.

169. Martin Gollery. Handbook of Hidden Markov Models in Bioinformat-
ics. Chapman & Hall/CRC Mathematical and Computational
Biology Series. CRC Press, 2008.

170. Gribskov M, McLachlan AD, Eisenberg D. Profile analysis: detec-
tion of distantly related proteins. Proc Natl Acad Sci U S A July
1987;84(13):4355–8.

171. Eddy SR. Profile hidden markov models. Bioinformatics
1998;14(9):755–63.

172. Chatzou M, Magis C, Chang J-M, et al. Multiple sequence
alignment modeling: methods and applications. Brief Bioinform
November 2016;17(6):1009–23.

173. Armenteros JJA, Tsirigos KD, Sønderby CK, et al. SignalP 5.0
improves signal peptide predictions using deep neural net-
works. Nat Biotechnol April 2019;37(4):420–3.

174. Harrison PM. fLPS: fast discovery of compositional biases
for the protein universe. BMC Bioinformatics November
2017;18(1):476.

175. Van Roey K, Uyar B, Weatheritt RJ, et al. Short linear motifs:
ubiquitous and functionally diverse protein interaction mod-
ules directing cell regulation. Chem Rev July 2014;114(13):6733–
78.

176. Jones P, Binns D, Chang H-Y, et al. InterProScan 5: genome-
scale protein function classification. Bioinformatics May
2014;30(9):1236–40.

177. Mistry J, Chuguransky S, Williams L, et al. Pfam: the pro-
tein families database in 2021. Nucleic Acids Res January
2021;49(D1):D412–9.

178. Sillitoe I, Bordin N, Dawson N, et al. CATH: increased struc-
tural coverage of functional space. Nucleic Acids Res January
2021;49(D1):D266–73.

179. Lewis TE, Sillitoe I, Dawson N, et al. Gene3D: extensive predic-
tion of globular domains in proteins. Nucleic Acids Res January
2018;46(D1):D435–9.

180. Gene Ontology Consortium. The gene ontology resource:
enriching a GOld mine. Nucleic Acids Res January
2021;49(D1):D325–34.

181. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the
unification of biology. The gene ontology consortium. Nat Genet
May 2000;25(1):25–9.

182. Christophe Dessimoz and Nives Skunca, editors. The gene
ontology handbook. Methods in molecular biology (Clifton,
N.J.). Humana Press, New York, NY, 1 edition, November
2016.

183. Huerta-Cepas J, Forslund K, Coelho LP, et al. Fast genome-
wide functional annotation through orthology assignment
by eggNOG-mapper. Mol Biol Evol August 2017;34(8):
2115–22.

184. Huerta-Cepas J, Szklarczyk D, Heller D, et al. eggNOG 5.0:
a hierarchical, functionally and phylogenetically annotated
orthology resource based on 5090 organisms and 2502 viruses.
Nucleic Acids Res January 2019;47(D1):D309–14.

185. Altenhoff AM, Train C-M, Gilbert KJ, et al. OMA orthology in
2021: website overhaul, conserved isoforms, ancestral gene
order and more. Nucleic Acids Res D1, January 2021;49:D373–9.

186. Götz S, García-Gómez JM, Terol J, et al. High-throughput func-
tional annotation and data mining with the Blast2GO suite.
Nucleic Acids Res June 2008;36(10):3420–35.

187. Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrat-
ing viruses and cellular organisms. Nucleic Acids Res January
2021;49(D1):D545–51.

188. Kanehisa M. Toward understanding the origin and evolution of
cellular organisms. Protein Sci November 2019;28(11):1947–51.

189. Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 2000;28.

190. Jassal B, Matthews L, Viteri G, et al. The reactome pathway
knowledgebase. Nucleic Acids Res January 2020;48(D1):D498–
503.

191. Kanehisa M, Sato Y, Morishima K. BlastKOALA and
GhostKOALA: KEGG tools for functional characterization
of genome and metagenome sequences. J Mol Biol February
2016;428(4):726–31.

192. Bryant DM, Johnson K, DiTommaso T, et al. A tissue-mapped
axolotl DE novo transcriptome enables identification of limb
regeneration factors. Cell Rep January 2017;18(3):762–76.

193. Krogh A, Larsson B, von Heijne G, et al. Predicting transmem-
brane protein topology with a hidden markov model: applica-
tion to complete genomes. J Mol Biol January 2001;305(3):567–
80.

194. Altenhoff AM, Glover NM, Dessimoz C. Inferring orthology
and paralogy. In: Evolutionary Genomics, Vol. 1910. New York:
Springer, 2019, 149–75.

195. Altenhoff AM, Studer RA, Robinson-Rechavi M, et al. Resolving
the ortholog conjecture: orthologs tend to be weakly, but sig-
nificantly, more similar in function than paralogs. PLoS Comput
Biol May 2012;8(5):e1002514.

196. Cozzetto D, Jones DT. Computational methods for annotation
transfers from sequence. In: The Gene Ontology Handbook, Vol.
1446. New York: Springer, 2017, 55–67.

197. Hart AJ, Ginzburg S, Xu MS, et al. EnTAP: bringing faster and
smarter functional annotation to non-model eukaryotic tran-
scriptomes. Mol Ecol Resour March 2020;20(2):591–604.

198. Musacchia F, Basu S, Petrosino G, et al. Annocript: a flex-
ible pipeline for the annotation of transcriptomes able to
identify putative long noncoding RNAs. Bioinformatics July
2015;31(13):2199–201.

199. Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the con-
served domain database in 2020. Nucleic Acids Res January
2020;48(D1):D265–8.

200. Casimiro-Soriguer CS, Muñoz-Mérida A, Pérez-Pulido AJ.
Sma3s: a universal tool for easy functional annotation of pro-
teomes and transcriptomes. Proteomics June 2017;17(12).

201. Mora-Márquez F, Chano V, Vázquez-Poletti JL, et al. TOA:
a software package for automated functional annotation in
non-model plant species. Mol Ecol Resour February 2021;21(2):
621–36.

202. Van Bel M, Proost S, Van Neste C, et al. TRAPID: an effi-
cient online tool for the functional and comparative analysis
of de novo RNA-Seq transcriptomes. Genome Biol December
2013;14(12):R134.

203. François Bucchini, Andrea Del Cortona, Łukasz Kreft, Alexan-
der Botzki, Michiel Van Bel, and Klaas Vandepoele. TRAPID 2.0:
a web application for taxonomic and functional analysis of de
novo transcriptomes. Nucleic Acids Res., 49(17):e101, September
2021.

204. Soderlund CA. Transcriptome computational workbench
(TCW): analysis of single and comparative transcriptomes.
August 2019.

205. Soderlund C, Nelson W, Willer M, et al. TCW: transcriptome
computational workbench. PLoS One July 2013;8(7):e69401.

206. Pulido TH, Vlasova A, Di Tommaso P. guigolab/FA-nf: 0.3.1
release, 2021.

207. Altenhoff AM, Levy J, Zarowiecki M, et al. OMA standalone:
orthology inference among public and custom genomes and
transcriptomes. Genome Res July 2019;29(7):1152–63.

De novo transcriptome assembly and annotation | 29

208. Wu S, Zhu Z, Fu L, et al. WebMGA: a customizable web server for
fast metagenomic sequence analysis. BMC Genomics September
2011;12(1):444.

209. Törönen P, Medlar A, Holm L. PANNZER2: a rapid functional
annotation web server. Nucleic Acids Res July 2018;46(W1):W84–
8.

210. Katoh K, Standley DM. Mafft multiple sequence alignment soft-
ware version 7: improvements in performance and usability.
Mol Biol Evol 2013;30.

211. Deorowicz S, Debudaj-Grabysz A, Gudyś A. Famsa: fast and
accurate multiple sequence alignment of huge protein fami-
lies. Sci Rep 2016;6.

212. Stamatakis A. Raxml version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics 2014;30.

213. Zhang C, Sayyari E, Mirarab S. Astral-iii: increased scalability
and impacts of contracting low support branches. In: RECOMB
international workshop on comparative genomics. Springer, 2017.

214. Emms DM, Kelly S. Orthofinder: phylogenetic orthology infer-
ence for comparative genomics. Genome Biol 2019;20.

215. Miller JB, Pickett BD, Ridge PG. Justorthologs: a fast, accurate
and user-friendly ortholog identification algorithm. Bioinfor-
matics 2019;35.

216. Spillane JL, LaPolice TM, MacManes MD, et al. Signal, bias, and
the role of transcriptome assembly quality in phylogenomic
inference. BMC ecology and evolution 2021;21.

217. Leipzig J. A review of bioinformatic pipeline frameworks. Brief
Bioinform March 2016;bbw020.

218. Perkel JM. Workflow systems turn raw data into scientific
knowledge. Nature September 2019;573(7772):149–50.

219. Conery JS, Catchen JM, Lynch M. Rule-based workflow man-
agement for bioinformatics. VLDB J September 2005;14(3):
318–29.

220. Strozzi F, Janssen R, Wurmus R, et al. Scalable workflows
and reproducible data analysis for genomics. In: Evolutionary
Genomics, Vol. 1910. Springer, New York, 2019, 723–45.

221. Mölder F, Jablonski KP, Letcher B, et al. Sustainable data analy-
sis with snakemake. F1000Res January 2021;10:33.

222. Jackson M, Kavoussanakis K, Wallace EWJ. Using prototyping to
choose a bioinformatics workflow management system. PLoS
Comput Biol February 2021;17(2):e1008622.

223. Reiter T, Brooks PT, Irber L, et al. Streamlining data-intensive
biology with workflow systems. Gigascience January 2021;
10(1).

224. Di Tommaso P, Chatzou M, Floden EW, et al. Nextflow enables
reproducible computational workflows. Nat Biotechnol April
2017;35(4):316–9.

225. Peter Amstutz, Michael R Crusoe, Nebojša Tijanić, Brad Chap-
man, John Chilton, Michael Heuer, Andrey Kartashov, Dan
Leehr, Hervé Ménager, Maya Nedeljkovich, Matt Scales, Stian
Soiland-Reyes, and Luka Stojanovic. Common workflow language,
v1.0, July 2016.

226. stackoverflow. Stack Overf low Developer Survey, 2020.
227. Köster J, Rahmann S. Snakemake–a scalable bioinformatics

workflow engine. Bioinformatics October 2012;28(19):
2520–2.

228. nextflow. Basic concepts - Nextflow 21.04.1 documentation.
229. Ewels PA, Peltzer A, Fillinger S, et al. The nf-core framework

for community-curated bioinformatics pipelines. Nat Biotechnol
March 2020;38(3):276–8.

230. Kotliar M, Kartashov AV, Barski A. CWL-airflow: a lightweight
pipeline manager supporting common workflow language.
Gigascience July 2019;8(7).

231. Voss K, Van Der Auwera G, Gentry J. Full-stack genomics
pipelining with GATK4 + WDL + Cromwell. ISCB Community
Journal 2017.

232. Landau W. The targets R package: a dynamic make-like
function-oriented pipeline toolkit for reproducibility and
high-performance computing. J Open Source Softw January
2021;6(57):2959.

233. Milicchio F, Rose R, Bian J, et al. Visual programming for
next-generation sequencing data analytics. BioData Min April
2016;9(1):16.

234. Michael C. Schatz. The missing graphical user interface for genomics
Genome Biol August 2010;11(8):128.

235. Walker MA, Madduri R, Rodriguez A, et al. Models and sim-
ulations as a service: exploring the use of galaxy for deliv-
ering computational models. Biophys J March 2016;110(5):
1038–43.

236. Blankenberg D, Von Kuster G, Bouvier E, et al. Dissemination of
scientific software with galaxy ToolShed. Genome Biol February
2014;15(2):403.

237. Klingström T, Diego R H-d, Collard T, et al. Galaksio, a
user friendly workflow-centric front end for galaxy. EMBnet J
November 2017;23(0):897.

238. Okonechnikov K, Golosova O, Fursov M, et al. Unipro
UGENE: a unified bioinformatics toolkit. Bioinformatics April
2012;28(8):1166–7.

239. Reich M, Liefeld T, Gould J, et al. GenePattern 2.0. Nat Genet May
2006;38(5):500–1.

240. William E. Shotts. The Linux Command Line: A Complete Introduc-
tion. No Starch Press, second edition edition, 2019.

241. McGrath M. Linux in Easy Steps. Easy Steps Limited, 2010.
242. Python Software Foundation. Python: A dynamic, open source

programming language, 2021.
243. Grüning B, Dale R, Sjödin A, et al. Bioconda: sustainable and

comprehensive software distribution for the life sciences. Nat
Methods July 2018;15(7):475–6.

244. Courneya J-P, Mayo A. High-performance computing service
for bioinformatics and data science. J Med Libr Assoc October
2018;106(4):494–5.

245. Castrignanò T, Gioiosa S, Flati T, et al. ELIXIR-IT HPC@CINECA:
high performance computing resources for the bioinformatics
community. BMC Bioinformatics August 2020;21(Suppl 10):352.

246. Lampa S, Dahlö M, Olason PI, et al. Lessons learned from
implementing a national infrastructure in Sweden for storage
and analysis of next-generation sequencing data. Gigascience
June 2013;2(1):9.

247. Peréz-Sánchez H, Fassihi A, Cecilia JM, et al. Applications of high
performance computing in bioinformatics, computational biol-
ogy and computational chemistry. In: Bioinformatics and Biomed-
ical Engineering, Lecture notes in computer science. Cham:
Springer International Publishing, 2015, 527–41.

248. Beier S, Thiel T, Münch T, et al. MISA-web: a web
server for microsatellite prediction. Bioinformatics August
2017;33(16):2583–5.

249. Pinosio S, Fratini S, Cannicci S, et al. De novo
transcriptome assembly for pachygrapsus marmoratus,
an intertidal brachyuran crab. Mar Genomics February
2021;55(100792):100792.

250. Leinonen R, Sugawara H, Shumway M, et al. The sequence read
archive. Nucleic Acids Res January 2011;39(Database issue):D19–
21.

251. European Organization for Nuclear Research and OpenAIRE.
Zenodo, 2013.

30 | Raghavan et al.

252. DeRisi S, Kennison R, Twyman N. The what and whys of DOIs.
PLoS Biol November 2003;1(2):E57.

253. Thunders M, Cavanagh J, Li Y. De novo transcriptome assem-
bly, functional annotation and differential gene expression
analysis of juvenile and adult e. fetida, a model oligochaete
used in ecotoxicological studies. Biol Res February 2017;
50(1):7.

254. Byrne A, Cole C, Volden R, et al. Realizing the potential of full-
length transcriptome sequencing. Philos Trans R Soc Lond B Biol
Sci November 2019;374(1786):20190097.

255. Amarasinghe SL, Su S, Dong X, et al. Opportunities and chal-
lenges in long-read sequencing data analysis. Genome Biol
February 2020;21(1).

256. Mikheyev AS, Tin MMY. A first look at the oxford nanopore
MinION sequencer. Mol Ecol Resour September 2014;14(6):1097–
102.

257. Eid J, Fehr A, Gray J. Real-time DNA sequencing from single
polymerase molecules. Science January 2009;323(5910):133–8.

258. Soneson C, Yao Y, Bratus-Neuenschwander A, et al. A com-
prehensive examination of nanopore native RNA sequencing
for characterization of complex transcriptomes. Nat Commun
December 2019;10(1).

259. Volden R, Palmer T, Byrne A, et al. Improving nanopore read
accuracy with the R2C2 method enables the sequencing of
highly multiplexed full-length single-cell cDNA. Proc Natl Acad
Sci U S A September 2018;115(39):9726–31.

	 A simple guide to de novo transcriptome assembly and annotation
	Introduction
	Pre-assembly quality control and filtering
	De novo transcriptome assembly
	Post-assembly quality control
	Alignment and abundance estimation
	Assembly thinning and redundancy reduction
	Differential expression analysis
	RNA classification
	Sequence translation
	Transcriptome functional annotation
	Transcriptome annotation suites
	Comparing transcriptome assemblies
	Workflow managers
	Computational and programmatic considerations
	What to annotate and where to publish
	Conclusions
	Key Points
	 Acknowledgments
	Author contributions statement

