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Atherosclerosis, which is a primary cause of cardiovascular disease (CVD) deaths

around the world, is a chronic inflammatory disease that is characterised by the

accumulation of lipid plaques in the arterial wall, triggering inflammation that is regulated

by cytokines/chemokines that mediate innate and adaptive immunity. This review focuses

on IL-32, -34 and -37 in the stable vs. unstable plaques from atherosclerotic patients.

Dysregulation of the novel cytokines IL-32, -34 and -37 has been discovered in

atherosclerotic plaques. IL-32 and -34 are pro-atherogenic and associated with an

unstable plaque phenotype; whereas IL-37 is anti-atherogenic and maintains plaque

stability. It is speculated that these cytokines may contribute to the explanation for the

increased occurrence of atherosclerotic plaque rupture seen in patients with COVID-

19 infection. Understanding the roles of these cytokines in atherogenesis may provide

future therapeutic perspectives, both in the management of unstable plaque and

acute coronary syndrome, and may contribute to our understanding of the COVID-19

cytokine storm.
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ATHEROSCLEROSIS

Cardiovascular disease (CVD) is the leading cause of death in the world (1). Cerebrovascular
disease and coronary artery disease (CAD) are the most prevalent subtypes of cardiovascular
disease that result in a high morbidity as well as large economic burden in developing countries
(1). Atherogenesis, referring to the development of atherosclerotic plaques, progresses
through endothelial dysfunction; leukocytes recruitment; differentiation of monocytes;
formation of foam cells; and proliferation of vascular smooth muscle cells (VSMC) (2). The
abnormal steps of atherogenesis are regulated by both innate and adaptive immunity via
cytokines/chemokines modulating the cross-talk between inflammatory and vascular cells (2, 3).
Despite the aggressive management of modifiable risks factors for atherosclerosis, for example,
lipid-lowering treatments and anti-hypertensives, which promise effective management for
atherosclerosis, the mortality and morbidity of CVD are still rather unacceptably high (4). The
Canakinumab Anti-Inflammatory Thrombosis Outcomes Study is a large-scaled clinical trial
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which demonstrates a decrease in major adverse cardiovascular
events following anti-IL-1β , antibody treatment, supporting the
critical role of inflammation during atherogenesis (5).

ATHEROGENESIS

Circulating low-density lipoproteins (LDL) are deposited in the
intima at lesion-prone sites and undergo oxidative modification
to generate oxidised LDL (OxLDL), which is a potent
inflammatory mediator that triggers endothelial dysfunction
(6, 7). Endothelial cells respond to OxLDL by expressing
adhesion molecules such as ICAM-1 and chemokines including
monocyte chemotactic protein-1 (MCP-1/CCL2) for recruitment
of leukocytes (7, 8). Macrophages perform a protective role to
metabolise lipids via scavenger receptors that internalise OxLDL
and ATP-binding cassette (ABC) transporters A-1 and G-1
that mediate the efflux of OxLDL (9). However, imbalance of
cholesterol influx and efflux results in the accumulation of lipids
within macrophages, which contributes to foam cells formation
(3, 9). Continuous low grade inflammation within the vessel wall
subsequently progressively transforms a fatty streak into a fibro-
fatty plaque, which is characterised by a fibrous cap covered by a
necrotic core within the grossly thickened arterial intima (3, 10).
The fibrous cap is formed by proliferating VSMC that migrate
from the media, synthesising and releasing extracellular matrix
to stabilise the plaque; whereas the necrotic core is formed by
apoptotic macrophages/foam cells that have become exhausted
by excessive lipid metabolism (3). Thinning of the fibrous
cap is induced by inflammatory mediators triggering apoptosis
of VSMC and the production of collagenolytic enzymes that
degrade the collagen within the cap (11). Ineffective clearance
of apoptotic cells contributes to secondary necrosis, releasing
damage-associated molecular patterns (DAMP) to sustain the
inflammation, thus enlarging the necrotic core (11). These
features characterise the unstable symptomatic plaque that is
susceptible to rupture, which results in the release of pro-
thrombotic materials to cause intra-vascular thrombosis (10),
which in medium sized vessels, such as the major coronary
or cerebral vessels, becomes an obstructive atherothrombosis,
causing ischaemia and eventual infarction of the tissue perfused
by that vessel.

Plaque Phenotypes
Atherosclerotic plaque is classified into stable and unstable
phenotypes (3). The stable atherosclerotic plaque is characterised
by a thick fibrous cap covering a small necrotic core, which can
withstand haemodynamic changes and stresses and is therefore
less susceptible to rupture (3, 12). In contrast, the unstable
atherosclerotic plaque that is prone to rupture is associated with
a thin fibrous cap covering a large necrotic core (10).

IL-32

IL-32, formerly named natural killer cell transcript 4 (NK4),
is constitutively produced by peripheral blood mononuclear
(PBMC), epithelial and endothelial cells (13, 14). IL-32 consists

of eight splice variants, however, only the IL-32α, IL-32β and IL-
32γ isoforms have been extensively studied (15). An abundance
of IL-32α is found in haematopoietic cells; whereas IL-32β and
IL-32γ are themajor isoform in endothelial cells and are themost
active isoforms, respectively (13, 14, 16) (Figure 1).

Overexpression of IL-32 has been reported in rheumatoid
arthritis (RA) (17) and Crohn’s disease (18), as well as, in
human symptomatic atherosclerotic plaques (19), compared to
asymptomatic individuals (20). Interestingly, anti-inflammatory
activity has been demonstrated in a murine model of asthma
with allergic airways inflammation (21). Although the precise
explanation for this apparent discrepancy in the activity of IL-32
remains unknown, it may be due to differences in inflammatory
regulators between species and/or diseases.

IL-32 and Atherogenesis
IL-32 has been detected in human endothelial cells of
atherosclerotic plaques (22) and different isoforms have been
demonstrated to exhibit distinct functional roles (23). IL-32α
is associated with the suppression of ICAM-1 and VCAM-
1 expression on endothelial cells, resulting in attenuation of
atherosclerotic lesions, with decreased leukocyte infiltration
being observed following overexpression of IL-32α in the IL-
32α tg Apoe−/− mouse model of atherosclerosis, suggesting
that IL-32α is anti-inflammatory during atherogenesis (24).
This is consistent with the finding that IL-32α enhances lipid
accumulation and inhibits cholesterol efflux from ox-LDL-
exposed THP-1 macrophages via the PPARγ-LXRα-ABCA1
pathway (25).

On the other hand, IL-32β promotes vascular inflammation,
based on the observation of increased leukocyte adhesion
on endothelial cells following overexpression of IL-32β in a
transgenic mouse model of atherosclerosis (26), perhaps via
upregulation of ICAM-1/VCAM-1 expression by IL-32β , as
observed on human umbilical vein endothelial cells (HUVECs)
following IL-32β stimulation (27). In addition, IL-32 regulates
the function of endothelial cells within the aortic, coronary and
pulmonary circulations, via IL-1β and other pro-inflammatory
cytokines, particularly regulating I-CAM (27).

Thus, taken together, these data support the hypothesis
that atherosclerotic development is accelerated by
unbalanced expression of IL-32α and IL-32β facilitating
vascular inflammation.

Furthermore, IL-32β and IL-32γ have been detected in
macrophages of human atherosclerotic plaques, while IL-
32γ is associated with greater MCP-1/CCL2 production from
monocytic THP-1 cells, suggesting that IL-32γ amplifies local
inflammation via recruitment of monocytes/macrophages (20).
These data are consistent with the finding that IL-32γ enhances
monocytes differentiation into macrophage-like cells (28),
suggesting that IL-32γ is important for the regulation of the host
response against antigens that the immune system detects within
atherosclerotic plaques.

It is well known that macrophage heterogeneity is involved
in atherogenesis, which consists of pro-inflammatory M1 and
anti-inflammatory M2 macrophages (29). Interestingly, M2
macrophages shift towards a pro-atherogenic profile when in a
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FIGURE 1 | Schematic representation of the roles of IL-32 in atherogenesis. Adhesion molecules are promoted by IL-32β to facilitate monocyte recruitment, whereas

recruitment can also be inhibited by IL-32α. The differentiation of monocytes into phagocytic macrophages is induced by IL-32γ , which in turn triggers the release of

CCL-2 to recruit circulating monocytes. IL-32γ induces the maturation of DCs, releasing IL-12 and IL-6 to polarise naïve CD4+ T cells into Th1 and Th17 subsets.

IL-32γ induces macrophages to produce MMPs leading to atherosclerotic plaque instability. Created with BioRender.com.

pro-inflammatorymicro-environment, as reported by the finding
that M2 macrophages transform into foam cells via upregulation
of scavenger receptor CD36 to internalise OxLDL at a higher
capacity than M1 macrophages, following their exposure to
OxLDL (30). In relation to the IL-32s, M2 rather than M1
macrophages demonstrate a significant upregulation of IL-32
expression in the presence of IFNγ , suggesting that IL-32 is an
effector molecule mediating pro-atherogenic responses in the
presence of pro-inflammatory stimuli (20). Since IL-32β is a
less bioactive form, the upregulation of IL-32β in macrophages
may be a form of reverse regulation that is generated by the
alternative splicing of the IL-32γ transcript to reduce the overall
pro-atherogenic effect (20).

The maturation of murine dendritic cells (DC) is promoted
in the presence of rhIL-32γ (31). Specifically, rhIL-32γ
increases the production of IL-12 and IL-6 in murine DCs,
promoting the polarisation of CD4+ T cells into Th1 and Th17

subsets, accompanied by increased production of IFNγ and
IL-17, respectively (31). This is an important mechanism in
atherogenesis, in which IFNγ destabilises atherosclerotic plaques
via the inhibition of VSMC proliferation leading to a thin
fibrous cap (10). It is the degradation of the extracellular matrix,
i.e., collagen, by matrix metalloproteinases (MMP) that causes
thinning of the fibrous cap (3), which can be promoted by IL-
32γ via increasing the secretion ofMMP-1,MMP-9 andMMP-13
frommacrophages (20). These data suggest that IL-32 contributes
to plaque instability, which supports the finding of a strong
correlation between IL-32 and symptomatic plaque phenotype in
human atherosclerosis (19).

However, the more controversial role of IL-32, i.e., its anti-
inflammatory role, has also been reported. It is well accepted
that disruption of the removal of excessive cholesterol in the
arterial wall is important in atherogenesis (2), which is regulated
by the reverse cholesterol transport (RCT) mechanism via
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FIGURE 2 | Schematic representation of the roles of IL-34 in atherogenesis. (A) In the early stage, TNF and IL-1β produced in the plaque microenvironment stimulate

IL-34 production. Infiltrated monocytes are induced by IL-34 to differentiate into M2 macrophages to dampen the inflammatory responses by digesting OxLDL. (B) In

the advanced stage, IFNγ produced from overwhelming inflammation skews M2 macrophages into an M1 phenotype. These M1 macrophages are induced by IL-34

to upregulate scavenger receptor CD36 to ingest OxLDL, leading to foam cell formation. IL-34 induces the expansion of CD14brightCD16+ monocytes subpopulations,

increasing Th17 polarisation and angiogenesis, together with increased VEGF production. Created with BioRender.com.

high density lipoproteins (HDL) transporting cholesterol to
the liver for excretion (32). Increased HDL is associated with
ameliorated human coronary atherosclerosis (32). Interestingly,
increasedHDL has been associated with an IL-32 promoter single
nucleotide polymorphism (SNP) in rheumatoid arthritis patients
(33), implying an anti-inflammatory role of IL-32 in CVD (33).
This is supported by the findings that cholesterol is eliminated
via ABCA-1, which can be induced by intracellular IL-32γ in
hepatocytes (34). In the same study, both IL-32γ and ABCA-1
mRNA have been found in human carotid artery plaques (34).
However, this relationship remains to be clarified, since this study
did not show that IL-32γ and ABCA-1 can be colocalised in vivo
in macrophages.

Taken together, the role of IL-32 during the development of
atherosclerosis remains to be elucidated. However, we speculate
that IL-32 acts differently in different stages of atherogenesis,
perhaps depending on the different stimuli occurring within
the plaque at various stages of development, based on the data
described above. The precise underlying mechanism of IL-32
in atherogenesis, particularly in the presence of M1 vs M2
macrophages warrants further study.

IL-34

IL-34 is a haematopoietic cytokine that shares similar functions
with CSF-1/M-CSF, to maintain the viability of the myeloid
cells lineage (35). Overexpression of IL-34 is associated with

autoimmune diseases, such as RA (36), inflammatory bowel
disease (IBD) (37) and Sjogren’s syndrome (38). Upregulated IL-
34 is also detected in human atherosclerotic plaques, particularly
correlating with unstable plaques (19), suggesting that the pro-
inflammatory activities of IL-34 in the advanced stages of plaque
development may contribute to acute coronary syndrome and
premature death (39). In addition, a substantial circulating IL-
34 level has been detected in CAD patients and is associated with
the severity of comorbid CAD in heart failure (40, 41) (Figure 2).

Roles in Atherogenesis
IL-34 upregulates the scavenger receptor CD36 on murine bone-
marrow derived macrophages to promote foam cell formation
via the internalisation of OxLDL in vitro (42). In addition, IL-
34 increases the mRNA expression of IL-1β , IL-6 and TNF
in murine bone-marrow derived macrophages in vitro in the
presence of OxLDL (42). These observations are consistent with
the finding that IL-34 can elevate the production of chemokines
and cytokines, including IL-6, in human PBMC (43). Moreover,
IL-34 is upregulated in the presence of TNF and IL-1β (36, 38),
suggesting IL-34 may act as a pro-atherogenic factor in both a
paracrine and autocrine fashion to enhance foam cell formation
in the plaque microenvironment.

Angiogenesis, which is known to promote plaque growth,
is promoted in the presence of IL-34 in vitro (44, 45). Human
PBMCs produce a significant level of VEGF in response
to recombinant human (rh) IL-34 (45). Additionally, it
is increasingly recognised that monocytes are classified
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into different subsets based on phenotypic characteristics
and have distinct roles during the inflammatory response of
atherosclerosis (46), including in relation to angiogenesis. Briefly,
these subsets are: classical CD14brightCD16−, intermediate
CD14brightCD16+ and non-classical CD14dimCD16+ monocytes,
of which the intermediate CD14brightCD16+ monocytes are pro-
atherogenic (46). It has also been shown that CD14brightCD16+

monocytes express vascular growth factor receptor-2 (VEGFR2)
and respond to VEGF, suggesting a pro-angiogenic property
(47). Since CD14brightCD16+ monocytes are abundantly
detected in CAD patients (48), it is reasonable to speculate
that IL-34 may promote angiogenesis via CD14brightCD16+

monocytes stimulation.
In addition, IL-34 induces Th17 polarisation, as evidenced

by an increased Th17 cell population following the coculture
of IL-34 treated macrophages and naïve CD4+ T cells (49).
In the presence of IL-34, Th17 polarisation is promoted via
upregulating IL-6 from human fibroblast-like synoviocytes (50).
IL-23 has been shown to be produced by CD14brightCD16+

monocytes to induce Th17 polarisation in vitro (51). These
observations correlate with the high expression of IL-34 in
Sjogren’s syndrome, in conjunction with an increased expression
of IL-17 and IL-23 in vivo, suggesting that IL-34 may be linked to
the IL-23/Th17 axis (38). Thus, it is reasonable to speculate that
IL-34 induces Th17 polarisation during atherogenesis.

In contrast, IL-34 also exhibits an anti-inflammatory capacity.
Human monocytes have been shown to differentiate into M2
macrophages in response to IL-34 in vitro (44, 52). Interestingly,
M2 macrophages that are differentiated in the presence of
IL-34, skew towards a pro-inflammatory M1 phenotype in
response to IFNγ (52). This finding suggests that IL-34 plays
an immunoregulatory role in the early stage of atherogenesis
by inducing M2 macrophages to dampen the inflammatory
responses and tissue remodelling. This is supported by the
report from Boulakirba et al., showing IL-34 promotes M2
polarisation (53).

However, subsequently these M2 macrophages skew
towards an M1 phenotype in response to increased IFNγ ,
which results from overwhelming inflammation in the
plaque microenvironment.

Taken together, the role of IL-34 in atherogenesis remains
ambiguous due to the complexity of the immune system.
However, it is reasonable to suggest that the differential role of IL-
34 in different stages of atherogenesis may depend on the specific
anti-inflammatory or pro-inflammatory microenvironment in
the early or advanced stages of atherogenesis.

IL-37

IL-37 is an anti-inflammatory cytokine member of the IL-1
family (54, 55). IL-37 is constitutively expressed by immune
cells including macrophages and DCs, as well as epithelial cells,
and is upregulated in response to pro-inflammatory stimuli such
as cytokines and TLR ligation (55). IL-37 functions through a
heterodimeric receptor, which is composed of IL-18Rα and IL-
1R8 (55). Elevated IL-37 expression is detected in autoimmune

diseases such as RA (56) and IBD (57). Elevated IL-37 expression
has also been observed in a murine model of atherosclerosis (58)
as well as in plasma from acute coronary syndrome patients (59).

IL-37 in Atherogenesis
IL-37 Host Immunity Mediated Atherogenesis
The activity of IL-37 was initially suggested to be pro-atherogenic
because high levels of IL-37 are detected in foam cells within
atherosclerotic plaques (59). However, interestingly, treatment
with recombinant IL-37 has been shown to ameliorate the
size of atherosclerotic plaque in diabetic Apoe−/− mice, and is
associated with increased anti-inflammatory IL-10, but not pro-
inflammatory TNF or IL-18 (60). This striking finding is further
supported by another study, showing that plaque size is reduced
in IL-37 tg Apoe−/− mice (61) and bone marrow transplanted
Ldlr−/− mice with increased endogenous IL-37 expression (62).
Moreover, IL-37 reduces atherogenesis via decreasing circulating
pro-inflammatory and increasing anti-inflammatory cytokines in
IL-37 tgApoe−/− mice (63) and IL-37 treatedApoe−/− mice (58).

Human coronary artery endothelial cells that have been
transfected with IL-37 demonstrate downregulation of ICAM-
1 in the presence of TLR2 ligand stimuli in vitro (64). IL-1β ,
which is known to upregulate adhesion molecules, is reduced
in the presence of IL-37 in OxLDL-treated macrophages in
vitro (62). These findings, in conjunction with evidence of
reduced production of TNF and IL-1β , as well as reduced
leukocytes infiltration, in the inflamed colon of IL-37 tgmice with
colitis (65), suggest that IL-37 reduces leukocytes recruitment
via downregulation of TNF and IL-1β during atherogenesis.
Furthermore, IL-37-expressing mouse bone marrow-derived
macrophages not only reduce uptake of OxLDL, but also
decrease macrophage transmigration towards MCP-1 (62). These
findings suggest that IL-37 plays an anti-atherogenic role via a
negative regulatory mechanism to dampen the inflammation in
atherosclerosis, perhaps by reducing foam cell formation, pro-
inflammatory cytokines, as well as macrophage infiltration. The
anti-inflammatory function of IL-37 during atherosclerosis is
supported by data from others showing an inverse correlation
between IL-37 and M1 macrophage polarisation in human
calcified aortic valves (66), as well as in an animal atherosclerotic
model (67), perhaps via suppressing M1 polarisation. However,
while IL-37 reduces systemic inflammation, it does not influence
atherosclerosis development in hyperlipidemic LDLr-deficient
mice, which might be due to LDLr depletion (68). These
mechanisms require future elucidation due to the potential for
a major discrepancy between the human and murine context.

IL-37 functions in a dual fashion in DCs to maintain
an anti-inflammatory environment by implementing its anti-
inflammatory actions intracellularly or by being released as
a regulatory cytokine (69). Isolated bone marrow-derived
DCs from IL-37 tg mice generate a tolerogenic phenotype
in the presence of LPS by downregulating MHC-II and the
costimulatory molecule CD40 (70). The findings which show
the downregulation of MHC-II and CD86 in DCs from rhIL-
37 treated Apoe−/− mice (58) and IL-37 tg Apoe−/− mice
(63) suggest that atherogenesis is attenuated via reduced
antigen presentation (Figure 3).
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FIGURE 3 | Schematic representation of the roles of IL-37 in atherogenesis. IL-37 is constitutively expressed by monocytes in the unstimulated state. In pathological

conditions, IL-37 is upregulated by foam cells to suppress pro-inflammatory cytokines secretion and reduce OxLDL uptake and adhesion molecules expression on

endothelial cells. IL-37 downregulates MHC-II and CD86 on dendritic cells to induce Treg activation, promoting collagen deposition via TGFβ production. Additionally,

IL-37 reduces IL-1β, IL-6 and IL-12 production, to suppress Th1 and Th17 polarisation accompanied by reduced IFNγ and IL-17 secretion. It remains unclear

whether the Th2 population is induced by dendritic cells or IL-37 producing T lymphocytes. IL-37 triggers VSMC to reduce MMP-2 and−13 production, attenuating

collagen degradation and inhibiting apoptosis. IL-37 functions closely with VSMC-derived OPG, inhibiting vascular calcification. Created with BioRender.com.

A reduction of Th1 cells is detected in rhIL-37 treated
Apoe−/− mice (58) and IL-37 tg Apoe−/− mice (61), which is
consistent with the observed reduction in Th1 cells in IL-37
treated splenic lymphocytes, which is accompanied by decreased
IFNγ secretion (58, 61). However, there was no significant
reduction of Th17 cells observed in the latter study (61),
which suggests that IL-37 promotes Th polarisation during
atherogenesis. T regulatory (Treg) cells play an athero-protective
role in atherosclerosis via IL-10 inhibition of disease progression
and TGFβ stimulation of collagen deposition to maintain plaque
stability (10). The development of Treg cells is promoted in the
presence of isolated bone marrow-derived DCs from IL-37 tg
mice in vitro (70). This finding is supported by others, showing
that Treg cells are increased in rhIL-37 treated Apoe−/− mice in
vivo and increased production of TGFβ and IL-10 is induced

during the coculture of CD4+ T cells with OxLDL plus IL-
37-treated bone marrow-derived DCs (58). Interestingly, Th2
cells, but not Treg cells, together with IL-4, are abundant in
IL-37 tg Apoe−/− mice (61), suggesting that different signalling
mechanisms may be exerted by exogenous and/or endogenous
IL-37. CD4+ T cells have been shown to be the major source
of IL-37 in human atherosclerotic plaques (58, 61). Since
Th1 cells shift towards Th2 cells in the presence of IL-37 in
vitro (61), the hypothesis emerges that Th2 polarisation may
be spontaneously induced by CD4+ T cell-derived IL-37 in
the plaque microenvironment. These data are in line with
others who have shown that IL-37 contributes to the anti-
inflammatory response in the development of atherosclerosis,
perhaps via enhancing Treg cells (71). Interestingly, elevated
circulating and local IL-37 in atherosclerotic rabbits is suppressed
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by atorvastatin (72), suggesting that atorvastatin dampens
systemic and local inflammation, resulting in a reduction
of IL-37.

IL-37 and Plaque Stability
It is recognised that plaque vulnerability is also promoted
by VSMC apoptosis (73). IL-37 inhibits VSMC apoptosis, as
evidenced by the reduced apoptotic VSMC area in atherosclerotic
plaques of IL-37 tg Apoe−/− mice (61). Such findings are
supported by attenuated atherosclerotic plaque in rhIL-37
treated Apoe−/− mice, showing a larger VSMC- and collagen-
positive staining area than a mock treated group (58). An
increased amount of collagen content, with reduced mRNA
expression of MMP-2/-13 within atherosclerotic plaque has been
observed in IL-37 tg Apoe−/− mice, compared to Apoe−/− mice
only (61), suggesting that IL-37 plays an important role in
maintaining plaque stability. VSMC proliferation is reparative
and advantageous for atherogenesis in both early and advanced
stages, to maintain plaque stability (74). As IL-37 is expressed
by VSMC to maintain plaque stability in human atherosclerotic
plaques (58, 61), it is reasonable to speculate that IL-37 also
induces VSMC proliferation via an autocrine mechanism.

Vascular calcification is also one of the key features of
atherosclerosis and serves as an independent predictor for
acute coronary events (75). Spotty microcalcifications that are
dispersed within the necrotic core and fibrous cap drive plaque
instability (75). It is well recognised that calcification is driven
by VSMC plasticity via trans-differentiation into osteoblast,
chondrocyte and macrophage-like phenotypes in response to
pro-inflammatory cytokines in atherosclerotic plaques, which
release pro-calcific factors accompanied by a loss of calcification
inhibitors (76). Reduced calcification in the aortic root has
been observed in rhIL-37 treated Apoe−/− mice (60), which
is consistent with findings in humans, where IL-37 is highly
detected in calcified human aortic valve interstitial cells in
vivo, as well as reduced calcification in calcified human aortic
valve interstitial cells in the presence of rIL-37 in vitro (77).
Osteoprotegrin (OPG), which is a calcification inhibitor, is
highly detected in VSMCs of atherosclerotic plaques in rhIL-37
treated Apoe−/− mice (60). However, in the presence of anti-
OPG antibody, increased calcified areas are observed, implicating
a close relationship between IL-37 and OPG for calcification
regulation (60). These finding are indirectly supported by the
observation that IL-37 is abundantly detected in human calcified
coronary arteries, particularly in VSMCs, compared to normal
arteries, suggesting that the purpose of upregulation of IL-37
is to alleviate arterial calcification (78). In addition, a positive
correlation between plasma IL-37 and OPG has been detected in
patients with severe coronary artery calcification, suggesting that
IL-37 is a potential biomarker of arterial calcification (79).

Since an effective treatment to mitigate vascular calcification
remains undetermined (75, 76), investigation of the
underlying mechanisms of IL-37 in VSMC may provide
future therapeutic opportunities.

In addition elevated plasma IL-37 has been detected in acute
ischemic stroke patients, and IL-37 is an independent association
with poorer prognoses (80), which is consistent with others,

showing elevated circulating IL-37 is associated with a poor
outcome in ST-segment elevation acute myocardial infarction in
acute coronary syndrome patients (81, 82), although this finding
remains controversial (83).

Taken together, IL-37 plays an anti-atherogenic role in
atherogenesis. Although the exact mechanism is not well
understood, data support speculation that elevation of IL-37
expression is a compensatory mechanism to suppress plaque
inflammation, however, inflammatory cells may fail to respond
effectively to IL-37 due to exhaustion or the complex nature
of the plaque microenvironment, resulting in a continuous
release of ineffective IL-37. In relation to COVID-19, IL-37 has
been suggested to be a potential treatment based on its anti-
inflammatory profile to inhibit IL-1β, IL-6 and TNF, which are
the main players of the cytokine storm (84).

CLINICAL IMPLICATIONS OF IL-32, IL-34
AND IL37 IN ATHEROSCLEROSIS

The role of IL-32 during the development of atherosclerosis
has been illustrated, showing that IL-32 promotes angiogenesis
on endothelial cells, suggesting IL-32 boosts the development
of atherosclerosis (85). This is in line with others, showing
that the protective role of IL-32 during the development of
atherosclerosis is related to a single promoter single-nucleotide
polymorphism (SNP) in IL-32, contributing to modified
lipid profiles, especially in rheumatoid arthritis patients (33).
Furthermore, the benefit of the SNP in IL-32 is related to reduce
pro-inflammatory cytokines and increases HDLc concentration
(15), further supporting the role of IL-32 during atherogenesis.
This may also in line with the findings following influenza viral
challenge, showing that increased IL-32 is beneficial against the
viral infection (86).

The role of IL-34 during the development of atherosclerosis
has been demonstrated, since there is an association between
the level of IL-34 and severity of coronary artery disease in
patients with heart failure, and IL-34 is an independent risk
factor for CAD among heart failure patients, regardless of the
systolic function (41). In addition, there is evidence from others,
showing that IL-34 is significantly induced in influenza infected
patients in an autocrine and paracrine fashion (87), supporting
a role for IL-34 in the course of SARS-COV-2 viral infection.
Furthermore, the possible mechanisms utilised by IL-34 in
atherogenesis have been demonstrated via a linkage among IL-34,
obesity, chronic inflammation, and insulin resistance, suggesting
that IL-34 enhances atheroma via insulin resistance in obese
patients (88).

Finally, increased circulating IL-37 levels have been correlated
with high coronary calcium score levels, suggesting that IL-37
may contribute to the activation of inflammation. Furthermore,
IL-37 has been proposed as a predictor of severe coronary
artery disease (79). In addition, the importance of elevated
serum and urine IL-37 has been demonstrated in post-ischemic
stroke patients (89). However, it is unclear whether the increased
IL-37 results from or results in such clinical manifestations.
The possible mechanism of the anti-inflammatory role of IL-37
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may be by antagonising inflammatory responses while retaining
type I interferon, subsequently maintaining the functionalities
of vital organs (90). The role of IL-37 in COVID-19 is
supported by the findings in influenza viral infection, showing
that IL-37 ameliorates influenza pneumonia in vivo (91).
However, we have reviewed the mechanisms of action of IL-
32, -34 and -37 in atherosclerosis, allowing us to speculate
on the possible pathogenesis of SARS-CoV-2 involvement
in CVD.

SPECULATIVE ROLE OF IL-32, IL-34 AND
IL-37 IN ATHEROSCLEROSIS AND
COVID-19

COVID-19 is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) (92), which is similar to severe
acute respiratory syndrome coronavirus (SARS-CoV) (92) and
Middle East respiratory syndrome coronavirus (MERS-CoV)
(93). SARS-CoV-2 infects host cells by binding to the cell surface
receptor angiotensin converting enzyme 2 (ACE2) receptor via
the viral spike (S) protein (92). The original COVID-19 was first
reported inWuhan (94), then other regions of China (95, 95) and
the became a pandemic (96).

Based on the current information available, during the course
of COVID-19, particularly in moderate to severe COVID-19
patients, there is likely to be a contribution of COVID-19
in atherosclerosis, perhaps due to the cytokine storm causing
vascular dysfunction via the ACE2 pathway, which likely further
enhances local inflammation (97) and subsequently results in
further activation of endothelial cells in large vessels (98), in
addition to the microvascular system. Such insults from the
cytokine storm also contribute to hyper-coagulation (99), but this
will not be discussed further in the current review.

The role of IL-32 may be induced in local macro-vessels and
micro-vessels, which may be due to SARS-COV-2 viral challenge
via the ACE2-spike protein pathway. IL-32 may contribute to
quench both systemic and local inflammation, which may be
effective inmoderate COVID-19 patients, but likely fails in severe
patients. Subsequently, major organ failure would be induced
due to infarction, e.g., heart, lung and kidney (100), particularly
in the more susceptible COVID-19 patients. This speculation is
supported by others, who have shown that steroids may help
to reduce clinical symptoms and shorten the course of COVID-
19 (101).

In contrast, IL-34 may contribute to atherosclerosis, but its
role in COVID-19 remains unclear. We believe that IL-34 would
be secreted by infiltrating inflammatory leucocytes, particularly
macrophages and lymphocytes following the cytokine storm in
COVID-19 patients (102). More obvious vascular manifestations
would then result.

It has been reported that circulating IL-37 is elevated in
COVID-19 infected patients. Interestingly, the patients with
higher IL-37 had a shorter hospitalisation period than the lower
group, suggesting that IL-37 may provide protection during the
course of COVID-19 infection (90).

However, there is not yet any solid evidence to clearly state the
direct involvement among IL-32, 34 and 37 in the atherogenesis
in COVID-19 patients.

In addition there is a strong association between
cardiovascular disease (CVD) and the susceptibility to, and
the outcomes of, COVID-19 (103), including coronary artery
disease (CAD), particularly among those patients with co-
existing diabetes mellitus (104). Patients with pre-existing CVD,
including hypertension, coronary artery disease (CAD) and
diabetes mellitus are more susceptible to SARS-CoV-2 infection
and are more likely to develop exaggerated cardiovascular
sequelae (105), hence there is a higher prevalence of severe
disease in the elderly population (106). A major contributing
factor to the higher susceptibility among patients with pre-
existing CVD is the higher levels of cell surface expression of
ACE2, which makes the patients more vulnerable to SARS-CoV-
2 viral infection (106, 107). Additionally, a small proportion
of young adults without pre-existing CVD also develop
cardiovascular complications following SARS-CoV-2 infection
(108), which may be related to their exaggerated host immunity
(cytokine storm) (109). One of the key contributing factors for
the higher mortality and morbidity in COVID-19 patients is
excess local production of pro-inflammatory cytokines, such
as IL-1β, IL-6, IL-8 and TNF in key organs (heart, lungs and
liver) (110–112), which is termed a cytokine storm (113).
Consequently, substantial damage occurs in the heart, lungs,
liver and kidneys, which contributes to the disease severity in
COVID-19 patients (110). Although the underlying mechanism
of SARS-CoV-2 viral attack is not well understood, these findings
above suggest that a relationship exists between COVID-19 and
CVD outcomes that is both bidirectional and multifactorial
(106, 114). Thus, it is reasonable to speculate that many COVID-
19-related heart problems are due to a cytokine storm, either in
the heart or major arteries (115).

Interestingly, there is some limited data emerging in the
literature supporting the view that COVID-19 may increase the
rate of acute plaque rupture (116, 117). Respiratory infections
such as influenza are known to be capable of triggering acute
coronary syndrome (118), so it is likely that COVID-19 will act
in a similar manner. A recent case report of an ACS event during
COVID-19 infection supports this likelihood (116). Similarly,
the likely mechanisms underpinning increased plaque instability
during COVID-19 infection have been explored (107, 117).

CONCLUSION

We conclude that IL-32 provides athero-protection via
differential regulation of polarisation of macrophages in
different stages of atherogenesis, perhaps depending on the
different stimuli occurring within the plaque at various stages of
development. Subsequently IL-32 down-regulates the activities
of CCL-2 and MMPs, and finally ABCA1 pathway

IL-34 is pro-atherogenic and its role is stage dependent.
In the early stage, recruited monocytes are induced by IL-
34 to differentiate into M2 macrophages to dampen the
inflammation in the presence of stimuli, e.g., OxLDL, in
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an autocrine and paracrine fashion. In the advanced stage,
particularly in some SNP populations, macrophages are skewed
towards the M1 phenotype, especially in the presence of a large
amount of IFNγ. IL-34 induced M1 macrophages upregulate
scavenger receptor CD36 to ingest OxLDL, leading to foam
cell formation. Subsequently, IL-34 induces the expansion of
CD14brightCD16+ monocytes subpopulations, further boosting
the pro-inflammatory responses, including increasing Th17.

IL-37 is also athero-protective. Constitutively expressed IL-37
can be upregulated by foam cells to dampen proinflammatory
cytokines secretion, reduce OxLDL uptake and adhesion
molecules expression on endothelial cells, as well as downregulate
MHC-II and CD86 on dendritic cells to induce Treg activation
via TGFβ production. In addition, IL-37 reduces IL-1β , IL-6
and IL-12 to suppress Th1/Th17 polarisation, and subsequently
down-regulates IFNγ and IL-17 secretion. IL-37 also reduces
MMPs on VSMC and attenuates collagen degradation and
inhibits apoptosis. Finally, IL-37 inhibits vascular calcification via
VSMC-derived OPG.

Finally IL-32 and IL-37 may be protective while IL-34 may
contribute to the development of atherosclerosis. In addition,
we speculate that the role of IL-32 and 37 may also be

beneficial, but IL-34 may be harmful, during the course of
COVID-19. Such information highlights gaps in our current

understanding for future studies to investigate. Our figures
offer a very dynamic summary of these cytokines during the
development of atherosclerosis. We believe that our review
provides more in-depth information for both basic scientists
and clinicians.
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