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Many kinds of cellular compartments comprise decision-making mechanisms that
control growth and shrinkage of the compartment in response to external signals. Key
examples include synaptic plasticity mechanisms that regulate the size and strength of
synapses in the nervous system. However, when synaptic compartments and postsynap-
tic densities are small, such mechanisms operate in a regime where chemical reactions
are discrete and stochastic due to low copy numbers of the species involved. In this
regime, fluctuations are large relative to mean concentrations, and inherent discreteness
leads to breakdown of mass-action kinetics. Understanding how synapses and other
small compartments achieve reliable switching in the low–copy number limit thus
remains a key open problem. We propose a self-regulating signaling motif that exploits
the breakdown of mass-action kinetics to generate a reliable size-regulated switch.
We demonstrate this in simple two- and three-species chemical reaction systems and
uncover a key role for inhibitory loops among species in generating switching behavior.
This provides an elementary motif that could allow size-dependent regulation in more
complex reaction pathways and may explain discrepant experimental results on well-
studied biochemical pathways.
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A switch is a fundamental operation required of biochemical signaling. In essence, a switch
is a system that reliably transitions between at least two distinct states while exhibiting a
memory, or hysteresis, that preserves the state in the absence of input. Such systems are
critical for cellular decision-making processes, including apoptosis (1–3), cell fate decisions
(4–6), and synaptic plasticity (7). Much of what we know about switching behavior in
these contexts relies on mass-action kinetics that model concentrations of biochemical
species as continuous, deterministic quantities (1, 2, 5, 8–11).

However, many cellular compartments, including synaptic spines and postsynaptic
densities, contain concentrations of key signaling enzymes that correspond to hundreds
or even tens of individual molecules (12, 13) Mass-action kinetics break down in this
regime, and even relatively simple biochemical reaction motifs exhibit qualitative changes
in behavior as system size transitions between macroscopic and microscopic limits. A
famous example includes the so-called toggle switch motif (14), a pair of mutually
inhibitory enzymes that, under certain parameter regimes (15, 16), exhibits a single
stable equilibrium in the mass-action limit and two distinct stochastic modes in the
microscopic limit. This system thus acts as a switch in the small system size/low–
molecule count regime that will give way to a single stable equilibrium if system size
increases.

In this paper, we put forward the hypothesis that biological systems may exploit the
qualitative transition between discrete, stochastic dynamics at the microscopic scale and
deterministic, continuous dynamics at the macroscopic limit. Many cellular compart-
ments grow in size, and the growth process itself depends on the outcome of a cellular
decision: a switching event. This raises the possibility that system size can act as a feedback
signal to self-regulate switching behavior.

Using analysis and simulations of simple reaction motifs, we substantiate this hy-
pothesis with a working model. We show that generic, mutually inhibitory reactions
between two or more species can give rise to switch-like behavior in the microscopic
limit that gives way to a stable behavior as the system size increases. Furthermore, these
systems can regulate the size evolution of small systems using their switch-like behavior,
maintain the stability of large systems, and integrate external input that encourages
growth.

Our results and hypothesis provide a signaling motif that may be exploited by cellular
systems to make growth decisions in a regime where the inherent randomness and
discreteness of biochemical signals govern the dynamics.
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A Size-Dependent Stochastic Switch Motif

We begin by exploring simple reaction networks that exhibit size-
dependent bistability; the system behaves as a switch when the
total number of molecules is low (in the tens) and has a single
stable equilibrium as system size increases. Our goal is not to
model any specific reaction pathway in detail but to characterize
minimal motifs of two or three reacting species that can support
switching behavior. Such motifs may constitute building blocks or
subnetworks that confer switching functionality to more complex
chemical reaction networks, including those governing synaptic
plasticity and growth of synaptic densities (12).

A well-studied motif (14–17), shown in Fig. 1A, is a pair of mu-
tually inhibitory species, x1 and x2, described by the differential
equations

d
( xj
n

)
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=
k

k +
(
xi
n

) −
k
( xj
n

)
k + 1

, i , j = 1, 2, i �= j [1]

corresponding to the reaction scheme [where x= (x1, x2)]:
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A key feature of this system is that the prediction of the classical
kinetics Eq. 1 deviates from the stochastic modeling framework
(18) when the population size of x1 or x2 is small. As we will see,
this feature is closely linked to the different behavior of the system
with small and large system sizes.

The deterministic model Eq. 1 describes the time evolution of
the species x1 and x2 normalized by a parameter n, where (n,n)
is the steady state (unique stable equilibrium) of the system, as
depicted in Fig. 1B. This model is a good description of how chem-
ical reaction systems behave in the macroscopic (mass-action)
limit where reactant abundance can be reasonably modeled as con-
tinuous concentrations. However, in small cellular compartments
with reactants present in low copy numbers, reactions are discrete
and stochastic, so the evolution of (x1, x2) corresponds to a birth–
death process, as defined in Eq. 2. Thus, to faithfully model
system behavior in microscopic limits throughout this paper,
we adopt this stochastic modeling framework and use Gillespie’s
algorithm (19) for numerical simulations (SI Appendix). We call
the parameter n defined above the size of the system because it

represents the expected number of molecules at equilibrium in
the classical (mean-field) limit (Eq. 1).

In the stochastic, discrete case, Eq. 2 describes the time evo-
lution of x1 and x2 as integer numbers of molecules. Strikingly,
when n is small and the total count of x is in the tens, the
stochastic model dwells into two distinct modes close to the axes,
as illustrated in Fig. 1C (15, 16). When n is large, x1 and x2 fluc-
tuate around n, and thus, Eq. 1 predicts the average behavior of
the birth–death process. This illustrates the qualitative difference
in behavior of the same reaction motif in the microscopic and
macroscopic limits.

In Eq. 2, species x2 inhibits the production of x1 by reducing
its birth rate λx1 and vice versa via standard Michaelis–Menten
dynamics (ref. 20, appendix A). Both species catalyze their own
degradation with death rates μx1 ,μx2 . This system is derived
from the well-known toggle switch, originally used as a model
of mutually repressing gene transcripts in genetically engineered
Escherichia coli (14, 17). These original studies assumed that there
is steep cooperativity in the birth rates of each species, resulting in
two stable equilibria in the deterministic framework that describe
a bistable, macroscopic, mean-field behavior (also known as mass-
action kinetics). Such systems have switching behavior for any
system size. As opposed to the toggle switch in refs. 14 and 17,
the noncooperative birth–death process Eq. 2 with a single stable
equilibrium of its deterministic description Eq. 1 allows for both
stable and switch-like behavior depending on the copy numbers
of the species.

To better understand this dual behavior, we will show that
the stationary probability distribution (SI Appendix) P s(x) of
system Eq. 2 has one or more modes depending on the parameters
n and k. When n is large, P s(x) has one mode with its peak
being around x̄= (n,n). This means that x̄ is an attractor point
around which the process fluctuates. When n is small, P s(x) is
bimodal where the two mode peaks lie along the two axes. This
distribution describes a switching behavior of the system Eq. 2
between the two modes. The appearance of bimodality happens
due to transient extinction of one of the species that becomes a
prevailing phenomenon in the low-number regime.

Our key insight is that a biological system may exploit this
size-dependent behavior to regulate its own size. Specifically, if the
switch itself triggers growth, then we have a feedback mechanism
between the behavior (switching or nonswitching) and the system
size. This constitutes a form of self-regulation that permits growth
at small sizes and then, annihilates switching behavior above

mutual inhibitory
motif

mass-action/ODE regime discrete, stochastic regime size-dependent regulation model:
the Size Regulated Switch (SRS)
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Fig. 1. (A) Schematic of a system with mutually inhibitory interactions between two species. (B) Phase plane and nullclines of the deterministic ordinary
differential equation (ODE) model of the mutual inhibiting system (Eq. 1), showing a unique (stable) fixed point at the intersection of the nullclines, ẋ1 = 0; ẋ2 = 0.
(C) Illustration of the stochastic, discrete version of the mutually inhibiting system. Probability densities are plotted as a function of species count, #x1, #x2, with
red shades indicating high probability and blue indicating low probability. For small system size n, there are two distinct modes, which we label ON and OFF; for
large system size, there is only one mode close to the fixed point of the deterministic ODE model. In this specific case, we depict the switch threshold such that
low copy numbers of x2 correspond to an ON state and vice versa. (D) Diagram of our proposed mechanism—the SRS—that exploits the switch behavior of the
stochastic, discrete system to autoregulate growth.
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a size threshold. We call such a system a size-regulated switch
(SRS). Fig. 1D illustrates this idea; input can push the switch
into the ON state, triggering growth. Once the system reaches
a critical size, it will lose bimodality/switching behavior and dwell
away from the ON state (as depicted in Fig. 1C ). We next
demonstrate this idea with a simple model of synaptic potenti-
ation and growth that allows the strength of an external signal
to determine whether a small, immature synapse will grow and
stabilize.

Synapse Size as a Regulator of Synaptic
Plasticity

Synaptic transmission depends on neurotransmitter binding to
receptors in small biochemical structures called postsynaptic den-
sities. In many types of excitatory synapses, synapse strength is
partly regulated by active processes that remodel the synapse
and increase its size and strength in response to external signals,
including strong excitatory input that elevates calcium concentra-
tion in the vicinity of the postsynaptic density (PSD). Calcium
influx, in turn, triggers biochemical pathways that have long been
hypothesized to exhibit switch-like or threshold behavior (21, 22).

In excitatory synapses, the postsynaptic site is often compart-
mentalized in a spine, a small membrane protrusion with a volume
typically less than 1 μm3. The development and maintenance of
synaptic contacts and of spine volume are governed by a host of
biochemical signaling events (12, 23), the most extensively stud-
ied being activity-dependent plasticity mechanisms—long-term
potentiation and depression—that are coupled to growth and
retraction of the synapse, respectively (22, 24–27). Widespread
experimental evidence points to several consistent features of
excitatory plasticity and associated structural changes in dendritic
spines.

• Potentiation mechanisms implement a threshold on excitatory
signals and accompanying calcium influx, resulting in a switch-
like decision to potentiate (22, 24–27).

• Potentiation (increase in receptor count) is strongly coupled to
growth of the dendritic spine, resulting in a direct correlation
between synapse strength and compartment size (28, 29).

• Small synapses are more susceptible to being potentiated
or depressed (and eliminated); as synapses increase in size
and strength, their capacity to potentiate further is reduced
(30–34).

• The size of dendritic spines is positively correlated to the age
and life expectancy of the spine (35).

• Much of the signaling machinery involved in this process
involves enzymes that are present in concentrations at the
nanomolar to micromolar range. Thus, while large spines can
contain hundreds or thousands of enzyme molecules, nascent
spines (sometimes called filopodia) likely restrict these num-
bers to the tens or less (12, 13).

These observations mean it is likely that synapse growth
involves a transition between microscopic and macroscopic
biochemical signaling. Furthermore, they imply a biochemical
switching mechanism that operates reliably in the low-
number/high-noise regime and that becomes less sensitive as the
number of signaling molecules in the postsynaptic compartment
increases. We should stress that dendritic spines are not the
smallest identifiable compartment in a (post-)synapse. The PSD is
an elaborate protein complex that houses postsynaptic receptors,
scaffolding proteins, kinases, and other molecular machinery

that regulates synaptic transmission (12, 23, 36, 37). Moreover,
PSD size correlates with synaptic strength by virtue of its role
in anchoring neurotransmitter receptors (38). Thus, one may
consider the PSD as the relevant compartment in which size-
dependent regulation occurs.

Several decades of experimental work have identified candidate
switching networks (9, 12, 39), most notably those involving
calcium–calmodulin/calcium-calmodulin-dependent protein ki-
nase II (CaMKII) (7, 21, 22, 39). To date, the interpretation of
these studies remains controversial, with some evidence suggesting
an absence of bistability (26, 40) and other work indicating that
switching is context dependent (27) or that switching deactivates
rapidly following dendritic spine growth (25).

We next outline a mechanism for synaptic spine evolution that
captures the key phenomena enumerated above. We will neglect
the effect of diffusion within the compartment in which the switch
operates; we are thus assuming the system is well mixed. This may
be reasonable if the reaction rates are slow relative to diffusion
times. Studies have shown that macromolecules can diffuse across
dendritic spines on a millisecond timescale (41–43), which is
negligible relative to the time window during which synaptic
plasticity occurs (25, 44). However, many signaling molecules do
not diffuse freely—particularly those in the PSD (36). In this case
and as we alluded to above, it may be more reasonable to interpret
local confined clusters of interacting proteins and possibly, the
PSD itself as the relevant compartment.

We introduce an input signal to the two-species system Eq. 2
and couple the states where switching occurs to growth and
shrinkage processes. This provides a generic model of a biochemi-
cal switch in a cellular compartment, such as a dendritic spine. As
we will show, this results in a form of self-regulation that allows the
system to operate reliably as a switch in the low-number regime
and that gives way to a stable behavior as size increases.

An SRS Motif for Synapse Growth. As we showed previously, the
two-species system Eq. 2 has three possible modes: one around
the mean-field equilibrium in the large size limit and two along
the axes in small systems. We now introduce feedback between
the modes and system size via a simple growth model, resulting
in an SRS model of synapse evolution as depicted in Fig. 2A.
Without loss of generality, we assume that the mode along axis
x1 is the ON mode, triggering growth, and the mode on axis
x2 is the OFF mode, triggering shrinkage. When the process is
in the growth or shrinkage mode, the size parameter n increases
or decreases in proportion to the time that the process spends in
the corresponding mode. The third mode around the macroscopic
equilibrium is assigned to be the rest mode; hence, when the
process is in that mode, n does not change. For the purpose of
this control mechanism on n, the mode boundaries are defined
simply based on the concentration of the species; we say that the
process x(t) = (x1(t), x2(t))

T is in growth mode at time t if the
concentration of x1 is larger than 75% [i.e., when x1(t)/(x1(t) +
x2(t))> 0.75]. By symmetry, the process is in shrinkage mode if
x2(t)/(x1(t) + x2(t))> 0.75. Otherwise, the process is in rest
mode. Note that the results can easily be extended for other
choices of mode boundaries.

As described above, the modes of the SRS on the axes represent
mechanisms of shrinkage and growth: that is, the size n of an SRS
process dynamically increases or decreases depending on which
mode the process is in. When n decreases to zero, we eliminate
the synapse. As n increases, the modes along the axes become
smaller and shift farther along the axes. In addition, the system
gradually forms a third mode around x̄= (n,n) corresponding to
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Fig. 2. A model of dendritic spine growth. (A) A schematic of the SRS model of dendritic spine growth. (B) Input sensitivity of SRS for different system sizes. As
the system size increases, the SRS is less likely to switch from shrinkage mode to growth mode. This applies for a wide range of input parameters (e.g., changing
tdur and fixed tper, minp; blue boxes). More details are in SI Appendix. (C) Survival probability vs. average system size for varying parameters. Points filled with
red denote the baseline parametrization. The parameters, in particular the input parameters (Middle), can tune both the average system size and the survival
probability. The system parameters (Bottom) are less suitable for tuning survival probability than the input parameters.

the rest mode. Eventually, when n grows large enough, the system
becomes unimodal, with the rest mode being its only mode.*
Thus, it becomes a stable system.

We next introduce two parameters to couple the shrinkage and
growth modes to system size. First, we define a mode activation
time threshold tact. A mode will be active and thus, have an effect
on the system size when the process is in that mode for longer than
tact time. Second, we use a plasticity constant δn that determines
how much the system size changes when the process is in shrinkage
or growth mode. When a mode is active, change in the system
size is applied after every reaction in the following way; if the
present time is t and τ time passed since the last reaction, then
the new system size is given by n(t) = n(t − τ)± δnτ , where
the plus/minus sign is determined by the type of mode.

We extend the SRS by adding an excitatory input that encour-
ages the evolution of the process toward the growth mode. For
simplicity, this input is chosen to be periodic; however, other input
types are expected to lead to similar results if their role is to bias the
evolution of the process toward the growth mode. To describe the
periodic input, we use three parameters: 1) the period between
inputs tper, 2) the duration of the input tdur < tper, and 3) the
magnitude of the input minp. With this, the effect of the input is
as follows; when t ∈ (mtper,mtper + tdur) for m = 1, 2, . . ., then
the birth rate λx1 of x1 is modified to λx1 +minp.

In addition to the parameters of the mode effects and the input,
the SRS is described by the initial conditions x(0) = (x0, x0)
and n(0) and a constant k parameter that is inversely related to
the inhibition strength between x1 and x2 (Eq. 2). Note that
the shapes of the modes depend on k, which then affects the
magnitude of fluctuation in the modes, the average dwell time,
and the probability of switching within a time interval. More
details are in SI Appendix.

To probe the behavior of the SRS, we analyzed the survival
probability and the size evolution under a range of conditions.
Results are shown in Fig. 2 B and C. We fixed a baseline

*The modes along the axes are magnitudes smaller and are far along the axes so that
the process is guaranteed to stay in the rest mode for the time of interest. Note that in
principle, if time is infinite, the process can visit the practically inaccessible growth and
shrinkage modes, and since (0, 0) is an absorbing state, the process eventually dies.

parametrization (x0,n0, k , tact, δn , tper, tdur,minp) of the SRS
and defined a set of values (values of interest) around the baseline
value for each parameter (Ix0 , In0

, Ik , Itact , Iδn , Itper , Itdur , Iminp).
To show how the parameters affect the behavior of the system,
we changed the parameters one by one within their values of
interest while holding the other parameters at their baseline
values. For each of these parameterizations, we simulated the
SRS and estimated the survival probability psurv of the system
as the proportion of survived processes among all realizations
and the average system size n̄ averaged over time and realizations
(Fig. 2C ). In each plot, a point shows the number of the survived
processes of 100 realizations against the average system size
(averaged over time and realizations).

The input parameters minp, tper, tdur affect psurv and n̄ as ex-
pected; when the input is stronger, both psurv and n̄ increase. Note
that the input can be strengthened in three ways; it can have larger
magnitude, shorter period, or longer duration. From the near-
linear relationship between these input features and psurv and n̄ ,
we conclude that the input can finely tune both psurv and n̄ .

With increasing the plasticity parameter δn , the system size n
becomes more volatile, and thus, reaching n = 0 becomes more
probable. This results in a smaller psurv. However, a more volatile
system induces a larger average size n̄ due to the bias toward
growth from the applied input. In parallel, longer activation time
threshold tact slightly decreases n̄ as it weakens plasticity.

The results on parameter k show that stronger inhibition
(smaller k) induces larger n̄ and psurv. This agrees with the ob-
servations on the system Eq. 2 that for smaller k parameters, the
modes are farther along the axes for the following reason. When
modes are farther along the axes, they are also farther apart from
each other; thus, switching occurs less, and the input-induced bias
toward growth applies more. Note that for small-enough k, the
process is likely to stay in one mode within the timescale that we
simulated.

Finally, the results on the initial conditions x0 and n0 reveal that
a system with larger system size has higher survival probability and
is more likely to grow bigger. The initial state x0 has a weaker but
opposite effect. This is because when x0 is farther from the axes,
the processes need more time to get to the modes along the axes,
and thus, it takes longer for the system size n to evolve.
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To sum up, the SRS provides a stochastic switching mechanism
that controls system size in a manner analogous to the potentiation
of dendritic spines. The sensitivity and behavior of this control
mechanism can be easily tuned through parameters, such as the
inhibition strength (k) between the species and plasticity parame-
ters (tact, δn ). Furthermore, external input determines system size
(synapse size) and survival probability in qualitative agreement
with experimental observations; smaller spines get potentiated
more easily than larger spines (30–34), and the expected lifetime
of smaller spines (smaller n0) is shorter (35).

Generalization of the System

Our results so far indicate that a regulated switch can be readily
implemented in a very simple and ubiquitous motif consisting of
two mutually inhibitory chemical species. Such a mechanism may
underlie synaptic structural plasticity and other cellular decision-
making processes that involve growth and signaling with small
numbers of molecules. However, the specific system we have
focused on is unlikely to exist in its precise form in any biological
system for the simple reason that most biochemical signaling
networks involve a multitude of species and exhibit diversity in
their architectures and kinetic parameters. We, therefore, asked to
what extent a size-regulated switching mechanism can generalize
to multiple species and to the addition of excitatory coupling
between the species.

Two-Species Switching Systems. To begin with, we generalize
the two-species system by introducing excitation between species
besides inhibition and by allowing asymmetry in interaction
strengths. We thus consider three types of birth–death processes
x(t) = (x1(t), x2(t)): 1) type SII , where the two components
x1 and x2 mutually inhibit each other; 2) type SIE , where
x1 excites x2 and x2 inhibits x1; and 3) type SEE , where
the two components mutually excite each other. For all three
cases, at any time instant, x1 and x2 increase or decrease by
one in the next infinitesimal time interval with a probability
proportional to the corresponding birth rates [λx1(x),λx2(x)]
and death rates [μx1(x),μx2(x)]. This evolution is described as
follows:

x1
λx1

(x)−−−−→ x1 + 1 x1
μx1

(x)−−−−→ x1 − 1

x2
λx2

(x)−−−−→ x2 + 1 x2
μx2

(x)−−−−→ x2 − 1, [3]

where the reaction rates

λxi (x) =
kji x̄i

k21 +
xj
x̄j

, μxi (x) =
kjix1
kji + 1

if xj inhibits xi

λxi (x) =

x̄i
xj
x̄j

kji +
xj
x̄j

, μxi (x) =
xi

kji + 1
, if xj excites xi [4]

are based on standard models in biochemistry (ref. 20, appendix
A). Note that in our simulations, we perturbed the rates corre-
sponding to the excitatory connections to allow the systems SEE

to revive from the origin (SI Appendix).
The birth and death rates are described by the parameters

k12, k21 and x̄1, x̄2. The parameters kij , i , j = 1, 2, i �= j de-
termine the strength of inhibition or excitation of xi by xj .
Analogous to the previous section, the parameters x̄= (x̄1, x̄2)
define a unique state where the birth and death rates are in balance

[i.e., λxi (x̄) = μxi (x̄) for i = 1, 2], providing an equilibrium of
the mean-field description of Eq. 3 given by

dxj
dt

= λxj (x)− μxj (x), j = 1, 2. [5]

For simplicity, throughout this paper, we will assume that x̄1 =
x̄2 = n , and we will call n the system size as in previous sections.
Note that the analysis can be extended to the general case.
We focus on systems where x̄= (n,n) defines a unique, stable
equilibrium of Eq. 5. In general, if x̄1 and x̄2 are larger than
some threshold, which depends on the parameters k12 and k21,
the birth–death process fluctuates around x̄ (ref. 45, chapter 10).
However, when either x̄1 or x̄2 is small, other attractor points
may arise. Examples of SII , SIE , and SEE processes and their
stationary distributions for these two regimes are illustrated in
Fig. 3. The columns correspond to the three types SII , SIE , and
SEE , and the rows correspond to systems with small (Fig. 3,
Upper) and large (Fig. 3, Lower) system size n.

Modality of the stationary distribution is a key feature for
describing the behavior of stochastic systems. A unimodal bio-
chemical system acts like a noisy stable system, and thus, it is
suitable for static functionality. A multimodal biochemical system,
on the other hand, acts like a switch operator, and thus, it is
suitable for dynamic functionality.

To understand the functionality of SII ,SIE , and SEE sys-
tems, we detected the parameter regimes for unimodality and
multimodality by empirically calculating the probability mass
corresponding to the largest mode of the stationary probability
distributions. We call this probability the largest mode weight
(LMW). When the LMW is close to one, the system is unimodal,
and when it is significantly smaller than one, the system is mul-
timodal. For calculating the LMW, we applied our mode search
algorithm (SI Appendix) that identifies the modes and the corre-
sponding probability masses of empirical stationary probability
distributions.

In Fig. 4, we show the LMW of symmetric (k12 = k21) (Fig. 4,
Upper) and asymmetric (k12 �= k21) (Fig. 4, Lower) SII ,SIE ,
and SEE systems for a range of parameters k12, k21, and n
(SI Appendix has more details on the parameters). As we can
see, the SII system acquired both unimodality (yellow regions)
and multimodality (dark regions) for a significant range of pa-
rameter triples (k12, k22,n). Before discussing this interesting
phenomenon, we summarize the results for the other two types

Fig. 3. Examples of empirical stationary distributions P̂s of type SII, SIE , and
SEE systems (from left to right, respectively) with k12 = k21 = 0.1 and small
n = 2 (Upper) and large system sizes n = 100 (Lower). Robust multimodality
appears only for SII systems with small system size n. Segments of the
corresponding processes are depicted above the distributions.
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Fig. 4. Size-dependent modality (transition from dark to yellow) typifies fully
inhibitory systems (SII) where it is robust to asymmetry and to the strength
of inhibition. This can be seen from the LMW of the empirical stationary
distributions corresponding to symmetric (k12 = k21; Upper) and asymmetric
(k12 �= k21; Lower) systems SII, SIE , and SEE (from left to right). Graphs above
the heat maps illustrate the connectivities (blue: inhibition; red: excitation;
thickness of the lines: connectivity strength).

of systems shown in Fig. 4, Center and Right; SIE systems are
unimodal for all parameters considered, whereas SEE systems
showed multimodality besides unimodality for a narrow range
of parameters. This fragile multimodality of SEE systems can be
described as follows. The stationary distribution of SEE systems
has a single sharp mode at (0, 0) for small n, representing a
complete death of the species, a more spread out single mode near
x̄ for large n, and a mixture of these latter two modes for a few
intermediate values of n. This type of multimodality is out of the
interest of this paper for two reasons. 1) A mode corresponding to
the death of the species is not suitable for dynamic functionality
(e.g., it has no relevance in a feedback mechanism such as the
SRS). 2) This multimodality is not robust in the parameters and
thus, less relevant biologically.†

In contrast to type SIE and SEE systems, when SII is multi-
modal, its modes appear at nontrivial states away from the origin.
In the symmetric case, when k = k12 = k21, the system is multi-
modal for small and unimodal for large system sizes. The transition
between these two happens gradually and for different system
sizes depending on k (stronger inhibition—smaller k—widens the
parameter regime of multimodality). In the asymmetric case, the
system starts as a unimodal system (except for nearly symmetric
cases), transits to multimodality for some intermediate system
sizes, and transits back to unimodality for large system sizes.

Analysis of Network Properties That Facilitate Size-Dependent
Switching. The previous results suggest that SII systems have the
unique feature of developing multimodality in the small system
size regime that is robust for all parameters (k12, k21,n). To what
extent does this hold more generally? We sought a means to quan-
tify the key property of mutually inhibitory species that underlies
this capacity for switching by analyzing the linearized fluctuations
of the system. Such a method could open up the possibility to
explore size-dependent multimodality of larger reaction networks,
a possibility we will explore in three-species systems.

In general, there is no known analytic solution for stationary
distributions of state-dependent nonlinear birth–death processes

†The sharpness of (0, 0) and the size of the intermediate n depend on the perturbation on
the excitatory connection discussed in SI Appendix.

(15). The most accurate approximations are gained by simulating
the birth–death processes and calculating the empirical distribu-
tions. However, these simulations are computationally expensive
and thus, do not scale well with the number of parameters
(values for k and n) or with the number of species in the system.
Furthermore, simulations alone restrict the amount of insight that
can be gleaned from results. To address this, we used an analytical
approximation, the linear noise approximation (LNA) (45), that
approximates the distribution up to second order. More precisely,
in the LNA method, a system is approximated by a Fokker–Plank
equation, whose stationary distribution is a multivariate Gaussian
distribution with mean x̄ and covariance matrix Σ (SI Appendix).
In the case of multimodal distributions, this Gaussian distribution
does not provide a reasonable approximation; however, as we
will show, some fundamental properties of the systems, such as
the direction of the fluctuations, are captured by this approxi-
mation. Moreover, the Gaussian distribution approximation can
give insights to the modality of the original systems through the
introduction of a measure.

We can quantify the fluctuations of birth–death processes by
calculating the covariance matrix Σ from the LNA. Graphically,
for a two-species system, the covariance matrix is represented
in the state plane by an ellipse centered at the mean of the
distribution. Fig. 5 shows the shape of the ellipses of representative
symmetric systems for SII , SIE , and SEE . In the SEE -type sys-
tems, species tend to increase or decrease simultaneously, resulting
in covariances with positive correlation. The ellipses representing
the covariances of SIE systems are close to a circle. On the other
hand, SII -type systems have negative correlation, representing a
competition between the species. When the SII systems have bi-
modal distributions (Fig. 5) (values of LMW that are significantly
smaller than one), the linearization exhibits fluctuations that
largely exceed the positive orthant. Since the number of molecules
cannot be negative, this excess tends to concentrate on the axis
of the positive orthant, predicting the bimodal behavior in the
original system. As the system transitions to unimodal distribution
(LMW tending to one), the excess outside the positive orthant
of Gaussian approximation decreases. With these observations in
mind, we investigate to what extent a modality can be predicted
merely from the linearized system.

To gain insight of the modality prior to simulating data, we
introduce a measure using the Gaussian distribution resulted from
the LNA. This measure is the probability mass of the Gaussian
distribution in the positive orthant, denoted by Pin. Fig. 5 shows
that the value of Pin is directly related to that of the LMW and

0 0.5 1
0

0.5

1

/

Fig. 5. Pin provides a reliable insight of the system’s modality for systems
with two species. The scatterplot illustrates the relationship between the
LMW of the empirical distribution and the probability mass of the Gaussian
distribution from the LNA inside the positive orthant (Pin) for SII-, SIE -, and
SEE -type systems and parameters k ∈ [0.03, 0.1] and n ∈ [2, 20]. Note that the
“weak” bimodality of the SEE type due to the (0, 0) mode (highlighted as
pink crosses) is not captured by the LNA method. The ellipses attached to
the extremal points in the scatterplot represent the corresponding Gaussian
approximation of the fluctuations.
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therefore, to the behavior of the original system. Note that the
outlier pink crosses correspond to the bimodal SEE systems where
one of the modes peaks at (0, 0), and thus, for the reason discussed
earlier, they are out of the interest of this paper.

In the next section, we investigate the modality of systems with
three species. It will be shown that for three-dimensional systems,
Pin can give a hint for modality and for the tendency of modality
as n changes. In essence, the direction of the covariance is captured
well by the LNA, which makes it a good indicator whether
size-dependent multimodality appears in a system. However, the
magnitude of the fluctuation of multimodal systems is largely
underestimated by the LNA, which sets limitations in detecting
the parameter regimes for the different modalities (SI Appendix).

Three-Species Switching Systems. As emphasized previously, the
biological relevance of our results depends on a switch being
implementable in a more general reaction network. We have
seen that among the two-species systems that we considered, the
mutual inhibitory system SII robustly acquires multimodality
for small system sizes. Furthermore, as the system size grows,
the systems transit from multimodality to unimodality. We also
showed that multimodality can often be predicted by negative
correlation in the fluctuations of the species at the equilibrium,
obtained from the LNA. We sought to test the generality of these
findings in simulation. However, with the growth of the number
of species, simulations quickly become intractable because both
the volume of the parameter space and the support of the probabil-
ity distribution of the systems grow exponentially. We, therefore,
examined the extent to which our findings generalize from two-
to three-dimensional systems.

Consider the time evolution of three chemical species x(t) =
(x1(t), x2(t), x3(t)), where each species may influence the evo-
lution of the others by inhibiting or exciting their growth. Denote
the connectivity matrix between the species describing these rela-
tions by C ∈ {1, 0,−1}3×3, where

Cij =

⎧⎨
⎩

1, if xi excites xj
−1, if xi inhibits xj
0 species xi does not influence species xj

[6]

for i , j ∈ {1, 2, 3}, i �= j . Then, the system evolves according to
the following reaction scheme:

xi
λxi

(x)
−−−−→ xi + 1 xi

μxi
(x)

−−−−→ xi − 1, [7]

where the birth λxi and death μxi rates of a species xi , i ∈
{1, 2, 3} are given by

λxi (x) =
∑

j :Cji=−1

kji x̄i
k21 + xj/x̄j

+
∑

j :Cji=1

ωx̄ixj/x̄j
kji + xj/x̄j

μxi (x) =

⎛
⎝ ∑

j :Cji=−1

kji
k21 + 1

+
∑

j :Cji=−1

ω

k21 + 1

⎞
⎠ xi

for some ω, kij , and x̄i constants. Parallel to previous sections,
we assume that x̄1 = x̄2 = x̄3 = n , and we call n the system size.
Note that x̄= (x̄1, x̄2, x̄3) defines a unique equilibrium state of
the macroscopic equations (Eq. 5) that guarantees the stationary
distribution to be unimodal for large n (ref. 45, chapter 10).‡

‡The excitatory connections are perturbed for the simulations similar to the two-species
systems (SI Appendix), which guarantees the uniqueness of equilibrium x̄.

Fig. 6. Size-dependent modality is present for all three-species inhibitory
systems (connectivities above the heat maps). As the system size (n) increases,
multimodality (dark) transitions to unimodality (yellow), where modality is
measured by the LMW of the empirical distribution. This phenomenon is
robust to changes in k (weakness of inhibition). SI Appendix has further details.

Notice that for ω = 1, inhibition and excitation are given by
the same hyperbolic functions as for the two-species systems in Eq.
4. By using the parameter ω, we extend our analysis with weighing
the contribution of excitatory connections.

We first considered seven network connectivities for three-
species inhibitory systems (graphs in Fig. 6). These consist of all
the connectivities where each species is inhibited by at least one
other species, which is a necessary and sufficient condition for the
species to stay alive and not die out indefinitely.

For both asymmetric and symmetric inhibitory systems
(where symmetry means that kij = klm = k for all i , j , l ,m ∈
{1, 2, 3}, i �= j , l �=m), the relationship between the system’s
modality, the strength of inhibition, and the system size
generalizes from systems with two species to three species. More
precisely, multimodality is more prevailing when the system size
is smaller and when the inhibition between the species is stronger.
This is summarized for symmetric systems in Fig. 6 by using the
LMW as a measure of unimodality. More precisely, in Fig. 6,
we can see that as the system size (n) grows, the system transits
from multimodal behavior to unimodal behavior for all the seven
connectivities, and this tendency is robust to the parameter k.
Furthermore, in agreement with the two-species systems, smaller
k (stronger inhibition) widens the multimodal regime of n. Note
that the parameter k shapes the stationary distribution of the
system, and thus, k can be used to achieve desired separation of
different modes and switching times between them.

The dependence of system modality on the parameters k and n
can qualitatively be predicted by using the LNA. More precisely,
the trend of the LMW and the probability mass inside the positive
quadrant Pin calculated from the LNA agree in the parameters k
and n. For quantitative prediction on the parameter regimes of
multimodality, LNA is suitable if an SII motif determines the
modality (Fig. 6, Top, graph 3, and Bottom, graphs 1 and 2);
otherwise, the correspondence is qualitative.

We finally extended our analysis to allow mixed excitatory
and inhibitory connections. The 94 network connectivities that
we obtain this way are illustrated. We used the parameter ω
to scale the relative strengths of excitatory connections in the
system. For tractability, we fixed n = 2 and kij = k = 0.01, i , j ∈
{1, 2, 3}, i �= j that provided a parametrization where all seven
inhibitory systems acquired multimodality.

In Fig. 7, Middle, the LMWs of the 94 systems are presented as
follows. Each heat map corresponds to one connectivity scheme
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Fig. 7. Multimodality occurs in systems with mixed connectivity only when inhibitory subsystems are dominant. (Top) Graph illustration of the seven
architectures with three species. (Middle) Heat maps of the LMW of the different connectivities (columns of the heat maps) within each architecture and strengths
for excitatory connections (ω, rows of the heat maps). (Bottom) Heat maps of the probability inside the positive orthant (Pin) with the same arrangement for rows
and columns within the heat maps as for LMW in Middle. The connectivities (columns of the heat map) are not depicted for all architectures but only for the
sixth architecture (in the black box at the bottom). Instead, we display the number of excitatory connections (nE) within the connectivities by red numbers that
apply both for LMW and the Pin heat maps. We use red curly brackets to display nE at once for connectivities with the same number of excitatory connections.
The connectivities of all seven architectures are depicted. A black line at LMW = 0.95 serves as a marker to distinguish multimodality (when LMW is significantly
smaller than one under the line) and unimodality (when LMW is close to one above the line). Multimodality is detected in systems with 1) fully inhibitory
connections (nE = 0), 2) mixed connectivity where excitatory connections are weak (ω is small), or 3) two species that have fully inhibitory connections and only
have feed-forward excitatory connections to the third species (columns marked by black stars). These general tendencies can be seen from both LMW (Middle)
gained from the empirical stationary distribution and from Pin (Bottom) gained analytically from the LNA.

(in the graphs in Fig. 7, Top); within one heat map, each row
corresponds to one value of ω decreasing from top to bottom,
and within one heat map, each column corresponds to a specific
network connectivity, where these connectivities are arranged
such that fully inhibitory systems gradually change into fully
excitatory systems (from left to right). The number of excitatory
connections of the connectivities is shown in the x axis of the heat
maps in Fig. 7, Bottom, see SI Appendix for more details on the
connectivity.

The results show that if there is at least one inhibitory connec-
tion and the contribution of the excitatory connections is weak
(ω is small), then the systems acquire multimodality. However,
as the excitatory connections become stronger (ω is increasing),
multimodal systems almost universally become unimodal. There is
one category (columns marked by dark stars) where multimodal-
ity persists regardless of the strength of excitatory connections,
namely when there is an inhibitory loop between two species
and there is only feed-forward excitatory connection to the third
species. However, the latter case boils down to the two-species SII
system in terms of modality because the third species does not
affect the evolution of the two other species; thus, the multimodal-
ity arising from the inhibitory subsystem is also unaffected by the
third species. In general, we can conclude that three-dimensional
systems have diverse modality if excitatory connections are feed
forward from or weakly feedback to an inhibitory subsystem.

In Fig. 7, Bottom, we present results on the probability inside
the positive orthant Pin calculated from the LNA. The arrange-
ments of the results are the same as for the LMW in Fig. 7, Middle.
These results show that Pin is a good indicator of whether a system
is multimodal. However, as mentioned previously for symmetric
inhibitory systems, LNA is not always suitable for determining the
parameter regimes (of ω, k, or n) of different modalities. This can

be seen from the similar tendencies but different exact coloring of
the heat maps of LMW and LNA.

In summary, the results in Figs. 6 and 7 show that the depen-
dence of switching and stable behavior on system size is not a
feature of a highly specific biochemical network and can exist in
the face of significant parameter variation. The switching behav-
ior relies on the multiple modes appearing close to the natural
boundaries of biochemical networks where at least one species
becomes extinct. The dependence of this phenomenon on the size
is thus intuitive since extinction events are more common in small
systems. Our analysis suggests that inhibitory subnetworks are
necessary components for the occurrence of switching behavior.
This is because they direct the fluctuations of the biochemical
networks toward the natural boundaries, allowing the formation
of modes in the small system size regime. This trait can be
analytically predicted by using LNA.

Discussion

In this paper, we described and analyzed a biochemical mo-
tif that produces a stochastic switching behavior regulated by
the system’s size. Our results rely on the fact that in biological
compartments, where reactions occur randomly, the size of the
system can have a crucial role in shaping the behavior. Reaction
networks that exhibit a stable macroscopic equilibrium can ac-
quire robust switching behavior in the small number limit. This
limit typifies small synapses, where the impact of fluctuations
and molecular noise has long been recognized as a potential
problem for reliable signaling (37, 46, 47). Our proposal turns
this problem on its head, suggesting that if breakdown of mass-
action kinetics drives bimodal behavior, as happens readily in a
number of simple motifs that we have analyzed, then the resulting
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system can function as a reliable switch. Moreover, when such
a switch is coupled to growth of the compartment, a form of
autoregulation emerges that is consistent with the observation that
many types of synapse become progressively resistant to further
growth as they increase in size (30–34).

There are numerous biochemical pathways that control poten-
tiation and growth of excitatory synapses. Perhaps the most well-
known is the CaMKII/protein phosphatase-1 pathway (25, 39,
48, 49), which mediates potentiation following strong synaptic
activation and calcium influx. Classic models of this system pro-
posed that CaMKII activates in a switch-like manner, exhibiting
macroscopic bimodality in a number of detailed models of the
reaction mechanism (11). Notably, the biological relevance of the
parameter regime for which the CaMKII concentration shows
switch-like behavior has been a subject of debate (26, 40, 50).
Studies (7, 11, 13) have shown that the CaMKII phosphorylation
can be bistable and thus, fulfills the basic requirements of a switch.
However, other studies (40, 51) present contradictory results.
Our results provide a potential solution to this controversy by
showing that the existence of bistability itself can be sensitive
to the absolute quantity of reactants present, which could be in
the tens in an intact synapse. This effect is not systematically
accounted for or controlled in this extensive prior work.

We would like to stress that there are other known mechanisms
that regulate synapse growth and retraction (23, 38) and other
membranous compartment regulation that can involve explicit
mechanical sensing (52, 53). Thus, the size-dependent switch we
describe here is unlikely to represent a unique mechanism in any
system, including synapses. Biology often exploits parallel and
degenerate mechanisms to ensure robustness and flexibility, so we
would expect size-dependent switches to be layered within and
interact with distinct mechanisms for controlling compartment
growth. The distinguishing feature of the size-dependent switch
is that it can operate reliably within very confined subcompart-
ments and possibly, within protein complexes such as postsynaptic
densities, where switching mechanisms and size regulation are
important (36).

Our results also provide more general understanding of
how switches can be identified—or indeed, constructed
synthetically—in biochemical signaling networks. We found
that inhibitory motifs play a key role in determining size-
dependent switching behavior. In two- and three-species systems,
we showed that exact stochastic simulations qualitatively agree
with a general scheme where the fluctuation of inhibitory systems,
corresponding to negative covariance in an LNA, increases the
likelihood of extinction events in small systems. Such events can
lengthen the dwell time of the system in a nearby region of the
state space, resulting in a mode where there is no (macroscopic)
equilibrium point.

In light of these results, we hypothesize that this phenomenon
holds generally for inhibitory systems, regardless of dimensional-
ity. Moreover, we conjecture that the results extend to systems with
different analytic forms for the inhibitory reaction rates beyond
Hill functions, provided the geometry of the nullclines in the

mean-field description is approximately preserved. Establishing
this result without recourse to expensive simulation will require
new analytical tools in nonlinear stochastic systems that so far
remain out of reach despite decades of research (15, 16, 18, 45,
54–56). Nonetheless, the consistency of the results documented
here suggests that size-dependent regulation mechanisms can
readily exist in general biochemical systems.

Furthermore, the robustness of the switching transition to
parameter variation means that global features, such as survival
probability, switching time, and steady-state synapse size, can be
tuned. We also note that the number of potential modes in the
small system size regime is higher for higher-dimensional systems,
allowing for more complex switches with multiple modes. Given
that this form of switching cannot be predicted by standard con-
tinuous differential equation models that use mass-action kinetics,
there is the possibility that such mechanisms have been overlooked
in known biochemical pathways.

More conceptually, our model is an example of how qualitative
features of microscopic, discrete behavior can propagate to macro-
scopic scales in a controlled way. Many important biochemical re-
actions occur among species that are present in low copy numbers
due to subcellular compartmentalization, small total cell volumes,
or—in the case of DNA—the constraint of operating with a single
copy of a molecule within a cell. As a result, cell- or tissue-wide
events may be determined by microscopic, discrete, stochastic
reactions. Our work provides a simple and likely common class
of regulation motifs that can bridge these scales.

Materials and Methods

For simulating the processes of the systems described in this paper, we used Gille-
spie’s stochastic simulation algorithm (19), which is described in more details in
SI Appendix. The empirical stationary distributions of the systems were calculated
from averaging independent realizations of these processes.

The LNA (45), which serves as our analytical tool to estimate the covariance of
the stationary distributions without relying on simulations, is described in more
detail in SI Appendix.

The mode search algorithm applied in this paper in order to determine the
LMW as a measure of unimodality is described in SI Appendix. This algorithm
uses empirical measures of the states in order to assign the states to different
modes. The weight of each mode is then calculated as the sum of all probabilities
belonging to states within the mode.

Data Availability. Data and code have been deposited in Figshare
(https://doi.org/10.6084/m9.figshare.19322696) and GitHub (https://github.
com/monikajozsa/synapticswitch).
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