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Abstract. Automatic cell segmentation has various applications in cytometry, and while the nucleus is often very distinct and
easy to identify, the cytoplasm provides a lot more challenge. A new combination of image analysis algorithms for segmentation
of cells imaged by fluorescence microscopy is presented. The algorithm consists of an image pre-processing step, a general seg-
mentation and merging step followed by a segmentation quality measurement. The quality measurement consists of a statistical
analysis of a number of shape descriptive features. Objects that have features that differ to that of correctly segmented single cells
can be further processed by a splitting step. By statistical analysis we therefore get a feedback system for separation of clustered
cells. After the segmentation is completed, the quality of the final segmentation is evaluated. By training the algorithm on a rep-
resentative set of training images, the algorithm is made fully automatic for subsequent images created under similar conditions.
Automatic cytoplasm segmentation was tested on CHO-cells stained with calcein. The fully automatic method showed between
89% and 97% correct segmentation as compared to manual segmentation.

1. Introduction

Flow cytometry is a reliable, reproducible and quan-
titative method for studies of the phenotypes that com-
pose a heterogeneous cell population. Although largely
applied to the analysis of single cells, flow cytometry
has some drawbacks. The mapping of functional ac-
tivities is limited to cells in suspension, and therefore
removed from the tissue structure. There is an uncer-
tainty due to artifacts such as cellular debris and clus-
ters of cells in the cell suspension, and it is difficult to
go back and have a closer look at signals which deviate
from the normal after the analysis is completed, unless
the full experiment is run again.

Another important source of information about cells
is provided by fluorescence staining in combination
with fluorescence microscopy, also called image cy-
tometry. Visual evaluation of fluorescence microscopy
images is tedious and the inter- and intra-observer vari-
ability is often high. Digital image analysis of images
produced by a digital camera attached to a fluorescence
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microscope allows for fast automated high through-
put detection and analysis of spatial, spectral and tem-
poral distribution of emitted fluorescence from single
cells. The basis for all automatic image analysis needed
in high content cell screening applications is cell seg-
mentation. Before any cell specific spatial, spectral and
temporal features can be extracted, the individual cells
have to be separated, i.e., segmented, from the image
background and from each other. While the nuclei of
the cells are often quite distinct and easy to detect,
e.g., based on its regular shape [12,16], the cytoplasm
provides a lot more challenge, especially if no nuclear
counter stain is available. Regularly shaped cytoplasms
can be segmented using methods similar to those for
nuclear segmentation [17], but irregular shapes require
different methods.

Segmentation is one of the most intensely studied
problems in image analysis and still no robust general-
purpose methods exist. Therefore various application-
adapted methods which take advantage of the a priori
knowledge about the images, are needed. In this study
we have developed a sequence of processing steps that
lead to an automatic cytoplasm segmentation of fluo-
rescence microscopy cell images. Through a statisti-
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cal analysis of descriptive features and a feedback sys-
tem for separation of clustered objects the results of
the segmentation are improved. The general method-
ology is applicable also for other segmentation prob-
lems. The obvious next step, not within the scope of
this study, is to perform the analysis of cell features
in the spatial, temporal and spectral domains using the
segmentation result.

2. Cell segmentation strategies

When extracting features of individual cells in an
image, the first task is to find and define the individ-
ual cells, i.e., cell segmentation. The method for cyto-
plasm segmentation of fluorescence labeled cells pre-
sented in this paper consists of a number of process-
ing steps as shown in Fig. 1. Errors such as over- and
under-segmentation produced by the initial processing
steps can be corrected after the automatic quality con-
trol and feedback step. A quality control routine after
the final step provides a measure of the reliability of
the segmentation result.

2.1. Image pre-processing

Large scale intensity variations and shading effects
in the image caused by uneven illumination and other
variations over the field of view are undesirable, as they
may introduce problems for the segmentation step as
well as position dependence for features such as in-
tegrated pixel intensity. Given that the uneven back-
ground is due to uneven illumination and the intensity

Fig. 1. An overview of the steps in the presented cytoplasm segmen-
tation algorithm. Only objects that are considered not cell-like (ac-
cording to the quality measurement) are sent to the splitting step.
The different steps are explained in the text.

of the fluorescence in each cell is a linear function of
the light illuminating the cell, the usually accepted il-
lumination correction is: (Iraw− Idark)/(Iblank− Idark),
whereIdark is an image without the illumination and
Iblank is an image from a blank part of the slide with
illumination. Whether it is feasible to acquire good im-
ages of the shading situation directly in conjunction
with the imaging procedure, or not, is very much de-
pendent on the imaging environment.

Data-driven approaches are usually simpler from a
practical viewpoint, but may however introduce arti-
facts if the algorithm used cannot reliably solve the es-
timation problem. The shading correction methodol-
ogy that has been used in this paper is entirely data-
driven, and has shown to be both reliable and fast.
A robust iterative method, described in [4] and [10], is
used to find a good approximation of the background
of the image. This background approximation does not
give Iblank and Idark separately, and the illumination
correction described above must therefore be simpli-
fied either into a pure additive model where the back-
ground is subtracted or a pure multiplicative model
where the background is removed by division. Similar
results were achieved in the two cases, and we chose to
use the additive model.

The algorithm works by iteratively making better
and better estimates of the background of the image.
The background is assumed to be smooth and slowly
varying (if we have abrupt changes in the illumina-
tion, there is something wrong with the imaging de-
vice). B-spline surfaces [8] is a class of parametric sur-
faces which are easy to model and have many nice
properties [5]. Cubic B-spline functions are ensured
by definition to be continuous in the second deriv-
ative and therefore forced to be smooth. They also
have the particularly useful property of minimizing
the bending energy in 1D [18]. A cubic B-spline sur-
face should therefore be suitable as a model for the
background shading. A surface patchS of the back-
ground, is modeled by a tensor product of spline func-
tions. I.e., a surface pointS(u,v) will be written as
S(u,v) =

∑
kl Bk(u)Bl(v)xkl. WhereBk are the B-

spline blending polynomials and thexkl are the con-
trol points of the surface. The number of control points
for the B-spline surface defines how flexible it is. If
the background varies a lot, many control points are
needed, but in most cases only a few are enough. We
used 5×5 evenly spread control points, which demon-
strated to work well in all of the tested images. An ex-
ample of the shading correction can be seen in Fig. 2.

To get a first estimate of the background, the spline
surface is initially fitted to the whole image. The dis-
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Fig. 2. Original image before background correction (a), the fitted spline surface of the background (b) and the image after background subtrac-
tion (c). Note that the intensity scale (same for all images) has been set to enhance the contrast of the darker parts of the images.

Fig. 3. The intensity profile across one image with fitted background (dashed) after the first, second and fourth (final) iteration of the background
approximation algorithm. At the bottom of each graph is indicated which pixels from the original image that have been used for fitting the spline
surface to the background.

tance between the spline surface and the background is
minimized by least squares regression. This first esti-
mate will give a too bright image of the background, as
it also includes the brighter cells into the background.
This first background is subtracted from the original
image to get a first estimate of a background com-
pensated image. The standard deviation of the pixel
values in this image is calculated, and all pixels that
are brighter than a constant number (in this case 1.7)
of standard deviations are considered to belong to the
foreground and are masked away. The value of 1.7
standard deviations can be motivated as the point of
maximum change of trend in a Gaussian noise distrib-
ution. The algorithm is not too sensitive to this value,
and it can be varied between 1 and 2 with marginal
impact on the result, see [10].

The second iteration starts again with the original
image, but this time the spline surface is only fit-
ted to the pixels that have not already been masked
away as foreground pixels. Therefore this second es-
timate will be a little bit better than the first estimate
of the background. Once again this new background
is subtracted from the original image and more fore-
ground pixels are found and masked away. This iter-
ative procedure continues until the average change in
pixel value between two successively calculated back-
grounds is less than half the original quantization step
of the image. Convergence is fast and the stop criterium

is usually reached after 4–10 iterations. An intensity
profile across the image in Fig. 2 together with the ap-
proximated background after 1, 2 and 4 iterations can
be seen in Fig. 3.

Visual inspection shows that this algorithm performs
well on all tested images, and no comparison of the
result with separately acquired illumination images of
the scenes has been made. However, if the image con-
tains information of a spatial frequency similar to the
one of the background, the algorithm may not perform
well. The evaluation performed in [10] indicates that
the performance of the algorithm stays fairly robust un-
der the imaging conditions of this study.

2.2. Initial segmentation

A method inspired by the watershed algorithm
[13,20] was used for initial separation of clusters of
cells and segmentation of the image into cells and
background in one step. A 2D grey-level image can
be thought of as a topographic relief where the cells
with high intensity are peaks separated by lower inten-
sity valleys. A grey-level image of a cluster of cells
is shown in Fig. 4(a) and an intensity profile along a
line in Fig. 4(a) is shown in Fig. 4(b). The cells can
easily be separated from the flat, pre-processed back-
ground by a single intensity threshold, as can be seen in
Fig. 4(c) and (d). It is however not possible to separate
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Fig. 4. Initial object detection. A grey-scale image of a cluster of cells is shown in (a). The variation in grey-scale intensity is illustrated
by measuring the intensity along a line across (a), as shown in (b). If segmentation by a single threshold followed by labeling of connected
components is applied to (a), it is not possible to separate and find all objects at once, as shown in (c) and (d). The different shades of grey represent
separate objects in (c). Each number in (d) represents a single object found after thresholding of (a) and labeling of connected components.

Fig. 5. Steps in the initial segmentation process. The two horizontal lines represent the upper and the lower threshold. New objects are found
every time an unlabeled object reaches above the upper threshold. All pixels connected to a labeled object reaching above the lower threshold are
given the same label. All the objects in the image are labeled as the thresholds slide down to the object-background threshold.

clusters of cells from each other using only one thresh-
old since the intensity valleys between the peaks vary
in depth. There are also “false” valleys due to noise and
structures within the cells. These valleys are usually
small and do not mark the border between two adjacent
cells.

The segmentation algorithm used here is a water-
shed algorithm with double thresholds. It starts from
the highest intensities, or peaks, in the image and
places an upper threshold here. Labels are then as-
signed to all pixels that are 8-connected to a peak and
have an intensity above a lower threshold. The upper
and the lower threshold are then decreased by one, and
if an unlabeled pixel with an intensity equal to the up-
per threshold is found, it is given a new label. The same
label is thereafter given to all 8-connected pixels that
are unlabeled and have an intensity greater than the
lower threshold. The upper and the lower threshold are

decreased by one and the process is repeated. The pro-
cedure is illustrated in Fig. 5(a–d). The two parallel
lines represent the position of the upper and the lower
threshold at the current step. Labels that have been as-
signed to the cells are represented by different shades
of grey.

The upper and the lower thresholds are separated by
a constant distance at all times except when the lower
threshold reaches a pre-defined threshold for the back-
ground. The value of this background threshold should
preferably be derived from the background compensa-
tion algorithm, but this is left as future work. In this
paper it was set manually, once for each set of training
images. The distance will then decrease for each iter-
ation until also the upper threshold reaches the thresh-
old for the background. The distance between the two
thresholds decides the minimum intensity valley that
can separate two adjacent cells. This reduces over-
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Fig. 6. Result of the initial segmentation process is shown in (a). Some objects are over-segmented, i.e., split in to several smaller parts, and a
number of small noise objects are detected. The result after the merging step is shown in (b).

segmentation due to false valleys that would appear
with the standard watershed algorithm. The distance
between the upper and the lower threshold is depen-
dent on the imaging conditions and is decided based
on inspection of the training images. The fact that the
distance between the two thresholds shrinks down to
zero when the lower threshold reaches the background
threshold makes the algorithm approach the standard
watershed algorithm, resulting in a lot of small dark
noise objects close to, but not touching, the cell bound-
ary. These small noise objects are easily discarded by
the merging step (see below). The result of the ini-
tial segmentation step when applied to Fig. 4(a) can be
seen in Fig. 6(a). This initial segmentation algorithm
usually results in both over- and under-segmentation
as well as a lot of small noise objects. Note that this
version of the watershed algorithm works directly on
the grey-scale image, and does not make use of the dis-
tance transform for segmentation as described in [15].

2.3. Merging over-segmented cells

The initial segmentation algorithm often results in
over-segmentation of cells as well as detection of
small noise objects, as can be seen in Fig. 6(a). Over-
segmentation is reduced by merging small objects with
their neighboring objects. Selecting objects that should
be merged or discarded by looking at cells with small
area showed not to be the best solution, as the size of
a cell varies as it goes through the cell cycle. Mitotic
cells are usually very small but show high staining in-
tensity while inter-phase cells are larger and lower in
intensity. Therefore a better “size” measure is the inte-
grated pixel intensity over the object, as this value stays
fairly constant throughout the cell cycle. The minimum
integrated pixel intensity is decided based on inspec-
tion of the training images.

Once a small object is found, its neighborhood is
examined. If a single touching neighboring object is
found, this label is put in a merging list. If no touching
objects are found, a zero is placed in the merging list.
If several touching objects are found, the label of the
neighbor with the highest summed intensity of touch-
ing border pixels is put in the merging list. When all
small objects have been examined the merging list is
reduced to avoid exchange of labels between groups
of small objects. Objects are then merged according to
the merging list. A zero in the merging list means that
the object should be discarded as noise. The result af-
ter merging, and removal of small noise objects, can be
seen in Fig. 6(b).

2.4. Quality measure

As some of the cells are not correctly segmented af-
ter the initial segmentation and merging steps, the next
step in the algorithm is to split under-segmented ob-
jects consisting of more than one cell. It is desirable to
pick out these objects and send them to a splitting al-
gorithm, to try to find a way to separate the cells in a
correct manner. To send all the segmented cells to the
splitting algorithm is not the best solution though. As
the splitting algorithm is not 100% accurate, this may
lead to splitting already correctly segmented cells and
doing more harm than good. Also, it is of course more
time consuming to pass all objects to the splitting step,
than to only analyze objects that look odd in some way.

Erroneously segmented objects consisting of more
than one true cell should exhibit some different prop-
erties than correctly segmented cells. Unfortunately,
there exists no single feature which separates the cor-
rectly segmented cells from the incorrectly segmented
clusters. We therefore need a multivariate approach, in-
cluding many features into the classifier, to be able to
separate the two classes. To include all features one
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could think of into the statistical measure is not a good
thing, as this will most certainly lead to over training
on the training population, and lower the performance
on successive images. To get good generalization prop-
erties in the classifier, it is desirable to keep the number
of features used as low as possible.

To be able to perform the selection of features in an
automatic fashion, a way of judging the quality of the
resultant classifier is needed. One way to get a unified
measure of the discriminating property of a scalar mea-
sure is to draw a so called ROC curve (receiver oper-
ating characteristic) [18,19]. Here one does not select
any single threshold, but rather use all possible thresh-
olds. An ROC curve is a plot where for each possi-
ble threshold, the percentage of true positives is plotted
against the percentage of false positives. If the classi-
fier is efficient, the ratio of true positives to false posi-
tives should be large, and an efficient classification rule
is correspondingly characterized by a large area under
the ROC curve, this is called the accuracy (A) of the
classifier. A bad classifier has an accuracyA near 0.5,
which corresponds to random selection, whereas a per-
fect classifier hasA = 1, i.e., no false positives at all.

Having a way to tell how good a classifier is, we
can start to look for the optimal one. To decide what
is cell-like and what is not, a statistical Mahalanobis
distance in a multi-parameter feature space is calcu-
lated for each segmented object. This distance measure
tells how much each object deviates from the center of
a known population consisting of only correctly seg-
mented cells. The distance measure is based on a se-
lected set of features measured for a large number of
correctly (i.e., manually) segmented cells in a training
image. A mean value vector̄x and a covariance ma-
trix S is calculated from the features of the cells in the
training image. For every objecti to classify, a vector
of feature valuesxi is measured from the image and
the squared generalized distanced2 [6] is calculated as

d2 = (xi − x̄)′S−1(xi − x̄), i = 1, 2,. . . ,n.
(1)

The object is classified as cell-like if its statistical
distance from the mean is less than a constant dis-
tancedc. If the distance is greater thandc, the object is
considered not cell-like (and may, e.g., consist of more
than one cell). Once a good classifier has been created
for a specific image type, it can be used for classifica-
tion of objects in a large number of similar images.

To verify the quality of the classifier, we must have
both a training set and a test set of objects, along with

the known true classification for each object. We can
then pick a set of features, train the distance measure
(i.e., construct the mean vector and covariance matrix)
on the training set, and check how well it performs
on the test set by calculating the accuracyA from the
ROC plot. Unfortunately combinatorics is against us
here, and we cannot afford to test all combinations of
features as it would take far too long time. Instead we
have taken the fairly standard approach of using a step-
wise scheme of removing and inserting features into
the classifier, to hopefully find a near optimal solution.

First, all plausible features (see Appendix) are in-
cluded in the classifier. This will most certainly result
in over-training, as it gives too many degrees of free-
dom for the classifier. One features at a time is there-
fore removed temporarily, and the accuracy of the clas-
sifier is tested on the training set. The feature that con-
tributed the least to the accuracy is then removed. This
is done over and over again until there is only one fea-
ture left. To be sure not to accidentally remove the best
feature from the beginning, before removing another
feature, it is always checked if the inclusion of one of
the previously removed features will give an accuracy
strictly higher than what we had before with the same
number of features. I.e., we remove and put back fea-
tures alternating, but when we put features back we al-
ways make sure that the accuracy goes up. Therefore
the process will not go on forever, and finally we will
have only one feature left.

For each number of features included in the classi-
fier, we now know what features to use, and how well
the classifier performs. This list is then backtracked to
find an optimum with good performance, and a moder-
ate number of features included in the classifier. This
stepwise feature selection procedure is described in de-
tail in [11].

2.5. Features for segmentation quality measurement

Starting from a set of 30 features, 11 were removed
due to linear or near linear dependencies, as this would
give a singular matrix in the Mahalanobis distance. The
remaining 19 features are listed in the appendix. See
Section 3 (Results) for the individual selections of fea-
tures for each of the images tested.

When a good classifier is found, still a threshold
must be set to decide which objects have a high proba-
bility of being correctly segmented. The segmentation
quality is measured twice. First, when deciding which
of the objects to send the splitting algorithm, and sec-
ond, when deciding the over all segmentation quality.



C. Wählby et al. / Algorithms for cytoplasm segmentation 107

At the first step, a rather low threshold can be set, i.e.,
it is acceptable if some of the already correctly seg-
mented cells are sent to the splitting step. This is due to
the fact that the splitting step will only split the object
if the splitting will result in two new objects which are
more cell like than the original one, see Section 2.6.

At the second quality measure, the particular appli-
cation has to be considered when deciding how im-
portant it is that all correctly segmented cells are in-
cluded in the further analysis. Including more correctly
segmented cells will come at the cost of some incor-
rectly segmented cells being included in the analysis
too, as the two populations almost always overlap. On
the other hand, if the application requires all cells to be
correctly segmented, a high threshold must be set, and
thus, many correctly segmented cells will be excluded
together with the incorrectly segmented cells.

2.6. Splitting of under-segmented objects

As some of the cells are not correctly segmented af-
ter the initial segmentation and merging step, the next
step in the algorithm is to split under-segmented cells.
Only objects that have a low statistical quality score,
i.e., objects that have a high probability of consisting
of clusters of cells, are sent to the splitting step.

Separation of touching or overlapping objects can
be done in many different ways. One approach is to
study the shape, and in particular the concavities of
the object, to try to extract information about how and
if the object should be split. In [1] the chain code of
the contour of the object is analyzed in the search for
endpoints of potential splitting lines. Concavities are
thereafter connected pairwise by splitting lines and the
grey-level information along each line is used as a pa-
rameter in the search for the best splitting line. Another

way to split clusters of objects, described in [14], is to
analyze distance profiles from the contour of the object
to a bounding box. Using a weighted sum of different
concavity features, a set of possible splitting lines is
built up.

The algorithm described in this paper also uses the
shape of the clusters when locating potential splitting
lines. Concavities are found using the convex hull of
the binary image of the segmented objects from the
previous step in the algorithm. The convex hull can be
thought of as putting a rubber band around the object
making it convex. See Fig. 7(b), where the object to-
gether with the shaded areas make up the convex hull.
We have used a discrete approximation of the convex
hull. Using a 5× 5 neighborhood the concavities are
filled giving an approximation to the convex hull con-
sisting of polygons having at most 16 sides [2]. Sub-
tracting the original object from the convex hull gives
the convex deficiency (concavity regions) of the clus-
ter. The deepest points of every concavity are used as
endpoints for splitting lines. The deepest point in a
concavity is defined as the point which is inside the
convex hull of the object but not inside the object it-
self, and lying as far from the border of the convex hull
as possible, see Fig. 7(c). Having a threshold for this
depth gives a way to control how deep into the concav-
ity a point must lie to serve as an endpoint. Should the
object contain less than two concavities the object is
not subject for any further splitting analysis. For every
object a set of endpoints is obtained. Points from dif-
ferent concavities are then combined forming poten-
tial splitting lines. For every line the statistical quality
score for the two new objects are calculated and com-
pared with the quality score of the object before the
split. A criteria for a line to be a candidate for a split-
ting line is that the line results in more cell-like objects,
i.e., a better quality score (as described above).

Fig. 7. The different steps in finding splitting lines. Original grey-scale image (a). The segmentation result where two cells have incorrectly been
segmented as a single object. The convex deficiency of the object is shown as the shadowed areas around the borders of the object (b). This
object contained 6 concavities labeled A to F. A close up of the concavity E is shown in (c). The numbers represent chamfer (3,4) distances to
the border. Concavities C and F contain the final endpoints used for splitting the object. The splitting line has its endpoints where the concavities
have their maximum distance value, i.e., the deepest point (d).
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Using the mean quality score of the two new objects
is no guarantee of improvement, since one object might
get a very good score and the other a worse score while
the mean is still better than the original. A better ap-
proach is to use the worst quality score of the two ob-
jects. A line resulting in two objects where the worst
quality score of the two is better than that of the origi-
nal object, is a true candidate for a dividing line and is
added to a set of possible splitting lines. The line can-
didate having the best quality score is used as the final
splitting line.

2.7. Final quality measure

To assess the quality of the final result, a quality
measure of each of the segmented cells is reported
along with the segmented image. By classifying the fi-
nal segmentation results as cell-like or not cell-like us-
ing the classifier described in Section 2.4, it is possi-
ble to continue the analysis of cell specific features us-
ing only those cells that are likely to be correctly seg-
mented, i.e., if the application allows for it.

2.8. Methodology

The image segmentation algorithm as a whole needs
not only an image as input, but also a number of other
parameters such as thresholds for minimum object in-
tegrated pixel intensity and distance between upper and
lower thresholds for the initial segmentation step. If the
imaging conditions do not change much between im-
ages of the same type, it is sufficient to tune the pa-
rameters once for a training image, and then use the
same set of parameters for all the remaining images in
a fully automatic manner. Features of manually seg-
mented cells in the training image are used for calcu-
lation of the mean vector and the covariance matrix
needed for the quality measure. To create a good clas-
sifier, it is necessary to select a training image showing
a representative subset of the cell population.

If several types of cells (with different stain inten-
sity, growth, etc.) exist in the image, it may be neces-
sary to have more than just two classes, i.e., cell/not

cell, for the method to work. All objects that do not
fit into any of the different classes of cell types would
then be sent to the splitting step. The algorithm as a
whole assumes that the training image set is represen-
tative for the images to segment. If this condition is not
fulfilled, it should be apparent in the over all quality
measure, which is an indicator of the performance of
the algorithm.

3. Results

We have tested the algorithms on two sets of images.
The images show CHO-cells cultivated for 24 hours
and stained with calcein dietoxy methyl ester, an indi-
cator of living cells. The stained cells were detected by
fluorescence microscopy and a CCD-camera equipped
with a narrow green filter. A 10× objective and a 20×
objective was used for the first and second set of im-
ages, respectively. One image at each magnification
was used as a training image for parameter optimiza-
tion. These parameters were then used in the segmen-
tation of the similar test images. All objects cut by the
image border were removed from analysis to simplify
matters.

For each type of image (i.e., magnification and type
of cells and stain, etc.), a set of features were automat-
ically selected from a set of 19 linearly independent
features (described in the Appendix), using the method
described in Section 2.4. By inspection of the perfor-
mance on the corresponding test set, four features were
found to be a good tradeoff between performance and
generalization in all of the investigated cases. These
four selected features were used to calculate a quality
measure based on statistical distance. The four features
selected by the algorithm showed to be dependent on
the training image used, see Table 1, and of course the
individual weighting of each of the features into the
distance measure is dependent on the training set.

The result of the segmentation was evaluated by au-
tomatic comparison with a manual segmentation of the
same image. The center of each manually segmented
object was found, and the label at the corresponding

Table 1

Features selected for different training sets (ordered after importance)

Set 1 10× Set 2 10× Set 3 20× Set 4 20×
2nd transversal moment Integrated intensity Convex perimeter Edge intensity range

Edge intensity range Mass displacement Edge intensity range Compactness index

Integrated intensity 2nd transversal moment Max length Mean intensity

Intensity range Intensity range Mass displacement 2nd transversal moment
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Fig. 8. Histogram of the statistical distance, i.e., inverse of the quality score, of the segmented cells in the low (a) and high (b) resolution images
along with a bar plot of the final result of the segmentation algorithm (c).

position in the automatically segmented image was
put in a table. If the same label appears more than
once in the table, the corresponding objects are under-
segmented. In the same way, the center of each auto-
matically segmented object was found, and the label at
the corresponding position in the manually segmented
image was put in a table. If the same label appears
more than once in this table, the corresponding object
is over-segmented. If no label at all is found, we have
found an extra object, i.e., noise or debris. This method
of evaluating the segmentation result is fast and effi-
cient, but does not say anything about how well the
outline of the objects overlap.

Success rates for the segmentation procedure is of
course very much dependent on the specific imaging
situation, but still it gives an indication on the possi-
bilities of the method. For the low resolution images
(10× objective), 89% of a total of 909 cells were cor-
rectly segmented, as seen in Fig. 8(a and c). However,

if the application allows for rejection of some cells, re-
moving the least cell-like objects can improve the re-
sult. E.g., rejecting the 11% of the cells in the whole
population which are the least cell-like according to the
quality measure, resulted in 92% of the remaining cells
being correctly segmented. For the high resolution im-
ages (20× objective), 93% of a total of 251 cells were
correctly segmented before the splitting algorithm was
applied. The splitting resulted in over-segmentation of
many of the previously correctly segmented cells, and
was therefore not performed on the high resolution im-
age. This is a clear indication that the described split-
ting algorithm is not the most robust, especially when
dealing with the not so smooth cell borders of the high
resolution images. Intelligent smoothing of the high
resolution images, and/or further tuning of the algo-
rithm may improve this situation. This has not been
evaluated in this paper. Rejecting the 12% least cell-
like objects of the higher resolution image resulted in
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as much as 97% correctly segmented cells in the re-
maining population. See Fig. 8(b and c).

4. Discussion and comments

The methodology applied throughout the paper does
not impose any restrictions on the classifier used, other
than that it should give a single scalar output for each
of the objects analyzed. It would be interesting to try
other, more advanced classifiers than just a statistical
distance measure to see if any improvement can be
found, for example, by using statistical techniques that
take the non-normal distributions of some of the fea-
tures into account. This, together with additional fea-
tures that better describe what is cell-like, would give
a quality measurement that better separates the incor-
rectly segmented cells from the correct ones.

The described segmentation algorithm rests on the
assumption that all cells are similar, or belong to one
out of a limited number of classes of similar cells. This
may appear as a problem when the goal of the analysis
is to find variations in staining patterns, structures, in-
tensities, etc. However, if it is possible to stain for sev-
eral antigens in parallel, segmentation can be made in
the image of the stain showing the general cytoplasm,
while a different stain is used for the structure of in-
terest (but not general shape). For example, a regular
cytoplasm stain can be imaged using one fluorescent
dye and corresponding filters for the camera, and the
staining of interest can be imaged simultaneously us-
ing a different dye and filter set. The segmentation pro-
cedure is then run on the image of the cytoplasm stain,
and the segmentation result is applied to the image of
the stain of interest and used as a template for feature
extraction (see, e.g., [21]).

The cells that we try to segment are only stained
with a cytoplasmic stain, i.e., no nuclear counter-stain
is available. If a nuclear counter-stain is available, the
nuclei can be segmented first, e.g., by methods de-
scribed in [12,16], and then be used as seeds in the
segmentation of the cytoplasm. This significantly sim-
plifies the detection of individual cytoplasms. How-
ever, an additional stain means additional impact on the
cells, as well as additional costs and time. There is also
a limit to the number of stains that can be used in par-
allel, i.e., adding a separate nuclear stain reduces the
number of stains that can be used for response studies.

Performance of the splitting algorithm may be im-
proved by using splines or some other curve draw-
ing method instead of always applying straight split-

ting lines. The intensity distribution across the clus-
tered cells could be used to allow splitting of objects
not having concavities. At present, the splitting algo-
rithm results in over-segmentation of high resolution
images. This can partly be explained by the fact that the
number of cells to train the algorithm on was smaller
than for the low resolution images.

Another reason for failure of the segmentation is due
to saturation of the images, i.e., the upper limit of the
camera well depth is reached, and information on grey-
value variation is lost. This can be avoided by simply
adjusting the exposure time.

5. Conclusions

It is possible to achieve 89–97% correct segmenta-
tion accuracy for this fully automatic method for cyto-
plasm segmentation of fluorescence labeled cells. By
including statistical analysis and a feedback system,
segmentation errors can be located and in many cases
corrected. This has been shown to give a significant im-
provement to the overall performance of the segmenta-
tion algorithm.
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Appendix

The set of 19 features that were used as a ba-
sis for the stepwise feature selection procedure. Lin-
early dependent features, such as Convex deficiency=
Convex area−Area, are modeled internally by the Ma-
halanobis distance and do not contribute with any fur-
ther information. Additionally, the inclusion of linearly
dependent features results in a singular matrix, leading
to numerical instability of the Mahalanobis distance.

1. Area= The number of pixels belonging to the
object, provides a measure of the object size.

2. Perimeter = The sum of steps taken when
walking around the edge pixels of the object.
Horizontal and vertical steps are weighted by
a = 0.948 and diagonal steps are weighted by
b = 1.343 [3,7,9].
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3. Compactness index= Perimeter2/(4π∗Area).
A measure of compactness.

4. Convex area= The area of the convex hull of
the object. The convex hull is the smallest poly-
hedron that will cover the object [2].

5. Convex perimeter= The perimeter of the con-
vex hull.

6. Relative convex area= Convex area/Area.
7. Relative convex perimeter= Convex perimeter/

Perimeter.
8. Length= The longer side of smallest circum-

scribed rectangle.
9. Width = The shorter side of smallest circum-

scribed rectangle.
10. Elongatedness= Length/Width.
11. 2nd longitudinal moment= The variance of

pixel position along the main axis.
12. 2nd transversal moment= The variance of

pixel position orthogonal to the main axis.
13. Integrated intensity= The sum of the grey level

intensities of all pixels belonging to the object.
14. Mean object intensity= Average pixel value.
15. Standard deviation of the object intensity.
16. Intensity range= Maximum−minimum object

intensity.
17. Edge intensity range= Maximum− minimum

intensity along the border of the object.
18. Normalized edge intensity range= Edge inten-

sity range/Intensity range.
19. Mass displacement= Distance between the

center of mass given by the grey-level image of
the object and the center of mass given by a bi-
nary mask of the object.
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