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Abstract

In the hawkmoth Manduca sexta, pheromone stimuli of different strength and duration rise the intracellular Ca2+

concentration in olfactory receptor neurons (ORNs). While second-long pheromone stimuli activate protein kinase C (PKC),
which apparently underlies processes of short-term adaptation, minute-long pheromone stimuli elevate cyclic guanosine
monophosphate (cGMP) concentrations, which correlates with time courses of long-term adaptation. To identify ion channels
involved in the sliding adjustment of olfactory sensitivity, inside-out patch clamp recordings on cultured ORNs of M. sexta were
performed to characterize Ca2+-, PKC-, and cGMP-dependent ion channels. Stepping to positive holding potentials in high
intracellular Ca2+ elicits different Ca2+-dependent ion channels, namely small-conductance channels (2–20 ps), medium-
conductance channels (20–100 ps), and large-conductance channels (>100 ps). Ion channels of 40, 60, and 70 ps opened after
PKC activation, whereas 10- and >100-ps channels were observed less frequently. Application of 8-bromo cyclic guanosine
monophosphate opened 55- and 70-ps channels and increased the open probability of >100-ps channels, whereas even in the
presence of phorbol ester 40-ps channels were inhibited. Thus, cGMP elevations activate a different set of ion channels as
compared with PKC and suppress at least one PKC-dependent ion channel.
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Introduction

Adaptation, the adjustment of sensitivity in response to ad-

equate stimulation, enlarges the dynamic range of an olfac-

tory receptor neuron (ORN) without loss of resolution and
provides the first stage of processing sensory information. In

vertebrate ORNs, 3 different mechanisms of olfactory adap-

tation coexist: short-term adaptation, desensitization, and

long-term adaptation. These 3 olfactory adaptation mecha-

nisms vary in their time courses and pharmacological prop-

erties (Zufall and Leinders-Zufall 2000). The influx of Ca2+

through cyclic nucleotide–gated (CNG) channels and the

Ca2+-dependentmodulation of CNGchannels plays a crucial
role as a feedback signal in vertebrate olfactory adaptation

(Zufall and Leinders-Zufall 2000; Matthews and Reisert

2003; Pifferi et al. 2006). In insects, most studies on olfactory

adaptation mechanisms were accumulated in moths (Zack-

Strausfeld and Kaissling 1986; Kaissling et al. 1986; Marion-

Poll and Tobin 1992; Dolzer et al. 2003; Flecke et al. 2006).

In Manduca sexta, our extracellular recordings revealed at

least 3 different mechanisms of olfactory adaptation. One

that decreases the amplitude and the initial slope of the sen-
sillum potential, one that accelerates the repolarization

phase, and one that decreases the action potential response

even further than the parameters of the sensillum potential

(Dolzer et al. 2003). Whether these different moth olfactory

adaptation mechanisms correspond to the different mecha-

nisms in vertebrates and what types of ion channels are

involved in moths remained elusive.

Previous patch clamp studies in moth ORNs showed
that pheromone stimulation activates a phospholipase C

which elicits transient IP3-dependent Ca
2+ influx (Boekhoff

et al. 1990; Stengl 1994; Wegener et al. 1997; Stengl et al.

1999). The transient influx of Ca2+ triggers a temporal se-

quence of Ca2+-dependent currents (Stengl 1993). Within

the first milliseconds of pheromone application, a directly
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Ca2+-dependent, Ca2+-permeable inwardly rectified cation

channel opened with a conductance of about 20 ps at 25

mV and 50 ps at –100 mV holding potential (Stengl et al.

1992; Stengl 1993). Because the lipophilic pheromone cannot

be easily removed except after addition of pheromone-
binding protein or bovine serum albumine, pheromone

was usually present for several seconds and minutes after ap-

plication (Stengl et al. 1992; Stengl 1993). This led to further

elevation of the intracellular Ca2+ concentration as measured

via patch clamp recordings (or via Ca2+ imaging with FURA,

StenglM, LindemannB, unpublished). The intracellular Ca2+

increase finally blocked Ca2+-dependent cation channels and

caused activationof aprotein kinaseC (PKC). PKCactivated
tetraethylammonium (TEA)-blockable cation currents with

apparently little Ca2+ conductance, caused further depolar-

ization, but decreased the intracellular Ca2+ concentrations

(Stengl 1993, 1994; Stengl et al. 1999). We, therefore, hy-

pothesize that the duration of the pheromone stimulus,

the corresponding increase of the intracellular Ca2+ concen-

tration, and the resulting regulation of PKC activity deter-

mine pheromone sensitivity of the antenna and might
underlie mechanisms of short-term adaptation. Short-term

adaptation in moths implies a fast decrease in pheromone

sensitivity and lasts less than 5 min, whereas long-term ad-

aptation occurs more slowly and can last for several hours.

Corresponding with time courses of long-term adaptation,

pheromone stimuli inducedminute-long rises in cyclic guano-

sine monophosphate (cGMP) levels in moth antennae

(Ziegelberger et al. 1990; Boekhoff et al. 1993; Redkozubov
2000). In M. sexta, minute-long pheromone stimulation re-

sulted in cGMP rises in pheromone-sensitive ORNs and their

respective supporting cells (Stengl et al. 2001) and adapts the

actionpotential responsebutnot the sensilla potential (Flecke

et al. 2006). This suggests that Ca2+-, PKC-, and cGMP-

dependent processes might underlie mechanisms of olfactory

short- and long-term adaptation in M. sexta and might or-

chestrate a sliding adjustment of odor sensitivity.
To further test this hypothesis, we initially characterized

Ca2+-, PKC-, and cGMP-dependent ion channels in cultured

ORNs of M. sexta. Inside-out patches were excised into

bath solutions with high (intracellular) Ca2+ to activate

Ca2+-dependent cation channels, previously shown to be

pheromone dependent (Stengl 1993, 1994). Then, the Ca2+

-dependent ion channels were stimulated with the PKC

activator phorbol ester (phorbol 12-myristate 13-acetate
[PMA]) and/or the membrane-permeable cGMP analog

8-bromo cyclic guanosine monophosphate (8bcGMP) to

search for differential second messenger modulation. Appli-

cation of PKC and cGMP activated different populations of

cation channels. Furthermore, cGMP blocked at least one

population of cation channels that opened PKC depen-

dently. Thus, our results are consistent with our hypothesis

that different sets of second messenger–mediated ion chan-
nels are involved in the different mechanisms of olfactory

adaptation, which depend on stimulus length and strength.

Materials and methods

Unless indicated otherwise, all chemicals and biochemicals

were obtained from Sigma (Deisenhofen, Germany) and

all cell culture media from Gibco (Karlsruhe, Germany).

The salts for the electrophysiological salines were obtained

from Merck (Frankfurt/M, Germany).

Cell cultures

Cell cultures were prepared according to Stengl and
Hildebrand (1990). Briefly, male pupae were staged using ex-

ternal markers (Jindra et al. 1997). For dispersion, animals

were anesthetized by cooling, and the antennae were dis-

sected in Hank’s balanced salt solution with penicillin/

streptomycin (HBSS/PS). Antennal tubes were washed in

HBSS/PS and incubated in HBSS/PS + 7 mM ethylenegly-

col-bis(aminoethylether)-tetraacetic acid (EGTA) at 37 �C
for 5 min. The tissue was digested with papain (1 mg/ml
in HBSS/PS) in 2 batches for 5 and 10 min at 37 �C, respec-
tively. The digestion was stopped by adding Leibovitz me-

dium (L-15) supplemented with 10% fetal bovine serum.

Cells were centrifuged at 70–110 relative centrifugal force

for 5–8 min, and the pellet was resuspended in HBSS/PS.

The cellswere plated out in glass bottom culture dishes, which

were coated with concanavalin A and poly-L-lysin, and

allowed to settle for 15–30min before adding 1ml of a 2:1 cell
culturemedium.Themediumwas replaced completelywithin

24 h after dispersion. Every 4–7 days, part of the mediumwas

replaced subsequently. The cell cultureswere used for electro-

physiology from 10 days up to 4 weeks after plating.

Solutions

All solutions were adjusted to pH 7.1–7.2. The osmolality

was adjusted with mannitol to 370–390 mosmol for bath

solutions and 330–350 mosmol for pipette solutions, res-
pectively. During recordings, cells were kept in 1-ml bath

solution. Drugs were applied either by puff application with

a PicoSpritzer (General Valve, Fairfield, NJ) or pipetted into

the bath. Each recording was started under standard bath

and high CsCl intracellular pipette conditions to activate sus-

tained Ca2+-dependent nonselective cation channels and to

minimize K+ channel activity. To recognize and stabilize

Ca2+-dependent inwardly rectified cation channels, the
Ca2+ concentration in the patch pipette was buffered. Then,

to further characterize Ca2+-dependent ion channels, voltage

step protocols were employed and bath solutions were ex-

changed. The change of solutions was monitored by about

0.1% food dye (McCormick, Baltimore, MD) added to

the bath solutions. Exchange of bath solutions took less than

30 s. The respective agents were applied to analyze whether

ion channels were affected in opposite or synergistic ways by
PKC or cGMP. Standard bath solution contained (in mM):

NaCl 156, KCl 4, CaCl2 6, glucose 5, andN-2-hydroxyethyl-

piperazine-N#-2-ethanesulfonic acid (HEPES) 10. To block
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voltage-dependent sodium channels 10-8 M tetrodotoxin

(TTX) was added to all bath solutions. In order to determine

Ca2+ dependence of ion channels, in few experiments, the

bath solution contained a reduced Ca2+ concentration

(10-7 M). In order to separate different cationic channels,
the bath solutions contained 6 mM nickel, 1 or 10 mM zinc,

20 mM TEA, or 160 mM N-methyl-D-glucamin (NMDG).

Bath solutions with reduced chloride concentration contain-

ed acetate-gluconate or D-gluconate salts (156 mM NaAc,

4 mM KAc, 6 mM CaAc2, 10 mM HEPES, 5 mM glucose,

and 10-8 M TTX).

The standard pipette solution contained (in mM): CsCl

160,CaCl2 0.5, 1,2-bis(o-aminophenoxy)ethane-N,N,N#,N#-
tetraacetic acid (BAPTA) 1 (EGTA 11), and HEPES 10. The

Ca2+ concentration was buffered to mimic low extracellular

Ca2+conditions,whichwereshowntostabilizeotherwise tran-

sient Ca2+-dependent and pheromone-dependent currents

(Stengl 1993, 1994). Furthermore, 20 mMTEA, 10 mM zinc,

or 6mMCa2+were used in some experiments to isolate the in-

terdependently activated ion channels. In analogy to bath sol-

utions,pipette solutionswith reduced chlorideconcentrations
contained acetate-gluconate or D-gluconate salt.

The PKC activator phorbol ester (PMA; n = 74) was ap-

plied by puff application onto the recorded ORNs at a con-

centration of 10 nM (application volume <10 nl of the

respective stock solution, for 2- to 10-ms pulse duration).

In 2–10 ms pulses, the membrane-permeable cGMP analog

8bcGMP was applied at concentrations of 10 mM (n = 49),

100 lM (n = 15), 500 lM (n = 15), and 5 lM (n = 5) dissolved
in extracellular solution. Furthermore, concentrations of

8bcGMP of 100 lM (n = 2) and 10 lM (n = 7) were pipetted

into the bath solution. Because a detailed analysis of all ap-

plication modes and concentrations did not reveal consistent

differences, they were pooled. All control applications were

puff applications with standard bath solution. Because of the

typically delayed action of 8bcGMP, activation within 5 min

after drug or control application was scored as application
dependent.

Because different types of ion channels always opened at

the same time and could not be obtained in isolation, 3 dif-

ferent channel classes were formed depending on their con-

ductance. Small-conductance channels showed a maximal

conductance of 20 ps at all potentials tested. Medium-

conductance channels expressed conductances of more than

20 ps up to less than 100 ps. Also, rectifying cation channels
with conductances of less than 20 ps at some potentials but

larger than 20 ps at other potentials were grouped to the

medium-conductance channels. Ion channels of more than

100-ps conductance were classified as large-conductance

channels.

Electrophysiology

For patch clamp recordings, the culture medium was re-

moved. Cell cultures were washed with about 1 ml of bath

solution, and the dish was placed in the recording setup with

about the same volume of bath solution. The culture dishes

were continuously perfused with bath solution at a low flow

rate, using a gravity feed perfusion system equipped with

6 reservoirs and a Teflon rotary valve (Rheodyne, Rohnert
Park, CA). The cells were viewed with an inverted micro-

scope (Axiovert 35 or 135, Zeiss, Göttingen, Germany)

equipped with phase contrast optics and an additional heat

filter (KG-1, Zeiss). ORNs were identified by their round or

only slightly spindle-shaped soma of 5–10 lm diameter

(Stengl and Hildebrand 1990). The patch clamp headstage

and the drug application pipette were mounted on electronic

micromanipulators (Luigs &Neumann, Ratingen,Germany)
attached to aluminum profiles (X-95, Newport, Irvine, CA).

Inside-out patch clamp recordings were performed accord-

ing to standard procedures (Hamill et al. 1981). For all re-

cordings shown, upward deflections from the closed level are

outward movements of positive ions and downward deflec-

tions from the closed level are inward movement of positive

ions. Because the cultured cells deteriorated quickly in bath

solutions with low Ca2+ concentration, the cell cultures were
usually kept in standard bath solutions (high Ca2+). Inside-

out patches were excised into bath solutions containing high

Ca2+ to search for Ca2+-activated ion channels (Stengl 1993,

1994; Stengl et al. 1992, 1999). Inside-out configurations

were verified at the beginning of the recording via application

of voltage steps which should show fast transitions of cur-

rents, clear voltage control, and expected reversal potentials

of previously characterized cation channels. Cell-attached re-
cordings were not possible, because of electrode drift, which

caused patch excision into the inside-out configuration.

Signals were amplified with an Axopatch 1D amplifier

(Axon Instruments, Union City, CA), passed through the

built-in antialiasing filter at a cutoff frequency of 2 kHz, dig-

itized in a Digidata 1200B digitizer (Axon Instruments) at

a sampling rate of 10 or 20 kHz, and stored and analyzed

using pCLAMP software (versions 6 to 8, Axon Instru-
ments). In addition, the signals were continuously recorded

on a strip chart recorder (EasyGraf, Gould, Valley View,

OH) and stored on DAT (DTR-1202, Bio-Logic, Claix,

France). When signals were digitized offline from the tape,

they were either passed through the amplifier or through an

external antialiasing filter (900C/9L8L, Frequency Devices,

Haverhill, MA) and digitized at different sampling rates,

depending on the filter setting.

Data analysis of single-channel recordings

In single-channel recordings, single-unit currents were deter-

mined from amplitude histograms created with Fetchan 6

(pCLAMP). When the data had to be low-pass filtered to

improve the signal-to-noise ratio, either the analog 8-pole

Bessel filter of the amplifier was used to condition signals
during off-line digitization from the DAT tape or the

data were conditioned with the digital Gaussian filters
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implemented in Fetchan 6 or Clampfit 8. The cutoff frequen-

cies were typically between 200 Hz and 1 kHz, but in rare

cases, cutoff frequencies as low as 50 Hz were also used.

The amplitude histograms were fitted with Gaussian func-

tions (second to sixth order) in pStat 6 with manual seeding
of the initial values. The number of terms was determined

manually, often by comparison of different models. Model

comparison implemented in pStat was not used. Although

the measures that describe the goodness of fit put out by

the software were recorded, the quality of the fits was al-

most exclusively judged by eye. The current–voltage (I–V)

relations were determined by 1 of 2 methods depending

on the experiment. When a single or few copies of only
one channel type were active for a longer period, the holding

potential was stepped to different values and the single-unit

currents were determined for each potential. Potentials are

given as potential across the membrane. Because typically

many copies of one channel type or different channels were

open or exhibited transitions, voltage step protocols with

step duration of 100 ms were applied. To exclude effects

of voltage-dependent activation or inactivation, 2 types of
step protocols were applied successively. First, the holding

potential was stepped from negative (typically –120 mV)

to positive (max 100 mV) potentials across the membrane

in 20 mV increments. Then, the potential was stepped from

0 mV to increasing absolute potential values to negative and

positive direction at alternating signs (0mV, –20mV, +20mV,

–40 mV, +40 mV, etc.). The I–V relations determined in this

way were only used for further analysis if 1) the steady-state
current before and after a step protocol was identical and 2)

there was evidence for the contribution of single-unit cur-

rents to the steady-state current (such as transitions before

or after the step protocols). In most cases, only outward cur-

rents at positive holding potentials allowed to discern single-

channel openings for the calculation of I–V curves. Thus, sin-

gle-channel conductances were usually calculated at positive

command potentials. Generalized linear model analysis with
binomial error distribution was used for statistical analysis

to estimate channel activity in response to high intracellular

Ca2+, the PKC activator PMA, and/or 8bcGMP (Crawley

2002).

Results

To identify second messenger–dependent ion channels in-

volved in sensitivity adjustment to odor concentration and

duration, single-channel patch clamp recordings were per-

formed on primary cell cultures of antennal ORNs of M.

sexta. Ion channels were studied in response to high intracel-

lular Ca2+, the PKC activator PMA, and/or 8bcGMP. In

inside-out patch clamp recordings in high Ca2+ bath solution,

different ion channels were distinguished according to con-
ductance, reversal potential, I–V relation, and pharmacol-

ogy. We focused on the effects of PKC and 8bcGMP on

nonselective cation channels of medium-sized conductance

and characterized Ca2+-dependent channels that are closed

by PKC- and PKC-dependent ion channels that are closed

by cGMP.

Ion channel classes observed after excision into high Ca2+ in

the presence or absence of PMA and/or 8bcGMP

Because pheromone stimulation causes rises in intracellular

Ca2+ and activates a sequence of Ca2+-dependent cation

channels (Stengl 1993, 1994; Stengl et al. 1999), we, there-

fore, excised inside-out patches into solutions with high

Ca2+. In a total of 116 patch clamp experiments, 3 classes

of ion channels, small (£20 ps), medium (between 20 and

100 ps), and large (>100 ps) were regularly recorded in high
Ca2+ bath solution (Figures 1, 2, and 8). As judged from the

reversal potential, from ion exchange-, and from blocking

experiments, at least some of the small-conductance chan-

nels appeared to beCa2+ channels (Figures 1 and 2; see Small-

conductance (2-20 pS) ion channels). These channelswere not

further analyzed to focus on nonspecific cation channels. The

medium-conductance channels were mostly nonselective cat-

ion channels because they reversed around 0 mV membrane
potential under all ionic conditions and expressed consider-

able inward currents. Fewer K+ channels with small outward

currents at positive membrane potentials andwithout inward

currentswere also among themedium-conductance channels.

The large-conductance channel-like events were apparently

causedbyCa2+-dependent, synchronizedopeningsof chloride

channels and nonselective cation channels as judged from

the ion exchange and blocking experiments.
In the following, observations on patch excision-activated

and PKC- and cGMP-dependent ion channels are summa-

rized, normalized, quantified, and statistically analyzed

(n = 213 experiments in 116 different recordings; Figure 1).

Then, the most prominent types of nonselective cation

channels, namely, about 30/35-ps, 40-ps, 55-ps, 60-ps, and

70-ps channels are further characterized. Recordings ex-

pressing very large currents without recognizable single-
channel transitions were not included in the quantitative

analysis.

Under control conditions (n = 57; Figure 1A), without ap-

plication of 8bcGMP and in the absence of PMA, mostly

small-conductance channels (10–20 ps) and some medium-

(about 30 ps) and large-conductance (>100 ps) channels

opened. Preexposure to PMA (n = 36; Figure 1B and 2) de-

creased the probability to detect 10-ps small- and >100-ps
large-conductance channels. Instead, predominantly

40- and 60-ps medium-conductance channels opened, and

few 70-ps medium-conductance channels were detected. Sta-

tistical analysis revealed a significant difference in the distri-

bution of medium-conductance channels between control

and the presence of PMA (Figure 1A,B; P < 0.05), with sig-

nificantly more openings of 40-ps medium-conductance

channels in the presence of PMA (P < 0.05).
In the presence of 8bcGMP (n = 78; Figure 1C, 6, and 7),

10-ps small-, 55- and 70-ps medium-, and >100-ps
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large-conductance channels were observed. The 30-psmedium-

conductance channels were less frequently detected as
compared with recordings in the absence of 8bcGMP (Fig-

ure 1A,B). Statistical analysis revealed a significant differ-

ence in the distribution of medium-conductance channels

between the presence of PMA and 8bcGMP (Figure 1B,C;

P < 0.01), with significantly more openings of 40-ps

channels in the presence of PMA (P < 0.01). For the large-

conductance channels, significant differences between con-

trol and the presence of 8bcGMP (Figure 1A,C; P < 0.05)
as well as between the presence of PMA and 8bcGMP (Fig-

ure 1B,C; P < 0.05) were observed.

After 8bcGMP application and additional preexposure to

PMA (n = 42, Figure 1D), small-conductance channels, and

about 30- and 50-ps medium-conductance channels opened

frequently. The 10-ps small- and 40 ps medium-conductance

channels were less frequently recorded. Statistical analysis

revealed a significant difference in the distribution ofmedium-
conductance channels between the presence of 8bcGMP

alone and the presence of 8bcGMP and PMA (Figure

1C,D; P < 0.01). The open probability of 10-ps small-

conductance channels was significantly reduced in the pres-

ence of 8bcGMP and PMA as compared with the control

(Figure 1A,D; P < 0.05).

In general, following application of PMA, the medium-

conductance channels were observed more often and the de-
tection of single-channel currents became very difficult. In

most recordings, large currents (up to several tens of ns in

aggregate conductance) developed some time after patch ex-

cision into high Ca2+ (58%), after PMA (31%), and also after

8bcGMP application (31%). Thus, no single-channel activity

was distinguished. Only the fact that these large currents typ-

ically developed in the course of several 100ms and occasion-

ally inactivated later distinguished them from a broken seal.
After patch excision into high Ca2+ and after PMA and/or

8bcGMP application, different ion channels activated to-

gether, before large currents developed. Therefore, it was

not possible to completely characterize the different ion

channels involved. In the following, ion channels recorded

at least once in isolation are distinguished according to con-

ductance, reversal potential, I–V relation, and pharmacol-

ogy and are grouped into 3 classes, small-, medium-, and
large-conductance ion channels.

Small-conductance (2–20 ps) ion channels

Small-conductance channels of 2- to 20-ps single-unit con-

ductance were detected in some of the recordings (n = 17

Figure 1 Frequency distribution histograms of single-channel conductances recorded with or without application of phorbol ester (PMA) and/or 8bcGMP at
40 to 60 mV holding potential. (A) In the absence of 8bcGMP and PMA, most recorded single-channels had a conductance below 60 ps. Single-channel
conductances >100 ps were recorded occasionally. (B) After application of PMA, single-channels with 10 and >100 ps were less frequently recorded. Instead,
single-channels with a conductance of about 40, 60, and 70 ps were recorded. (C) After application of 8bcGMP, there was a tendency to large single-unit
conductances. Single-channel conductances of about 10, 55, 70, and >100 ps were recorded. The 40-ps conductances were absent. (D) After 8bcGMP and
PMA application, fewer 10-ps small-conductance channels were distinguishable among the currents that developed. The 40-ps conductances were absent.
For statistical analysis see text.
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out of 116). When the absence of other active channels

allowed the analysis of their kinetics (n = 3), the small-

conductance channels displayed dwell times of many seconds

(Figure 2B). The fact that these channels were not recorded

in the presence of Ca2+ channel blockers like 6 mMNi2+ sug-
gests that at least some of them are Ca2+ channels. Because

they were obscured by larger channels in most recordings,

a more detailed analysis was not possible.

Medium-conductance (20–100 ps) ion channels

Most ion channels with conductances between 20 and 100 ps

were nonselective cation channels with a reversal potential

around 0mVand linear or rectified I–V relations. K+-selective

channels could be distinguished from nonselective cation

channels by their small outward currents and the absence

of inward currents. Without 20 mM TEA in the bath solu-
tion, nonselective cation channels were recorded in almost all

experiments. Different subtypes of the medium-conductance

channels were distinguished according to conductance, dif-

ferent I–V relations, pharmacology, and kinetics. The open

times ranged from rapid flickering to dwell times of many

seconds (Figures 3–7).

Under control conditions, the most frequently recorded

subtype of medium-conductance channels had about 75 ps
at negative potentials and about 35 ps at positive potentials

and activated spontaneously after patch excision into

bath solutions with high Ca2+ and Cs+ pipette solution

(Figure 3). In the presence of 20 mM TEA, these medium-

conductance channels were blocked (n = 3). Once activated,

these channels did not inactivate after switching to bath so-

lution with reduced Ca2+ concentration (10–7M; n = 11). This

channel type belongs to the cation channels of about 30 ps in
Figure 1.

Another type of medium-conductance channel of about

35 ps (Figure 4) was blocked by application of 8bcGMP.

The inactivation of this channel was observed in isolation

only once. In most experiments, this channel was obscured

Figure 2 (A–C) Small- and medium-conductance channels in cultured
moth ORNs. (A) A 60-ps channel was observed after previous PMA
application in an inside-out recording at +27 mV membrane potential. PMA
was present in the dish before patch excision. The enlarged insert shows
slow channel opening due to nonresolved substates (arrowhead). (B) Before
the activation of the medium-conductance channels a small-conductance
channel with very long dwell times was active. This channel conducted
inward currents at the positive membrane potential. (C) Amplitude
histogram of the section indicated in A. The numbers above the peaks
correspond to the current levels indicated in A. The differences in the current
levels (DI) were 1.62 � 0.08 pA, corresponding to a single-unit conductance
(c) of 60 � 3 ps (mean � standard deviation). After the activation of the third
channel copy, distinct current levels could not be discerned anymore.
Downward deflections from the closed state indicate inward current of
positive ions from the patch electrode through the patch into the bath.

Figure 3 Patch excision activated a medium-conductance channel of
about 35 ps at positive holding potentials. (A) A medium-conductance
channel with dwell times of many seconds was active after patch excision.
(B) A single-channel I–V relation showed that the medium-conductance
channel is an inward rectifier with conductances (c) of about 35 ps at
positive potentials and 75 ps at negative potentials.

808 J. Dolzer et al.



by opening of other medium-conductance nonselective cat-

ion channels. Because this channel conducted no inward

currents with Cs+ in the patch pipette, it appears to be a

potassium channel.

Application of PMA revealed medium-conductance chan-
nels of about 60 ps with reversal potentials around 0 mV and

a linear conductance. Usually, this channel was recorded in

‡3 copies per patch (Figure 2A,C). Individual transitions be-

tween open and closed states took up to 100 ms, whereas

sharp transitions occurred immediately before or after these

slow transitions (n = 6 openings and 3 closings in different

recordings). The individual transitions appeared to consist

of several subconductance levels, which were too small to
resolve. Spontaneous activation of the 60-ps channel

always involved multiple copies in rapid succession, which

suggests coupling among adjacent channels of the same type

(Figure 2). The 60-ps channel was recorded more frequently

after application of PMA (Figure 1) and was not detected in

the presence of 20 mM TEA.

A subpopulation of medium-conductance channels acti-

vated spontaneously with a conductance of 40 ps at positive
holding potentials. This channel was blocked by 10 mM but

not by 1 mM Zn2+ in the bath solution (n = 2 out of 7 ob-

servations) and was not affected by 20 mM TEA (Figure 5).

The 40-ps channel was more frequently observed in the pres-

ence of PMA (Figure 1). Activation of medium-conductance

channels was also recorded with 10 mM Zn2+ in the pipette

solution (n = 25 out of 31), indicating that only a subpopu-

lation of medium-conductance channels is zinc sensitive.

After application of 8bcGMP, a 55-ps channel activated at

+40 mV holding potential (Figure 6). This cGMP-dependent

ion channel showed a reversal potential around 0 mV and

reduced inward current in the presence of 10 mM Zn2+ in
the pipette solution (Figure 7). The 55-ps channel was rarely

seen during control conditions (Figure 1A) but was recorded

more frequently after 8bcGMP application (Figures 1C,D,

6, and 7). It is a nonselective cation channel which appears

to be blocked by divalent cations (Figure 7).

A 70-ps channel was blocked by application of 20 mM

TEA (data not shown). This medium-conductance channel

was only observed in the presence of 8bcGMP with or with-
out PMA (Figure 1). It activated and inactivated slowly

at –40 mV holding potential and expressed larger outward

and reduced inward currents with Cs+ in the pipette solution.

Thus, the 70-ps channel appears to be a potassium channel.

Large-conductance ion channels (>100 ps)

In addition to the small- and the medium-conductance chan-

nels, large-conductance channels of >100 ps single-unit con-

ductance were recorded. Like most of the medium-

conductance channels, they typically activated after patch

excision without drug application or other obvious changes
in the conditions. Frequently, the activation was correlated

with the activation of medium-conductance channels,

which suggests an unknown coupling mechanism. Apparent

Figure 4 An outwardly rectifying medium-conductance channel of about
35 ps was transiently blocked by 8bcGMP. (A) The application of several
pulses of 8bcGMP (10-mM stock solution, several nanoliters applied into 1
ml solution, arrows) to an inside-out patch at a membrane potential of +80
mV inhibited a single copy of an active channel. After about 40 s of wash,
the channel gradually regained its original activity. (B and C) I–V relation of
the same channel type obtained in a different inside-out recording. (B) The
patch was kept at different potentials for several seconds, and the single-
unit conductance was determined by amplitude histograms (data not
shown). (C) While the channel conducted no Cs+ inward currents, the slope
conductance (c) of the outward currents was about 35 ps.

Figure 5 A medium-conductance channel of 40 ps was sensitive to 10
mM Zn2+ but was not blocked in the presence of 20 mM TEA. About 25 s
after an inside-out patch held at Vm = +80 mV was exposed to 10 mM Zn2+

bath solution; all previously active channels were closed (upper trace). When
zinc was washed out with 20 mM TEA, channel activity reappeared (second
trace) until a large current developed without recognizable single-channel
events (third trace). In a bath solution containing 1 mM Zn2+ (fourth trace),
channel activity was not notably affected. Switching back to 10 mM Zn2+

blocked the channel activity again (bottom 2 traces). Note that distinct
current levels were only determined during the wash out and wash in of 10
mM Zn2+ bath solution, as indicated by the arrows on the left. The
amplitude histograms of traces 2 and 5 suggested a single-unit conductance
of about 40 ps, with the presence of many substates (data not shown). The
gray lines indicate the zero-current levels. Traces were separated by about 1
min each, except for the last 2 traces, which are consecutive.
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single-unit conductances of up to 550 ps were detected

(Figures 1 and 8), in one recording even 1.7 ns. The transi-

tions between the conductance states suggested the presence

of multiple substates or of multiple coupled ion channels. In

most observations, the apparent single-unit conductance
was below 250 ps (Figure 8). Once activated, the large-

conductance channels were affected only partly by replacing

all cations in the bath solution with NMDG (n = 5 out of 7),

a very large cation impermeant to most cation channels. The

tested agents known as chloride channel blockers (6 mM

Ni2+, 10 mM Zn2+, 1 mM 4-acetamido-4#-isothiocyanostil-
bene-2, 2# disulphonic acid, 1 mM 4,4#-diisothiocyanostil-
bene-2,2#-disulfonic acid, 1 mM niflumic acid, 500 lM
anthracene-9-carboxylic acid, and 100 lM picrotoxin) did

not influence the medium-conductance channels and only

partly affected the large-conductance channels (n > 10).

Thus, the large-conductance channels were apparently con-

ducted by nonselective cation and chloride channels, directly

or indirectly activated by Ca2+.

Discussion

In primary cell cultures of ORNs of M. sexta, we analyzed

ion channels modulated by PKC and cGMP with inside-out

patch clamp recordings. The large diversity of interdepen-

dently activated ion channels allowed no detailed analysis but

only a very general characterization of individual channels

and their pharmacology in single-channel recordings.

Nevertheless, new PKC- and cGMP-dependent ion channels

were identified, and interactions between the second

Figure 6 A 55-ps channel opened after application of 8bcGMP. (A) At
least 4 copies of a medium-conductance channel activated in an inside-out
patch after puff application of 8bcGMP (10 mM stock solution) at +40 mV
holding potential. The high-frequency artifacts (open arrowheads) occurred
when the application pipette was moved into and out of the bath. The large
capacitive transient (filled arrowhead) occurred when the application pipette
first touched the surface of the bath. About 20 s after drug application to
the vicinity of the cell, several copies of a channel activated in rapid
succession (indicated section shown at an enlarged time scale in B). About 2
s after the first observed channel activity, a current of >100 pA developed
(open arrow; truncated), in which no single-channel currents were resolved.
(C) Enlarged view of the section indicated in B shows single-channel events.
(D) Amplitude histogram of the section shown in B. The differences in the
current levels (DI) were 2.2 � 0.1 pA, corresponding to a single-unit
conductance (c) of 55 � 2 ps (mean � standard deviation). Another channel
type with a smaller conductance caused the transition from current level 1 to
1a. Current levels in B–D correspond to each other.

Figure 7 Patch excision activated a medium-conductance channel of
about 55 ps at positive holding potentials. (A) Two copies of a 55-ps
medium-conductance channel activated after 8bcGMP application. (B) A
single-channel I–V relation obtained with voltage step protocols suggested
a linear, zero-crossing current of 55-ps conductance (c) at positive potentials.
The inward currents were probably reduced by 10 mM Zn2+ included in the
pipette solution.

810 J. Dolzer et al.



messenger systems were detected, hinting at novel mecha-

nisms of sensitivity modulation in the insect olfactory

system.

Second messenger–mediated ion channels

Because ORNs can be clearly distinguished from other cell

types in primary cell cultures (Stengl and Hildebrand 1990),

the recorded ion channels probably belong to the olfactory

signal transduction cascades. It is not possible, however,
to distinguish between pheromone- and general odor-

responsive ORNs from morphological markers only. Fur-

thermore, it is not possible to determine whether different

ORN classes exist, which express different sets of ion chan-

nels. The fact that in previous studies Ca2+-dependent and

PKC-dependent currents were expressed in almost all record-

ings suggests that the respective ion channels are common to

most ORNs and are shared between pheromone- and general

odor-transduction cascades (Stengl et al. 1992; Stengl 1993,

1994). Whether all ORNs or only subgroups also possess
cGMP-dependent ion channels remains to be examined.

At least some of the small-conductance channels recorded

after patch excision into high Ca2+ are likely to be voltage-

dependent Ca2+ channels because they were never observed

in the presence of Ca2+ blockers (Stengl 1994; Lucas and

Shimahara 2002). Future whole-cell studies will examine

Ca2+ channels in ORNs of M. sexta in more detail because

a thorough single-channel analysis was not possible.
The 30–35 ps inwardly rectified cation channel (Figures 1A

and 3) resembles the pheromone-activated cation channel,

which was reported by Stengl et al. (1992) with a conductance

of 20 ps at +25 mV and 50 ps at –100 mV holding potential.

Different patch clamp configurations and ionic solutions

may account for the differences in the conductance of this

channel. In addition, this channel appears to be identical

to the 37 ps (at +30 mV) cation channel which activated
spontaneously after excision into the outside-out mode

(Stengl et al. 1992; Stengl 1993). The 30- to 35-ps channel

is a Ca2+-dependent cation channel and apparently underlies

the second pheromone-dependent inward current compo-

nent. It opened in Ca2+ concentrations higher than 10-6 M

and was blocked by a Ca2+-dependent negative feedback.

The fact that the 30- to 35-ps channel opened readily over

the course of minutes in excised patches suggests that the
high Ca2+ concentrations could not exert any negative feed-

back because cytosolic factors, such as calmodulin, were

missing. The channel was not affected by PKC activation

but was less often observed in the presence of cGMP. In

ORNs of the silkmoth Antheraea polyphemus, a Ca2+-acti-

vated cation channel of about 48-ps conductance was

blocked by cGMP (Zufall and Keil 1991). Because statistical

analysis of this channel type was not possible, it could not be
conclusively shown that this cation channel type inM. sexta

is also blocked by cGMP.

The other type of 35-ps channel, which was blocked by

cGMP, is most likely the previously described 30-ps delayed

rectifier potassium channel, which was also blocked by

cGMP as well as cyclic adenosine monophosphate (cAMP)

and adenosine triphosphate (ATP) (Zufall et al. 1991). This

rapidly activating channel opens immediately after phero-
mone application, even before the cell depolarized (Stengl

et al. 1992). If this channel type is present in the axons of

ORNs, it contributes to the repolarization after the Na+

channel opening and, thus, determines the duration of inter-

spike intervals (Dolzer et al. 2001). It will be interesting to

determine whether the 35-ps channel belongs to the KCNQ

ion channel family, underlying theM current in other species

(reviewed by Hille 2001).
Among the PKC-dependent activated channels, only the

40-ps channel was significantly more often observed in the

Figure 8 The large-conductance channels (>100 ps) were not blocked by
TEA and Zn2+. Inside-out recording at a membrane potential of +100 mV
exposed to 20 mM TEA in the bath and 10 mM Zn2+ in the pipette solution.
(A) From the open state of a different channel type, a large-conductance
channel activated spontaneously. After about 7.5 s the large-conductance
channel and the initially open channels inactivated, revealing several
substates. (B) The section indicated in A at an enlarged timescale. Individual
transitions suggest a number of substates (arrowheads), which cannot be
resolved in an amplitude histogram (C).
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presence of PMA. Because the 40-ps channel was not af-

fected by TEA, it can only partly underlie the previously

described PKC-dependent non-Ca2+-permeable, mostly

TEA-blockable cation current which occurred after long

pheromone stimulation (Stengl 1993, 1994). So far, the
60-ps PKC-dependent cation channel is the best candidate

for the TEA-blockable, pheromone-dependent inward cur-

rent component and further experiments need to test this

hypothesis. The 40-ps cation channel which was not affected

by TEA has not been described before. Also, the 70-ps chan-

nel which was only observed in the presence of 8bcGMP and

PMA awaits a further characterization. Because it was

blocked by TEA and showed small, slowly activating out-
ward and no inward currents, it seems to be a delayed rec-

tifier potassium channel with slow kinetics. Whether this

channel is encoded by the ether a-go-go (eag) potassium

channel gene cloned from M. sexta (Keyser et al. 2003)

remains to be examined.

The 55-ps cGMP-dependent activated cation channel

shared properties with other CNG channels described from

vertebrates (Kaupp and Seifert 2002; Craven and Zagotta
2006; Pifferi et al. 2006). It appeared to be a nonselective

cation channel, which was blocked via Zn2+ in the recording

electrode. However, in contrast to vertebrate CNG channels,

it was not affected by the high intracellular Ca2+ concentra-

tion. It remains to be tested whether addition of calmodulin

together with high Ca2+ would block the 55-ps channel.

Cloning and expression of CNG channels fromM. sexta will

facilitate the characterization of this cation channel in the
future. Surprisingly, no dose dependency was detected

with the different cGMP concentrations tested. Apparently,

all cGMP-dependent channels opened in concerted action.

Whether this was due to a Ca2+-dependent coupling mech-

anism remains to be examined.

The >100-ps large-conductance channels expressed very

large currents which appeared to conduct nonselectively cat-

ions and anions and apparently synchronized their channel
openings via Ca2+-dependent mechanisms. Because no reli-

able blockers of chloride channels in M. sexta are available,

the further characterization of these channels is difficult and

requires cloning and expression studies.

A hypothesis of sensitivity modulation in ORNs

In moth ORNs, pheromone stimuli open a characteristic

sequence of 3 Ca2+-dependent inward currents. The first 2

channels are downregulated by Ca2+-dependent negative

feedback, whereas the third, a PKC-dependent inward cur-

rent, is stable in the presence of second-long pheromone

stimulation (Stengl et al. 1992; Stengl 1993, 1994). Further-

more, minute-long pheromone stimulation elevates cGMP

levels in ORNs ofM. sexta (Stengl et al. 2001). Thus, cGMP
elevations in ORNs correlate with the time course of long-

term adaptation, whereas the PKC-dependent currents

rather correlate with the time course of short-term adapta-

tion and Ca2+/calmodulin-dependent negative feedback with

mechanisms of desensitization. We, therefore, suggest that

different sets of depolarizing and hyperpolarizing ion chan-

nels, controlled by intracellular Ca2+, Ca2+-dependent kinase

activity, and cyclic nucleotide concentrations, are responsi-
ble for the sliding modulation of pheromone sensitivity dur-

ing short- and long-term adaptation. Our findings are

consistent with this hypothesis because different sets of

ion channels were observed in the presence or absence of high

intracellular Ca2+, 8bcGMP, or PKC activators. Further,

whole-cell and perforated patch clamp recordings will inves-

tigate whether the ORNs of M. sexta express ion channels

that are activated differentially by Ca2+, 8bcGMP, or PKC
activators. Finally, cloning and expression of the different

second messenger–mediated ion channels together with

RNAi will further test our hypothesis.
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