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Abstract

Recent developments in computer science and digital image processing have enabled the extraction of an individual’s heart
pulsations from pixel changes in recorded video images of human skin surfaces. This method is termed remote
photoplethysmography (rPPG) and can be achieved with consumer-level cameras (e.g., a webcam or mobile camera). The goal
of the present publication is two-fold. First, we aim to organize future rPPG software developments in a tractable and nontech-
nical manner, such that the public gains access to a basic open-source rPPG code, comes to understand its utility, and can follow
its most recent progressions. The second goal is to investigate rPPG’s accuracy in detecting heart rates from the skin surfaces of
several body parts after physical exercise and under ambient lighting conditions with a consumer-level camera. We report that
rPPG is highly accurate when the camera is aimed at facial skin tissue, but that the heart rate recordings from wrist regions are less
reliable, and recordings from the calves are unreliable. Facial rPPG remained accurate despite the high heart rates after exercise.

The proposed research procedures and the experimental findings provide guidelines for future studies on rPPG.

Keywords Heart rate - Remote photoplethysmography - Pulse oximetry - Respiration - Exercise

Imagine a situation in which physical states of people
can be inferred from surveillance camera footage.
Although this may sound like science fiction, the truth
is that cameras can capture subtle cues about a person’s
physiology that are invisible to the human eye. More
specifically, progressions in the field of image process-
ing have led to the development of algorithms that en-
able the extraction of the timing of heart beats from
distant camera recordings of an individual’s skin. This
novel method is termed remote photoplethysmography
(rPPG). Here we describe a study on its accuracy in
detecting heart rates in a variety of conditions and we
provide guidelines for future investigations into rPPG’s
applicability and effectiveness.
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Nonremote photoplethysmography (PPG)

Before we explain rPPG mechanisms, we first would like to
give credit to a large body of preceding studies that have
eventually led to the development of remote heart rate record-
ings. It all started with a scientific breakthrough by Hertzman
and Spealman (1937). They discovered that heartbeat-induced
changes in blood perfusion in skin surface can be detected by
measuring changes in both diffuse light reflection off and
transmission through body parts. A year later, Hertzman de-
veloped a photoplethysmograph that could measure changes
in an individual’s heart rate over time (Hertzman, 1938). The
modern variant of photoplethysmography (PPG) consists of a
pulse-oximetry device that is, in most cases, clipped on an
individual’s finger. A standard pulse oximeter probe emits
red and infrared light that is diffusely reflected from and trans-
mitted through skin tissue. The heart stroke volume induced
pulse wave travels along the arterial vascular network, which
causes changes in blood volume, and this in turn causes
changes in blood oxygenation and tissue pulsations in the
capillary beds of skin tissue (Kamshilin et al., 2015; Nijboer,
Dorlas, & Mahieu, 1981). Because these two factors affect
light scatter and absorption, changes in infrared luminance
levels—targeted at capillary beds relatively close to the skin’s
surface—can be used to infer how many heart beats were
present within a certain time window.
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Limitations to the application of PPG

Modern medicine and many other fields rely on PPG in mon-
itoring a patients HR. Photoplethysmography is used to detect
abnormalities in a person’s physiological state—for example,
by measuring heart rate or respiration (Allen, 2007). Heart rate
measurements with PPG may also provide information about
aperson’s emotional responses (Critchley et al., 2005) or level
of'stress (Bousefsaf, Maaoui, & Pruski, 2013; Kranjec, Begus,
Gersak, & Drnovsek, 2014; McDuff, Gontarek, & Picard,
2014). Although the number of applications is extensive,
PPG’s contact requirements limit its applicability. First, heart
rate can only be measured as long as the person does not move
the PPG device because movement severely distorts measure-
ments. These movement constraints limit PPG’s use during
sports and other activities that require individuals to move
freely. Second, the attachment of a pulse oximeter to a body
part draws attention to the measurement, making users aware
of that they are being monitored. In psychology, it is often
preferred that participants remain naive about the measure-
ments to prevent that they consciously or unconsciously influ-
ence their heart rate and other outcomes. Luckily, the noncon-
tact, remote version of PPG is not limited by the above-
mentioned issues.

Remote PPG

RPPG, also known as imaging PPG (iPPG or PPGI) or non-
contact PPG (ncPPG), is based on the same principle as PPG.
The difference is that rPPG remotely records changes in blood
perfusion. It basically consists of digital camera recordings of
variations in light reflected from skin tissue. Its first applica-
tion is described in Wieringa, Mastik, and van der Steen
(2005). Using a remote camera and red-to-infrared light-
emitting diodes, they found pulsatile variations in luminance
at the same rate as the heart’s pulse across the recorded image
frames of human skin surface of wrists. A couple of studies
followed rapidly, replicating and improving the method with
relatively complex, custom-made apparatus (Cennini, Arguel,
Aksit, & van Leest, 2010), and infrared-sensitive cameras
(Humphreys, Ward, & Markham, 2007; Zheng, Hu,
Chouliaras, & Summers, 2008). Only after Verkruysse,
Svaasand, and Nelson (2008) had demonstrated that accurate
heart rate measurements can be achieved with an affordable,
consumer-level camera and ‘“normal” ambient light condi-
tions did rPPG become more popular. Frankly, it is an appeal-
ing phenomenon that heart pulsations in the skin are not vis-
ible to the human eye but can be recorded by a simple web-
cam. Since this finding, numerous studies have tested rPPG
under ambient light conditions—for example, showing that
rPPG in combination with face tracking allows heart rate mea-
surements from multiple people at the same time with minimal

motion distortions (Poh, McDuff, & Picard, 2010; Wang,
Stuijk, & De Haan, 2015).

rPPG’s underlying physiological mechanism
and algorithms

What does rPPG actually measure? The basis of the signal is
fluctuations over time in reflected luminance from a skin sur-
face. Simply put, the camera-recorded luminance values fluc-
tuate as a function of every heartbeat. Most recent models
suggest that the luminance fluctuations are caused by changes
in capillary tissue movement (Daly & Leahy, 2013; Kamshilin
et al., 2015). These luminance changes are so small that hu-
man perception cannot detect them. Under proper illumination
conditions, a camera sensor can detect these fluctuations,
which can be extracted by the application of several signal-
processing steps, including filtering, independent component
analyses, and other data-processing approaches (for reviews,
see Rouast, Adam, Chiong, Cornforth, & Lux, 2018; Sun &
Thakor, 2016). In many scientific publications about rPPG,
the signal processing steps are described and then
benchmarked on a variety of videos, mostly recorded from
human faces. However, the developed algorithms and soft-
ware codes in which these processing steps are implemented
have so far not been made available to the public. Here it is our
main goal to implement the most basic rPPG signal processing
steps in a code that is available to the public.

Present study

To achieve this main goal, we have created rPPG software
available to everyone, to increase the applicability of the
rPPG method by offering this accessible and free software.
The license under which this software is released allows others
to further develop the software for scientific and public use.
Please note that it is not our intention to develop a state-of-the-
art rPPG algorithm that produces better results than previous
algorithms. This means that the here-described processing
steps are standard and described in most rPPG publications.
Our second goal was to write a manuscript for a broad
audience, beyond clinical and technical fields. Although
rPPG is a promising utility in numerous applications, mainly
in clinical settings (Aarts et al., 2013; Klaessens et al., 2014;
Tarassenko et al., 2014), it has not yet been embraced by other
scientific fields that are interested in the relationship between
heart rate, behavior, and cognition (but see Bousefsaf et al.,
2013; Kwon, H. Kim, et al., 2012; McDuff, Estepp, Piasecki,
& Blackford, 2015; McDuff, Gontarek, & Picard, 2014). We
aim to describe the rPPG most basic processing steps in lay-
man terms such that it can also be understood and tried out by
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scientists that work outside the technical areas of computer
science, informatics, and mathematics.

The third goal of this article was to guide rPPG research
toward a standardized procedure to test and report rPPG’s
accuracy in a variety of conditions relevant to most sciences.
We noted that many articles on rPPG use different analyses to
benchmark their algorithms. We therefore aimed to provide
several basic analyses that are needed to provide at least the
most relevant information about an rPPG algorithm’s
accuracy.

In line with our first two goals, we developed a test proce-
dure that assesses rPPG in as broadly applicable a context as
possible. This involves a different approach than previous
studies have pursued, for we prioritized usability over state-
of-the-art methodology:

(i) A consumer-level webcam was used, because this hard-
ware is available to most people.

(i) The software should be applicable to any type of skin
surface on any part of the body. As far as we know,
rPPG’s accuracy with consumer-level cameras, of which
we define the maximum specifications as 1080p
resolution and 60 frames per second, has only been
reported for video recordings of faces. Verkruysse et al.
(2008) mentioned that they tested rPPG on the legs and
arms, but they did not report any results. Other studies
have tested rPPG with higher-end cameras on the hands
(Kviesis-Kipge & Rubins, 2016; Marcinkevics et al.,
2016; Rubins, Miscuks, Rubenis, Erts, & Grabovskis,
2010; Sun, Hu, Azorin-Peris, Kalawsky, & Greenwald,
2013) or with a green-colored light source (Teplov,
Nippolainen, Makarenko, Giniatullin, & Kamshilin,
2014). Since it is possible that the facial skin surface is
minimally visible, either due to head orientation or pri-
vacy reasons (e.g., faces are blurred or blocked), it is
important to also examine rPPG’s accuracy on body
parts other than faces. Hence, we tested rPPG’s accuracy
on the skin surface of the arm (wrist and hand palm) and
leg (calf), which both are body parts that are most likely
visible in any type of video recordings of humans.
Furthermore, we expected that the pulse signal would
be weak in the calves, because of the small amount of
superficial blood vessels in the calf’s skin. This would
allow us to benchmark rPPG in a challenging condition.

(iii) Individuals could have variable heart rates during re-

cordings, especially when in a state of arousal due to
stress experiences or other psychological and physical
demands. Because variability might affect rPPG’s accu-
racy, its effects should be taken into account. Recent
studies have tested rPPG accuracy both after and while
participants performed exercise. However, these studies
had several limitations, such as a narrow range of exer-
cise conditions (Sun et al., 2011; Yan et al., 2017), the
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absence of statistics comparing accuracies between ex-
ercise conditions (Poh & Poh, 2017; Sun et al., 2011;
Wang, den Brinker, Stuijk, & de Haan, 2017b; Yan
etal., 2017), and the sole focus on facial measurements
(Poh & Poh, 2017; Sun et al., 2011; Wang, Balmacekers,
& de Haan, 2016; Wang et al., 2017b; Yan et al., 2017).
We assessed rPPG’s accuracy under conditions in which
participants either were at rest or had higher and more
variable heart rates, after exercise.

(iv) When participants reach heart rates above approximate-
ly 100 beats per minute (BPM), the respiration rate can
rise to a level that is similar to the heart rate at rest. When
no prior knowledge about the individual’s physical state
is available, it can be difficult to dissociate heart rate
signals from respiration signals, especially when the
breathing rate dominates the signal variance or when
the pulsatile variations are highly distorted by noise.
Studies often report the presence of respiration signals
within the recorded heart rate signals, but no simple and
accessible solution has so far been provided to filter out
the signal and select heart rate rather than respiration for
analysis. Here we implemented a straightforward deci-
sion rule that allowed us to dissociate heart rate and
breathing rate in the signal’s frequency spectrum.

Our third goal, to develop a basic, standardized report pro-
cedure that would assess rPPG accuracy from several perspec-
tives, was achieved by reporting correlations and difference
scores between rPPG and a reference, and by displaying
scatterplots and Bland—Altman plots for qualitative inspection
of rPPG’s accuracy and the linearity of its relationship with the
reference. RPPG’s correlations with the reference are also re-
ported as a function of video length, to inspect how much
recording time was needed to reach a preferred level of accu-
racy (Tulyakov et al., 2016). Finally, rPPG heart rate measure-
ments might correlate with the reference’s measurements, but
the correlations could be too weak to determine whether or not
a person has exercised. Thus, rPPG’s accuracy in dissociating
between exercise-induced differences in heart rates per body
part is reported, in the form of difference scores and signal
detection theory’s calculation of the distinctiveness of distri-
butions (area under the curve, or AUC).

Method
Participants

Twenty-one individuals participated in the experiment (age M
=24.24 years, SD =5.77; 11 male, 10 female). All participants
received study credit or money for participation, were naive to
the purpose of the experiment, gave informed written consent
before the experiment, and were debriefed after the
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experiment. To ensure good skin visibility, the participants
had no skin makeup and wore loose clothing that could be
easily rolled up for recordings of the legs and arms. The par-
ticipants’ appearances varied considerably. Some of them had
facial hair or wore glasses. Skin tone ranged from pale white
to dark brown. Since the performance of physical exercise was
part of the experiment, individuals could only participate
when they stated that they had no medical heart condition.
The experiments conformed to the ethical principles of the
Declaration of Helsinki and were approved by the local ethics
commission of Utrecht University.

Design and apparatus

The experiment consisted of a repeated two-factor design with
the independent factors of exercise and body part recording.
The exercise conditions consisted of rest, light exercise, and
moderate exercise, and the recorded body parts were full
faces, wrists including the palm of the hand, and calves, cov-
ering the entire backside of the lower leg from ankle to knee
(see Fig. la—c).

Videos were recorded in a room with ambient background
lightning by fluorescent TL tubes. Participants sat on a chair in
front of a camera (Fig. 1d). The camera was a low-end
LifeCam HD-3000 webcam manufactured by Microsoft
(Redmond WA, United States) that recorded uncompressed
AVI videos at 30 frames per second with a resolution of
1,280 x 720 pixels at eight-bit quality per RGB channel.
Note that the resolution and frame rate of the camera might
not necessarily affect rtPPG’s accuracy (Blackford & Estepp,
2015). Videos were recorded with the open-source program

a Face

iSpy (http://www.developerinabox.com/). Default settings for
brightness, contrast, saturation, sharpness, and white balance
were used, and all automated dynamical corrections were
turned off. Exposure, a parameter that sets the duration over
which light is captured by the webcam’s CCD per frame, was
set at — 10. All other amplification and control options in iSpy
were turned off. The camera was placed 20 cm from the body
parts. A light box, placed at the same distance, illuminated the
body parts with 1,370 cd/m>. These settings ensured proper
illumination conditions and prevented saturated regions in the
image frames. Facial pixel values were 208, 150, and 136,
averaged across all facial pixels, then averaged across video
frames, and then averaged across all videos, per RGB channel,
respectively.

A standard pulse oximetry (contact PPG) finger-clip de-
vice, the CMS50E manufactured by Contec (Qinhuangdao,
China), was used for the reference heart rate measurements.
The pulse oximeter was attached to the right index finger and
connected to a desktop computer through an USB cable.
Custom made MATLAB (MathWorks, Natick, MA, USA)
software recorded the heart rate pulses from the oximeter in
parallel with the video recordings. The pulse oximeter was not
attached during exercise.

Procedure

Rest condition Participants first rested for a couple of minutes
in a chair (rest condition). Then, a sequence of three record-
ings were made from the participant’s head, wrist, and calf.
Participants were instructed to position themselves as stable as
possible in front of the camera and to minimize movement

b Wrist

d Experimental setup

Webcam

Light box

Fig. 1 Snapshots from recordings of the face (a), wrist (b), and calf (c) of author K.v.d.K. The apparatus consisted of a wooden structure that supported
the body parts to minimize movement, a webcam for recordings, and a light box for equal illumination across the surface of the body parts
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during the recordings. The recorded body parts were placed
inside a wooden support structure in front of the camera (see
Fig. 1d). The order of body part recordings was randomized
and counterbalanced across participants. Each recording
lasted approximately 30 s.

Light exercise Next, participants had to exercise by running on
the spot (i.e., making running motions while staying on the
same exact location). The moment the researcher K.v.d.K.
heard a substantial increase in breathing rate (approximately
after 60 s), the same recording procedure described above was
performed. Participants were asked to exercise for a short
moment between each recording to keep their heart rate at
relatively the same level across recordings.

Moderate exercise After the light exercise and after the second
sequence of recordings, participants performed the running
exercise again, but this time longer than in the previous light
exercise condition (approximately 120 s). If participants re-
ported fatigue after running for a while, they could switch to
performing jumping jacks (i.e., moving both arms and legs in
and out in parallel while jumping). Again, recordings were
made from each body part after the exercise.

Software development

The extraction of the heart rate signal from videos of human
skin surface requires complicated image processing software.
Before we explain how this can be accomplished, we want to
note that we have made our MATLAB software and
supporting details available to the public on https://github.
com/marnixnaber/rPPG. We also invite others to either edit
and improve these scripts or write custom software and send
their scripts to us for benchmark testing. Improved versions of
the algorithm published in this article will fall under an open-
source GNU general public license (see the website above for
details). Either before or after publication of new rPPG soft-
ware, scientists can contact author MN to request to test the
performance of their rPPG software on a set of videos record-
ed under variable conditions. This software remains intellec-
tual property of the owner and it will not be published on the
website without permission. Only the test reports will be pub-
lished on a webpage (http://www.marnixnaber.nl/rfPPG/). The
goal is to gradually extend the set of videos in the future by
including more video recordings made with a large variety of
apparatus that differ in cameras, object distance, FPS,
resolution, lighting conditions, skin colors, and so forth.
These videos will not be made publicly available, because of
privacy and to prevent the development of overfitting
algorithms (i.e., generalization errors). In other words, the
precise content of the test videos will remain unknown to
prevent that participants are recognized and that software is
adapted in such a way that it can only measure heart rate
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accurately for this set of videos but not for other videos. The
test results will be made available in summary format on the
aforementioned webpage that provides an overview of all
available rPPG software and corresponding heart rate
detection performances.

Analysis

Webcam-based rPPG relies on a series of image-processing
steps to extract blood pulsation from the recorded videos and
to determine the heart’s beating rate (HR). These steps
consisted of (i) spatiotemporal cropping of videos, (ii) facial
skin selection, (iii) averaging and filtering signals, (iv) inde-
pendent component analysis, (v) fast Fourier transform, (vi)
filtering power spectra, and (vii) respiration/movement signal
rejection. Here below we provide detailed information per
individual processing step.

Spatiotemporal cropping Heart beat-induced fluctuations in
reflectance can only be detected at the skin’s surface.
Therefore each video was cropped to a fixed region of interest,
removing irrelevant background objects. Faces were automat-
ically detected with a cascade object detector of MATLAB’s
computer vision system toolbox. Videos were also cropped in
time by removing the first and last 3 s, because the first part of
the video often contained an increase in the camera’s light
sensitivity and the second part tended to contain more body
movements, as participants anticipated the end of recording.

Facial skin selection The background, clothing, teeth, hair, and
other irrelevant parts were filtered out of each frame with a skin
color selection procedure. Our script offers to methods to detect
the skin: (1) automatic selection based on color clusters, and (2)
manual selection of hue and saturation ranges. The automatic
selection consisted of a k-means clustering approach (squared
Euclidean distance, four clusters, maximum of 100 iterations)
on a and b dimensions of CIE LAB color space divided the area
within a bounding box around the face in separate color clus-
ters. The color cluster with the most pixels in the center of the
face was selected as the skin pixels. The manual selection
consisted of the selection of pixels that fell within a range of
skin hues and saturations. This range was set for the first frame
and then used for the following frames of each video. The hue
and saturation ranges were set manually by researcher K.v.d.K.
by adjusting the size and angle of a selection wedge within the
hue—saturation color map (Fig. 2a). For example, see Fig. 2b for
the selected pixels of the first frame of a face with hues and
saturation levels that fell within the wedge.

Averaging and filtering signals The average of all selected
pixels was computed per video frame and RGB color channel.
The resulting average pixel value as a function of time was
noisy (green line in Fig. 3a) and subject to considerable low-
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d Hue and saturation color space

Fig. 2 Example color space, showing pixels from a single frame from a
face recording (a). Hue is circularly represented as a function of angle
around the color space center (green circle), and saturation is radially
represented as a function of eccentricity extending from the colorless

frequency variations. To remove any influence of movement
and other factors inducing low-frequency changes in the sig-
nal, a zero-phase sixth-order Butterworth filter with a cutoff
frequency setting of 0.04 Hz was applied to the raw signal, to
compute the low-frequency signal (blue line in Fig. 3a). This
signal was computed per RGB channel and subtracted from
the raw signal. The resulting signals fluctuated around zero
and contained no low-frequency fluctuations (Fig. 3b).

Independent component analysis The filtered signals from
each RGB color channel were used as input for an indepen-
dent component analysis (ICA; Comon, 1994), to extract the
most prominent component signal present in all color chan-
nels (i.e., most likely the heart rate), thereby increasing the
signal-to-noise ratio. Performing the ICA is useful for improv-
ing heart rate signal extraction (Holton, Mannapperuma,
Lesniewski, & Thomas, 2013). The ICA looked for three
components, using a maximum of 2,000 iterations, with ver-
bose set off and stabilization turned on.

Fast Fourier transform (FFT) The component signals were fast
Fourier transformed. An FFT converts the component signals
into an estimation of power spectra (squared magnitude) that
indicates which oscillatory sine-wave frequencies were repre-
sented most powerfully in each component signal (Fig. 3¢). A
high peak in power at a certain frequency means that the
component was made up mostly of a sine-wave at that specific
frequency. This frequency is in most cases a reflection of the
detected heart rate. For convenience, we represented power as
a function of heart rate rather than frequency. Previous studies
had applied a time—frequency analysis to show how the fre-
quency spectrum changes as a function of recording time (Hu,
Peris, Echiadis, Zheng, & Shi, 2009), but the short-time
Fourier transform provided no clear heart rate signal with

b Color-based pixel selection

center. The blue wedge indicates which pixels in the hue—saturation color
space were selected for rPPG processing. The skin color selection proce-
dure ensured that the processed pixels only represented the skin surface
and not eyes, clothes, or other nonskin areas (b)

the present data, probably due to the relatively short record-
ings and low signal-to-noise ratio in many videos.

Filtering power spectra Heart rate tends to decrease toward a
baseline rest rate after exercise. This causes the power peak
representing heart rate in the frequency spectra to be smeared
out or appear as small individual peaks in close proximity
around a range of heart rate frequencies. To be able to select
the correct power peak at the average corresponding heart rate,
and not an irrelevant power peak, the power spectra were
filtered with a zero-phase third-order low-pass Butterworth
frequency filter (LFF) with a cutoff frequency setting of
0.2 Hz (see the dotted lines in Fig. 3¢ and d).

Respiration/movement signal rejection The heart rate at the
highest power peak across components was selected as the
final rPPG heart rate. However, it was noticed that often two
relatively high power peaks were visible in the frequency
spectra of the components after exercise. Often a high power
peak was present below a frequency of 90 beats per minute
(BPM), and a second, lower power peak was present above 90
BPM (see, e.g., Fig. 3d). In such cases, the high peak at the
lower frequency was probably caused by respiration or bodily
movement, while the smaller peak at the higher frequency was
caused by heart pulsations (Hu et al., 2009). To autonomously
extract the heart rate signal rather than other, irrelevant signals,
we implemented a custom power peak selection rule
consisting of two IF/THEN/OTHERWISE statements: (i) If
more than two peaks were present in a single power spec-
trum, including one large peak below and one smaller
peak above the cutoff rate of 90 BPM, and (ii) if the
lower peak was not smaller than 70% of the height of
the highest peak, then select the lower peak’s frequency
as the heart rate. Otherwise, select the frequency of the
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Fig. 3 (a) The jagged solid line represents an example of the original
signal of pixel values of the green channel of a video recording of a
face after moderate exercise. The blue line is a low-pass filter of the
original signal. The low-pass signal was subtracted from the original
signal, to remove slow fluctuations due to movement and other confound-
ing factors. Next an, an independent component analysis (ICA) was per-
formed. (b) The strongest component computed from the ICA. Power
frequency spectra were computed from the resulting component signals.

highest power peak for the corresponding heart rate. We
refer to this selection rule as respiration rejection (Resp).
Multiple cutoff rates and minimal peak differences were
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(c) Example of a frequency spectrum. Fast Fourier transform low-pass
filters (dotted lines) were applied to the spectra, to remove noise and
highlight a multitude of individual power peaks that appeared close to-
gether within a small range of varying heart rates. (d) Sometimes the
respiration signal power was strongly present in the frequency spectrum.
In these cases, the second-highest power peak was selected as the corre-
sponding heart rate. The black dashed lines in panels ¢ and d indicate the
reference heart rate measured with the pulse oximetry device

explored, and the parameters described above resulted in
the best correspondence between reference pulse oximetry-
based heart rates and rPPG heart rates.
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Results

Pulse oximetry and rPPG HR measurements per
exercise and body part condition

We first performed a sanity check to ensure that the exercise
instructions indeed resulted in significant differences in heart rates
across exercise conditions, as measured with the reference pulse
oximeter. As is shown in Fig. 4a—c, light exercise resulted in
higher heart rates than at rest, and moderate exercise resulted in
even higher heart rates than did light exercise. The heart rates
averaged across recording durations (Fig. 4d) differed significant-
ly across the exercise conditions [F(2, 20) = 259.41, p < .001].
Post-hoc 7 tests comparisons indicated that each exercise condi-
tions differed significantly from the others in heart rate [rest vs.
light: #20) = 12.63, p < .001; rest vs. moderate: #(20) =20.79, p <
.001; light vs. moderate: #20) = 11.16, p < .001]. Thus, the exer-
cise instructions resulted in the expected increases in heart rate.

Comparison between pulse oximetry and rPPG

The varying exercise conditions resulted in a large range of
heart rates, as measured with pulse oximetry across conditions
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Fig. 4 Pulse oximetry-based heart rates, in beats per minute
(reference) as a function of time during rest (red), after light
exercise (green), and after moderate exercise (blue), during facial
(a), wrist (b), and calf (c¢) recordings. Average pulse oximetry-

b

and participants. Next, we examined whether these heart rates
were comparable to the rates measured with camera-based
rPPG. We calculated and display Spearman correlations in
Fig. 5, per body part recording (rows) and per analysis method
applied (columns). Qualitative assessment of these correla-
tions suggested that the application of an LFF of the spectrum
(see Fig. 3c and d) and respiration rejection filter produced
better correlations (for Bland—Altman plots, see
Supplementary Fig. S1). The heart rate measurements of facial
rPPG were highly comparable to those from pulse oximetry (» =
.97, p < .001), and correlations in the wrist (» = .50, p < .001)
and calf (» = .27, p < .001) measurements were significantly
positive but weak. The correlations between the camera-based
and pulse-oximetry-based heart rate recordings depended on
the amounts of video frames analyzed (Fig. 6). As more frames
were added in the rPPG analysis, the correlations increased.
Next, we quantitatively assessed differences in overlap be-
tween the rPPG and pulse oximetry heart rate measurements
across conditions when all filters were applied (Fig. 5S¢, f, and
). We performed a two-way repeated measure analysis of
variance (ANOVA) on the absolute (rectified) difference be-
tween the heart rates of both measures, with the factors exer-
cise and body part condition. A significant main effect of body
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based heart rates during recording per exercise condition, pooled
across all body recordings (d). The dotted lines (a—c) and error
bars (d) around the mean indicate standard errors
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Fig.5 Scatterplots displaying correlations between the average heart rate
(beats/min) measurements of webcam-based remote PPG and pulse
oximetry-based PPG per body part (rows) and per analysis method (col-
umns). A combined procedure of applying an independent component
analysis (ICA), low-pass frequency filtering (LFF) the power spectra, and

part [F(2, 40) = 19.62, p < .001] and an overall inspection of
post-hoc ¢ tests (see Table 1 for the means and standard
deviations, and Table 2 for statistical comparisons) indicated
that facial rPPG was significantly more accurate than rPPG on
the wrists and calves, when assuming that the reference pulse
oximetry measured ground truth. A significant main effect of
exercise [F(2, 40) = 4.54, p = .017] and a significant interac-
tion between exercise and body part [F(4, 80)=3.46,p =.012]
showed that facial rPPG at rest produced the best heart rate
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rejecting the respiration signal (Resp) provided the best correlations for all
body part recordings (c, f, and i). Videos of the webcam recordings of the
face provided higher correlations with the pulse oximetry recordings than
did the wrist recordings, and wrist recordings were better than the calf
recordings, independent of the applied analyses (compare the rows)

recordings, whereas the wrist and calf recordings showed no
noteworthy differences across exercise conditions.

Finally, we investigated whether rPPG adequately indicat-
ed which exercise condition was performed, on the basis of
the detected heart rate. The average heart rates measured with
rPPG, with all applied filters, differed significantly across ex-
ercise conditions [F(2, 20) = 29.35, p < .001]. Post-hoc ¢ test
comparisons per body part recording suggested that heart rate
differed significantly across all exercise conditions for the face
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Fig. 6 Correlations between remote and pulse oximetry-based PPG as a
function of video length per recorded body part (with all filters applied:
ICA + LF + Resp). Video length, on the x-axis, means that the data were
analyzed in the period from the sixth second until the xth second of the
video. Note that the first and last 3 s of the video were not analyzed (see
the Method section), and correlations can only be calculated with a min-
imum of three data points

recordings, and that it differed both between light and moder-
ate exercise and between rest and moderate exercise for the
wrist recordings. However, heart rate did not differ across
exercise conditions for the calf recordings (see Table 3).
Signal detection analysis of the AUCs indicated that the heart
rates measured with face rPPG during rest were 83% (AUC =
0.92) separable from the heart rates measured during light
exercise, and 100% (AUC = 1.00) separable from those re-
corded during moderate exercise. The heart rates measured
with face rPPG during light exercise were 78% (AUC =
0.89) separable from those during moderate exercise. The
AUCs for the same comparisons for wrist rPPG were 32%,
73%, and 57% (AUC = 0.66, 0.87, 0.79), respectively. The
AUC:s for the same comparisons for calf TPPG were 5%, 14%,
and 6% (AUC = 0.53, 0.57, 0.53), respectively. In sum, face
rPPG provided good exercise indications, wrist recordings
provided recordings useful to detect whether participants had
exercised moderately versus not at all or lightly, and calf re-
cordings were inaccurate in determining an exercised-induced
increase in heart rate.

Table 1 Means and standard deviations of absolute difference between
rPPG and pulse oximetry heart rate (beats/min)

Exercise Rest Light Mod

Body

Part

Face 2.34+1.51 591+4.78 5.60 £4.00
Wrist 29.75 +25.07 16.11 £21.03 18.78 £17.45
Calf 36.83 +£24.42 19.47 +£16.63 29.07 £22.63

Discussion

This study targeted the development and publication of basic
open-source rPPG software and aimed to demonstrate its func-
tionality with two experimental manipulations: (i) to investi-
gate how accurately rPPG can detect heart rates at rest as
compared to heart rates after exercise, and (ii) to examine
whether rPPG targeted on calves and wrists are as accurate
as rPPG targeted on faces under ambient light conditions. As
far as we know, rPPG’s accuracy had not yet been reported by
previous studies with a similar combination of experimental
manipulations, a consumer-level camera, a relatively simple
method, and an open-access rPPG algorithm.

We showed that rPPG can detect heart rates in faces slightly
more accurately when the heart rate is slow (< 90 BPM) than
when it is fast. It is possible that the variation in accuracy
across exercise conditions could be related to signal distor-
tions by breathing-induced movement. A more likely expla-
nation is that exercise induced more variability in heart rates
(compare the blue and red lines in Fig. 4a), and by definition it
is more difficult to detect unstable heart rates, independent of
the applied filtering methods. Nonetheless, the application of a
low-pass filter on the power frequency spectra of the mea-
sured rPPG signal helped take into account variable heart
rates. Future software improvements could try to cover such
variabilities more accurately by measuring heart rate as a func-
tion of recording time with a sliding window over the signal
(e.g., time—frequency analyses). Note that such analyses re-
quire shorter time windows, resulting in less signal power, and
thus lower rPPG accuracies.

Although rPPG was highly accurate for video recordings of
the face, recordings of the wrist diminished accuracy to such a
degree that rPPG could only detect whether a person had per-
formed moderate versus either light or no exercise. RPPG
targeted on the calf was unreliable. An explanation for the dif-
ferences in rPPG’s accuracy across body parts is that faces have
a very high amount of microvascular networks in the superficial
skin layers (Spalteholz, Spanner, Nederveen, & Crawford,
1967). The wrists also have many veins visible at the skin
surface, but the calves lack such anatomical characteristics.

The low accuracy of rPPG measurements on the wrists and
calves could be improved by applying more sophisticated
rPPG algorithms and apparatus that take into account the
distorting effects of bodily movements (van Gastel, Stuijk,
& de Haan, 2016a, 2016b) and apply polarization camera
filters (Kamshilin et al., 2016; Sidorov, Volynsky, &
Kamshilin, 2016; Trumpp, Bauer, Rasche, Malberg, &
Zaunseder, 2017). An interesting option would be to identify
the best angle in color space along which pixel colors change
as a function of heart rate rather than motion (e.g., Bousefsaf
et al., 2013; Wang, den Brinker, Stuijk, & de Haan, 2017a).
Note, however, that the present article’s goal was not to im-
plement such state-of-the-art algorithms but to initiate an

@ Springer



2116 Behav Res (2019) 51:2106-2119
Table 2 Post-hoc ¢ test comparisons between differences in rPPG and pulse oximetry heart rates (beats/min)
Face Wrist Calf Face Wrist Calf Face Wrist
Rest Rest Rest Light Light Light Mod. Mod.
Wrist Rest 453"
Calf Rest 6.617" 1.14
Face Light 228" 3.82" 6.29""
Wrist Light 258" 2.01 3.05" 1.89
Calf Light 3.83" 1.54 311" 340" 0.38
Face Mod. 126 413" 570" 1.03 237 349"
Wrist Mod. 346" 1.57 2.56" 271" 0.71 0.13 341"
Calf Mod. 496" 0.01 1.05 479" 1.76 2.38 458" 1.71

“p<.05 " p<.01," p<.001

open-access collaborative development project that will hope-
fully lead to state-of-the-art algorithms and improved rPPG
accuracies in the future.

One goal of the present article was to provide scientists with
an open-source script that they can use to extract heart rate from
videos of participants. We see several applications of our algo-
rithm in the field of social sciences, including psychology.
Heart rate and heart rate variability (HRV) are indicators of
stress, workload, and emotion processing. For instance, the
heart rate slows down more when people watch unpleasant
stimuli than when they watch neutral or pleasant stimuli
(Appelhans & Luecken, 2006, Greenwald, Cook, & Lang,
1989; Winton, Putnam, & Krauss, 1984). RPPG could thus
potentially be used to determine whether or not people find
advertisements and other media types pleasant. Conversely,
the heart rate tends to accelerate when observing negative as
compared to positive facial expressions (Critchley et al., 2005;
Levenson, Ekman, & Friesen, 1990). Heart rate measurements
with rPPG might thus reveal which emotions were experienced
during interaction without making participants aware of the
measurements. Although these possibilities have not yet been
examined, studies have used rPPG to show that the components

Table 3  Post-hoc 7 test comparisons between average heart rates (beats/
min) across exercise conditions per body part condition (with all filters
applied)

Body Part Recording Comparison t Value p Value
Face Rest vs. light 10.94 <.001
Rest vs. moderate 8.23 <.001
Light vs. moderate 17.52 <.001
Wrist Rest vs. light 1.32 .200
Rest vs. moderate 3.60 .002
Light vs. moderate 3.69 .002
Calf Rest vs. light 0.13 .895
Rest vs. moderate 0.10 924
Light vs. moderate 0.05 964

@ Springer

of HRV (e.g., the ratio between low- and high-frequency chang-
es in HRV) change when participants perform a stressful task,
as compared to episodes of relaxation (Bousefsaf et al., 2013;
McDuff et al., 2014). These initial finding suggest that rPPG is
an affordable and accessible tool to measure changes in task
demands in laboratories and work-related environments.

Camera-based systems such as rPPG enable more than just
the detection of heart rates. One interesting development is the
detection of blood oxygen saturation by using a remote SpO2
camera setup that uses multiple wavelengths of light (van
Gastel et al., 2016a; Wieringa et al., 2007). Another possibility
is to record respiration rate with rPPG (van Gastel et al.,
2016b). In the present study, we ignored respiration to accu-
rately detect heart rate. The influence of respiration on the
rPPG power spectra can be a problem when people have
exercised and respiration rate becomes higher than 50 breaths
per minute, therewith entering the range of heart rates. In other
words, we treated the potential influence of respiration on
rPPG purely as a confounding signal. However, it can be of
great value to use rPPG to measure respiration (Sun et al.,
2011; Tarassenko et al., 2014). Although this is out of the
scope of the present study, future work could explore to what
degree respiration is detectable in a variety of conditions.
These studies should include validated measurements of res-
piration rates to confirm that the presence of a low frequency
signal in the data is indeed caused by breathing.

In addition to the experimental investigations described
above, this article was also written with the goal to improve
the quality of scientific investigations into rPPG accuracy by
(i) creating a standardized testing procedure for the assessment
of rPPG’s accuracy and by (ii) describing a standardized report
procedure that assesses rPPG’s accuracy in several manners.
We hope that this article will serve as a guide for future pub-
lications on rPPG. We further would like to extend our video
database of human skin recordings and invite other scientists
to share existing databases with us.

This study focused on the advancement of an affordable,
simple, and accessible rPPG method. However, we do
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acknowledge the importance and relevance of advancing
rPPG methods with both high temporal and spatial resolu-
tions. To facilitate the accuracy of our method, we utilized fast
Fourier analysis (FFA) and other image-processing steps.
However, FFA can potentially be inaccurate when averaging
PPG waveforms across all pixels from the face’s surface, due
to the possibility that not all skin pixels display a signal with
the same phase (Moco, Stuijk, & de Haan, 2016; Teplov et al.,
2014). Despite this limitation, we have shown that the
facial measurements are still close to perfection, thus
indicating that signal averaging across skin surface is
not necessarily detrimental. Nonetheless, future studies
could try to improve the accuracy of wrist and calf
rPPG by synchronizing the phase of the heart rate sig-
nal across the skin’s surface (Kamshilin et al., 2016).
Another solution would be to divide the face in multiple
regions of interest (ROIs) and perform separate signal
analyses per ROI (Kwon, J. Kim, et al., 2015; Po et al.,
2018; Sun et al.,, 2011) before combining information
from the most relevant ROIs.

Another limitation of the present algorithm is the
setting of several parameters for the respiration rejec-
tion. It is yet unknown whether these parameters are
robust and lead to comparable performances in other
video recordings.

In sum, rPPG with consumer-level cameras is a promising
heart rate measurement tool, at least when targeted on facial
skin surfaces. This study showed that the application of rPPG
on nonfacial skin surfaces is a challenge. However, computer-
imaging science is progressing rapidly. Many solutions that
improve the extraction of the heart rate signal from videos
have recently been discovered, including the tracking of faces,
the use of filters of irrelevant color and motion changes, and
algorithms that detect pulsatile body movements (de Haan &
Jeanne, 2013; de Haan & van Leest, 2014; Wang et al., 2015).
We hope that rPPG imaging experts will continue to improve
rPPG methods to become more affordable and accessible and
to make their software available to the public through https://
github.com/marnixnaber/rPPG.
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https://github.com/marnixnaber/rPPG.

Data availability The datasets generated during and analyzed during the
present study are available from the corresponding author on reasonable
request. The videos generated during the present study are not publicly
available, because of privacy issues and because the videos will be used to
benchmark other rPPG algorithms. It is important that other algorithms do
not gain access to these videos before publication, since algorithms could
be adapted in such a way that they were only accurate when applied to the
present set of videos (i.e., overfitting).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

Aarts, L. A., Jeanne, V., Cleary, J. P., Lieber, C., Nelson, J. S., Bambang
Oetomo, S., & Verkruysse, W. (2013). Non-contact heart rate mon-
itoring utilizing camera photoplethysmography in the neonatal in-
tensive care unit—A pilot study. Early Human Development, 89,
943-948. https://doi.org/10.1016/j.earlhumdev.2013.09.016

Allen, J. (2007). Photoplethysmography and its application in clinical
physiological measurement. Physiological Measurement, 28, R1—
R309.

Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an
index of regulated emotional responding. Review of General
Psychology, 10, 229-240. https://doi.org/10.1037/1089-2680.10.3.
229

Blackford, E. B., & Estepp, J. R. (2015). Effects of frame rate and image
resolution on pulse rate measured using multiple camera imaging
photoplethysmography. In SPIE Medical Imaging (pp. 94172D—
94172D-14). Bellingham, WA: International Society for Optics
and Photonics.

Bousefsaf, F., Maaoui, C., & Pruski, A. (2013). Remote assessment of the
heart rate variability to detect mental stress. In Proceedings of the
2013 7th International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth) (pp. 348-351).
Piscataway, NJ: IEEE Press.

Cennini, G., Arguel, J., Aksit, K., & van Leest, A. (2010). Heart rate
monitoring via remote photoplethysmography with motion artifacts
reduction. Optics Express, 18, 4867-4875.

Comon, P. (1994). Independent component analysis, a new concept?
Signal Processing, 36, 287-314.

Critchley, H. D., Rotshtein, P., Nagai, Y., O’Doherty, J., Mathias, C. J., &
Dolan, R. J. (2005). Activity in the human brain predicting differ-
ential heart rate responses to emotional facial expressions.
Neurolmage, 24, 751-762.

Daly, S. M., & Leahy, M. J. (2013). “Go with the flow”: A review of
methods and advancements in blood flow imaging. Journal of
Biophotonics, 6, 217-255.

de Haan, G., & Jeanne, V. (2013). Robust pulse rate from chrominance-
based rPPG. IEEE Transactions on Biomedical Engineering, 60,
2878-2886.

de Haan, G., & van Leest, A. (2014). Improved motion robustness of
remote-PPG by using the blood volume pulse signature.
Physiological Measurement, 35, 1913—1926. https://doi.org/10.
1088/0967-3334/35/9/1913

Greenwald, M. K., Cook, E. W., & Lang, P. J. (1989). Affective judgment
and psychophysiological response: Dimensional covariation in the
evaluation of pictorial stimuli. Journal of Psychophysiology, 3, 51—
64.

Hertzman, A. B. (1938). The blood supply of various skin areas as esti-
mated by the photoelectric plethysmograph. American Journal of
Physiology—Legacy Content, 124, 328-340.

Hertzman, A. B., & Spealman, C. (1937). Observations on the finger
volume pulse recorded photoelectrically. American Journal of
Physiology, 119, 334-335.

Holton, B. D., Mannapperuma, K., Lesniewski, P. J., & Thomas, J. C.
(2013). Signal recovery in imaging photoplethysmography.

@ Springer


https://github.com/marnixnaber/rPPG
https://github.com/marnixnaber/rPPG
https://github.com/marnixnaber/rPPG
https://doi.org/10.1016/j.earlhumdev.2013.09.016
https://doi.org/10.1037/1089-2680.10.3.229
https://doi.org/10.1037/1089-2680.10.3.229
https://doi.org/10.1088/0967-3334/35/9/1913
https://doi.org/10.1088/0967-3334/35/9/1913

2118

Behav Res (2019) 51:2106-2119

Physiological Measurement, 34, 1499—1511. https://doi.org/10.
1088/0967-3334/34/11/1499

Hu, S., Peris, V. A., Echiadis, A., Zheng, J., & Shi, P. (2009).
Development of effective photoplethysmographic measurement
techniques: From contact to non-contact and from point to imaging.
In Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC 2009) (pp.
6550-6553). Piscataway, NJ: IEEE Press.

Humphreys, K., Ward, T., & Markham, C. (2007). Noncontact simulta-
neous dual wavelength photoplethysmography: A further step to-
ward noncontact pulse oximetry. Review of Scientific Instruments,
78, 044304.

Kamshilin, A. A., Nippolainen, E., Sidorov, I. S., Vasilev, P. V., Erofeev,
N. P,, Podolian, N. P., & Romashko, R. V. (2015). A new look at the
essence of the imaging photoplethysmography. Scientific Reports, 5,
10494. https://doi.org/10.1038/srep 10494

Kamshilin, A. A., Sidorov, I. S., Babayan, L., Volynsky, M. A.,
Giniatullin, R., & Mamontov, O. V. (2016). Accurate measurement
of the pulse wave delay with imaging photoplethysmography.
Biomedical Optics Express, 7, 5138-5147.

Klaessens, J. H., van den Born, M., van der Veen, A., Sikkens-van de
Kraats, J., van den Dungen, F. A., & Verdaasdonk, R. M. (2014).
Development of a baby friendly non-contact method for measuring
vital signs: First results of clinical measurements in an open incuba-
tor at a neonatal intensive care unit. In SPIE BiOS (pp. 89351P—
89351P-7). Bellingham, WA: International Society for Optics and
Photonics.

Kranjec, J., Begus, S., Gersak, G., & Drmovsek, J. (2014). Non-contact
heart rate and heart rate variability measurements: A review.
Biomedical Signal Processing and Control, 13, 102-112.

Kviesis-Kipge, E., & Rubins, U. (2016). Portable remote
photoplethysmography device for monitoring of blood volume
changes with high temporal resolution. In Proceedings of the 2016
15th Biennial Baltic Electronics Conference (BEC) (pp. 55-58).
Piscataway, NJ: IEEE Press.

Kwon, S., Kim, H., & Park, K. S. (2012). Validation of heart rate extrac-
tion using video imaging on a built-in camera system of a
smartphone. In Proceedings of the 2012 Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC) (pp. 2174-2177). Piscataway, NJ: IEEE Press.

Kwon, S., Kim, J., Lee, D., & Park, K. (2015). ROI analysis for remote
photoplethysmography on facial video. In Proceedings of the 2015
37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) (pp. 4938—4941).
Piscataway, NJ: IEEE Press.

Levenson, R. W., Ekman, P., & Friesen, W. V. (1990). Voluntary facial
action generates emotion-specific autonomic nervous system activ-
ity. Psychophysiology, 27, 363-384.

Marcinkevics, Z., Rubins, U., Zaharans, J., Miscuks, A., Urtane, E., &
Ozolina-Moll, L. (2016). Imaging photoplethysmography for clini-
cal assessment of cutaneous microcirculation at two different depths.
Journal of Biomedical Optics, 21, 035005.

McDuff, D. J., Estepp, J. R., Piasecki, A. M., & Blackford, E. B. (2015).
A survey of remote optical photoplethysmographic imaging
methods. In Proceedings of the 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC) (pp. 6398—-6404). Piscataway, NJ: IEEE Press.

McDuff, D. J., Gontarek, S., & Picard, R. (2014). Remote measurement
of cognitive stress via heart rate variability. In Proceedings of the
2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC) (pp. 2957—
2960). Piscataway, NJ: IEEE Press.

Mogo, A. V., Stuijk, S., & de Haan, G. (2016). Motion robust PPG-
imaging through color channel mapping. Biomedical Optics
Express, 7, 1737-1754.

@ Springer

Nijboer, J. A., Dorlas, J. C., & Mahieu, H. F. (1981). Photoelectric
plethysmography—Some fundamental aspects of the reflection
and transmission method. Clinical Physics and Physiological
Measurement, 2, 205-215.

Po, L.-M,, Feng, L., Li, Y., Xu, X., Cheung, T. C.-H., & Cheung, K.-W.
(2018). Block-based adaptive ROI for remote photoplethysmography.
Multimedia Tools and Applications, 77, 6503—6529.

Poh, M.-Z., McDuff, D. J., & Picard, R. W. (2010). Non-contact, auto-
mated cardiac pulse measurements using video imaging and blind
source separation. Optics Express, 18, 10762—10774.

Poh, M.-Z., & Poh, Y. C. (2017). Validation of a standalone smartphone
application for measuring heart rate using imaging
photoplethysmography. Telemedicine and e-Health, 23, 678—683.
https://doi.org/10.1089/tmj.2016.0230

Rouast, P. V., Adam, M. T. P., Chiong, R., Cornforth, D., & Lux, E.
(2018). Remote heart rate measurement using low-cost RGB face
video: A technical literature review. Frontiers of Computer Science,
12, 858-872.

Rubins, U., Miscuks, A., Rubenis, O., Erts, R., & Grabovskis, A. 2
(2010). The analysis of blood flow changes under local anesthetic
input using non-contact technique. In Proceedings of the 2010 3rd
International Conference on Biomedical Engineering and
Informatics (BMEI) (pp. 601-604). Piscataway, NJ: IEEE Press.

Sidorov, I. S., Volynsky, M. A., & Kamshilin, A. A. (2016). Influence of
polarization filtration on the information readout from pulsating
blood vessels. Biomedical Optics Express, 7, 2469-2474.

Spalteholz, W., Spanner, R., Nederveen, A., & Crawford, G. N. C.
(1967). Atlas of human anatomy. Philadelphia: Davis.

Sun, Y., Hu, S., Azorin-Peris, V., Greenwald, S., Chambers, J., & Zhu, Y.
(2011). Motion-compensated noncontact imaging
photoplethysmography to monitor cardiorespiratory status during
exercise. Journal of Biomedical Optics, 16, 077010. https://doi.
org/10.1117/1.3602852

Sun, Y., Hu, S., Azorin-Peris, V., Kalawsky, R., & Greenwald, S. (2013).
Noncontact imaging photoplethysmography to effectively access
pulse rate variability. Journal of Biomedical Optics, 18, 061205.

Sun, Y., & Thakor, N. (2016). Photoplethysmography revisited: From
contact to noncontact, from point to imaging. /EEE Transactions
on Biomedical Engineering, 63, 463—477.

Tarassenko, L., Villarroel, M., Guazzi, A., Jorge, J., Clifton, D. A., & Pugh,
C. (2014). Non-contact video-based vital sign monitoring using am-
bient light and auto-regressive models. Physiological Measurement,
35, 807-831. https://doi.org/10.1088/0967-3334/35/5/807

Teplov, V., Nippolainen, E., Makarenko, A. A., Giniatullin, R., &
Kamshilin, A. A. (2014). Ambiguity of mapping the relative phase
of blood pulsations. Biomedical Optics Express, 5, 3123-3139.

Trumpp, A., Bauer, P. L., Rasche, S., Malberg, H., & Zaunseder, S.
(2017). The value of polarization in camera-based
photoplethysmography. Biomedical Optics Express, 8, 2822-2834.

Tulyakov, S., Alameda-Pineda, X., Ricci, E., Yin, L., Cohn, J. F., & Sebe,
N. (2016). Self-adaptive matrix completion for heart rate estimation
from face videos under realistic conditions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (pp.
2396-2404). Piscataway, NJ: IEEE Press.

van Gastel, M., Stuijk, S., & de Haan, G. (2016a). New principle for
measuring arterial blood oxygenation, enabling motion-robust re-
mote monitoring. Scientific Reports, 6, 38609.

van Gastel, M., Stuijk, S., & de Haan, G. (2016b). Robust respiration
detection from remote photoplethysmography. Biomedical Optics
Express, 7, 4941-4957.

Verkruysse, W., Svaasand, L. O., & Nelson, J. S. (2008). Remote plethys-
mographic imaging using ambient light. Optics Express, 16,21434—
21445.

Wang, W., Balmackers, B., & de Haan, G. (2016). Quality metric for
camera-based pulse rate monitoring in fitness exercise. In



https://doi.org/10.1088/0967-3334/34/11/1499
https://doi.org/10.1088/0967-3334/34/11/1499
https://doi.org/10.1038/srep10494
https://doi.org/10.1089/tmj.2016.0230
https://doi.org/10.1117/1.3602852
https://doi.org/10.1117/1.3602852
https://doi.org/10.1088/0967-3334/35/5/807

Behav Res (2019) 51:2106-2119

2119

Proceedings of the 2016 IEEE International Conference on Image
Processing (ICIP) (pp. 2430-2434). Piscataway, NJ: IEEE Press.

Wang, W., den Brinker, A. C., Stuijk, S., & de Haan, G. (2017a).
Algorithmic principles of remote PPG. I[EEE Transactions on
Biomedical Engineering, 64, 1479-1491.

Wang, W., den Brinker, A. C., Stuijk, S., & de Haan, G. (2017b). Color-
distortion filtering for remote photoplethysmography. In
Proceedings of the 12th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2017) (pp. 71-78).
Piscataway, NJ: IEEE Press.

Wang, W., Stuijk, S., & De Haan, G. (2015). Exploiting spatial redun-
dancy of image sensor for motion robust rppg. /EEE Transactions
on Biomedical Engineering, 62, 415-425.

Wieringa, F. P., Mastik, F., Boks, R. H., Visscher, A., Bogers, A.J.J. C.,
& Van der Steen, A. F. W. (2007). In vitro demonstration of an
SpO2-camera. In Proceedings of the 2007 Computers in
Cardiology Conference (pp. 749-751). Piscataway, NJ: IEEE
Press. 10.1109/CIC.2007.4745594

Wieringa, F. P., Mastik, F., & van der Steen, A. F. (2005). Contactless
multiple wavelength photoplethysmographic imaging: A first step

toward “SpO 2 camera” technology. Annals of Biomedical
Engineering, 33, 1034-1041.

Winton, W. M., Putnam, L. E., & Krauss, R. M. (1984). Facial and
autonomic manifestations of the dimensional structure of emotion.
Journal of Experimental Social Psychology, 20, 195-216.

Yan, B. P,, Chan, C. K., Li, C. K., To, O. T., Lai, W. H., Tse, G., ... Poh,
M. Z. (2017). Resting and postexercise heart rate detection from
fingertip and facial photoplethysmography using a smartphone cam-
era: A validation study. JMIR mHealth and uHealth, 5, €33. https://
doi.org/10.2196/mhealth.7275

Zheng, J., Hu, S., Chouliaras, V., & Summers, R. (2008). Feasibility of
imaging photoplethysmography. In Proceedings of the International
Conference on BioMedical Engineering and Informatics, 2008
(BMEI 2008) (pp. 72-75). Piscataway, NJ: IEEE Press.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.2196/mhealth.7275
https://doi.org/10.2196/mhealth.7275

	An open-source remote heart rate imaging method with practical apparatus and algorithms
	Abstract
	Nonremote photoplethysmography (PPG)
	Limitations to the application of PPG
	Remote PPG
	rPPG’s underlying physiological mechanism and algorithms
	Present study
	Method
	Participants
	Design and apparatus
	Procedure
	Software development
	Analysis

	Results
	Pulse oximetry and rPPG HR measurements per exercise and body part condition
	Comparison between pulse oximetry and rPPG

	Discussion
	References


