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Commonmicroarray and next-generation sequencing data analysis concentrate on tumor subtype classification, marker detection,
and transcriptional regulation discovery during biological processes by exploring the correlated gene expression patterns and their
shared functions. Genetic regulatory network (GRN) based approaches have been employed in many large studies in order to
scrutinize for dysregulation and potential treatment controls. In addition to gene regulation and network construction, the concept
of the network modulator that has significant systemic impact has been proposed, and detection algorithms have been developed
in past years. Here we provide a unified mathematic description of these methods, followed with a brief survey of these modulator
identification algorithms. As an early attempt to extend the concept to new RNA regulation mechanism, competitive endogenous
RNA (ceRNA), into a modulator framework, we provide two applications to illustrate the network construction, modulation effect,
and the preliminary finding from these networks. Those methods we surveyed and developed are used to dissect the regulated
network under different modulators. Not limit to these, the concept of “modulation” can adapt to various biological mechanisms
to discover the novel gene regulation mechanisms.

1. Introduction

With the development of microarray [1] and lately the next
generation sequencing techniques [2], transcriptional pro-
filing of biological samples, such as tumor samples [3–5]
and samples from other model organisms, have been carried
out in order to study sample subtypes at molecular level or
transcriptional regulation during the biological processes [6–
8]. While common data analysis methods employ hierarchi-
cal clustering algorithms or pattern classification to explore
correlated genes and their functions, the genetic regulatory
network (GRN) approaches were employed to scrutinize for
dysregulation between different tumor groups or biological
processes (see reviews [9–12]).

To construct the network, most of research is focused on
methods based on gene expression data derived from high-
throughput technologies by using metrics such as Pearson
or Spearman correlation [13], mutual information [14], co-
determinationmethod [15, 16], Bayesianmethods [17, 18], and
probabilistic Boolean networks [19]. Recently, new transcrip-
tional regulation via competitive endogenous RNA (ceRNAs)
has been proposed [20, 21], introducing additional dimension
in modeling gene regulation. This type of regulation requires
the knowledge of microRNA (miRNA) binding targets [22,
23] and the hypothesis of RNA regulations via competition
of miRNA binding. Common GRN construction tries to
confine regulators to be transcription factor (TF) proteins,
a primary transcription programming machine, which relies
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Figure 1: Regulator-target pair in genetic regulatory network model: (a) basic regulator-target pair and (b) regulator-target complex.

on sequence-specific binding sites at target genes’ promoter
regions. In contrast, ceRNAs mediate gene regulation via
competing miRNAs binding sites in target 3UTR region,
which exist in >50% of mRNAs [22, 24]. In this study, we
will extend the current network construction methods by
incorporating regulation via ceRNAs.

In tumorigenesis, gene mutation is the main cause of
the cancer [25]. The mutation may not directly reflect in
the change at the gene expression level; however, it will
disrupt gene regulation [26–28]. In Hudson et al., they
found that mutated myostatin and MYL2 showed different
coexpressionswhen comparing towild-typemyostatin. Chun
et al. also showed that oncogenic KRAS modulates HIF-
1𝛼 and HIF-2𝛼 target genes and in turn modulates cancer
metabolism. Stelniec-Klotz et al. presented a complex hierar-
chicalmodel ofKRASmodulated network followed by double
perturbation experiments. Shen et al. [29] showed a temporal
change of GRNs modulated after the estradiol stimulation,
indicating important role of estrogen in modulating GRNs.
Functionally, modulation effect of high expression of ESR1
was also reported byWilson andDering [30]where they stud-
ied previously published microarray data with cells treated
with hormone receptor agonists and antagonists [31–33]. In
this study, a comprehensive review of existing algorithms to
uncover themodulators was provided. Given either mutation
or protein expression status was unknown under many of
reported studies, the problem of how to partition the diverse
samples with different conditions, such as active or inactive
oncogene status (and perhaps a combination of multiple
mutations), and the prediction of a putative modulator of
gene regulation remains a difficult task.

By combining gene regulation obtained from coexpres-
sion data and ceRNAs, we report here an early attempt to
unify two systems mathematically while assuming a known
modulator, estrogen receptor (ER). By employing the TCGA
[3] breast tumor gene expressions data and their clinical test
result (ER status), we demonstrate the approach of obtaining
GRN via ceRNAs and a new presentation of ER modulation
effects. By integrating breast cancer data into our unique
ceRNAs discovery website, we are uniquely positioned to
further explore the ceRNA regulation network and further

develop the discovery algorithms in order to detect potential
modulators of regulatory interactions.

2. Models of Gene Regulation and Modulation

2.1. Regulation of Gene Expression. Thecomplex relationships
among genes and their products in a cellular system can
be studied using genetic regulatory networks (GRNs). The
networksmodel the different states or phenotypes of a cellular
system. In this model, the interactions are commonly mod-
eled as regulator-target pairs with edges between regulator
and target pair representing their interaction direction, as
shown in Figure 1(a). In this model a target gene is a gene
whose expression can be altered (activated or suppressed)
by a regulator gene. This definition of a target gene implies
that any gene can be at some point a target gene or a
direct or indirect regulator depending on its position in the
genetic regulatory network. The regulator gene is a gene that
controls (activates or suppresses) its target genes’ expression.
The consequences of these activated (or suppressed) genes
sometimes are involved in specific biological functions, such
as cell proliferation in cancer. Examples of regulator-target
pair in biology are common. For example, a target gene
CDCA7 (cell division cycle-associated protein 7) is a c-Myc
(regulator) responsive gene, and it is part of c-Myc-mediated
transformation of lymphoblastoid cells. Furthermore, as
shown in Figure 1(b), a regulator gene can also act as a target
gene if there exists an upstream regulator.

If the interaction is modeled after Boolean network (BN)
model [34], then
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Figure 2: Three different cases of regulation of gene expression that share the network representation of a regulator target interaction.

similar regulators-target relationship as defined in (1) can be
modeled by the distribution
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prior distribution of regulators. Unlike in (1), the target and
regulators in (2) are modeled as random variables. Despite
of this difference, in both (1) and (2), the target is always a
function (or conditional distribution) of the regulator (or par-
ents).When the relationship is defined by a Boolean function
as in (1), the conditional distribution in (2) take the form
of a binomial distribution (or a multinomial distribution
when both regulators and target take more than two states).
Other distributions such as the Gaussian and Poisson can be
introduced to model more complex relationships than the
Boolean. The network construction, inference, and control,
however, are beyond the scope of this paper, and we leave the
topics to the literatures [9, 35, 36].

The interactions among genes and their products in
a complex cellular process of gene expression are diverse,
governed by the central dogma of molecular biology [37].
There are different regulation mechanisms that can actuate
during different stages. Figure 2 shows three different cases
of regulation of gene expression. Figure 2(a) shows the case
of regulation of expression in which a transcription factor
(TF) regulates the expression of a protein-coding gene (in
dark grey) by binding to the promoter region of target gene 𝑦.
Figure 2(b) is the case of regulation at the protein level in
which a ligand protein interacts with a receptor to activate
relay molecules to transduce outside signals directly into cell
behavior. Figure 2(c) is the case of regulation at the RNA
level in which one or more miRNAs regulate target mRNA
𝑦 by translational repression or target transcript degradation
via binding to sequence-specific binding sites (called miRNA
response elements or MREs) in 3UTR region. As illustrated
in Figure 2(c), the target genes/proteins all contain a domain
of binding or docking site, enabling specific interactions
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Figure 3: Graphical representation of the triplet interaction of
regulator 𝑥, target 𝑦, and modulator𝑚.

between regulator-target pairs, a common element in net-
work structure.

2.2. Modulation of Gene Regulation. Different from the con-
cept of a coregulator commonly referred in the regulatory
biology, a modulator denotes a gene or protein that is capable
of altering the endogenous gene expression at one stage or
time. In the context of this paper, we specifically define
a modulator to be a gene that can systemically influence
the interaction of regulator-target pair, either to activate
or suppress the interaction in the presence/absence of the
modulator. One example of modulator is the widely studied
estrogen receptor (ER) in breast cancer studies [38–40]; the
ER status determines not only the tumor progression, but also
the chemotherapy treatment outcomes. It is well known that
binding of estrogen to receptor facilitates the ER activities
to activate or repress gene expression [41], thus effectively
modulating the GRN. Figure 3 illustrates the model of the
interaction between a modulator (𝑚) and a regulator (𝑥)
target (𝑦) pair that it modulates.

Following the convention used in (1) and (2), the modu-
lation interaction in Figure 3 can be modeled by

𝑦 = F
(𝑚)

(𝑥) , (3)

where 𝑦 represents target expression, 𝑥 represents the parents
(regulators) of target 𝑦, andF(𝑚)(⋅) is the regulation function
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modulated by𝑚. WhenF(𝑚)(⋅) is stochastic, the relationship
is modeled by the conditional distribution as

𝑝 (𝑦, 𝑥 | 𝑚) = 𝑝 (𝑦 | 𝑥,𝑚) 𝑝 (𝑥 | 𝑚) , (4)

where 𝑝(𝑦|𝑥,𝑚) models the regulator-target relationship
modulated by 𝑚 and 𝑝(𝑥|𝑚) defines the prior distribution
of regulators (parents) expression modulated by𝑚. Different
distribution models can be used to model different mech-
anisms for modulation. At the biological level, there are
different mechanisms for modulation of the interaction 𝑥-𝑦,
and currently several algorithms for prediction of the mod-
ulators has been developed. This survey presents the latest
formulations and algorithms for prediction of modulators.

3. Survey of Algorithms of Gene Regulation
and Modulation Discovery

During the past years, many computational tools have been
developed for regulation network construction, and then
depending on the hypothesis, modulator concept can be
tested and extracted. Here we will focus on modulator detec-
tion algorithms (MINDy, Mimosa, GEM, and Hermes). To
introduce gene-gene interaction concept, we will also briefly
discuss algorithms for regulation network construction
(ARACNE) and ceRNA identification algorithm (MuTaMe).

3.1. ARACNE (Algorithm for the Reconstruction of Accurate
Cellular Networks). ARACNE [14, 42] is an algorithm that
extracts transcriptional networks from microarray data by
using an information-theoreticmethod to reduce the indirect
interactions. ARACNE assumes that it is sufficient to estimate
2-way marginal distributions, when sample size𝑀 > 100, in
genomics problems, such that
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Or a candidate interaction can be identified using estima-
tion of mutual information MI of genes 𝑥 and 𝑦, MI(𝑥, 𝑦) =
MI
𝑥𝑦
, where MI

𝑥𝑦
= 1 if genes 𝑥 and 𝑦 are identical, and

MI
𝑥𝑦

is zero if 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦), or 𝑥 and 𝑦 are sta-
tistically independent. Specifically, the estimation of mutual
information of gene expressions 𝑥 and 𝑦 of regulator and
target genes is done by using the Gaussian kernel estimator.
TheARACNE takes additional two steps to clean the network:
(1) removing MI if its 𝑃 value is less than that derived from
two independent genes via random permutation and (2) data
processing inequality (DPI). The algorithm further assumes
that for a triplet gene (𝑔
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, 𝑔
𝑦
, 𝑔
𝑧
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(6)

where → represents regulation relationship. In other words,
the lowest mutual information MI

𝑥,𝑧
is from an indirect

interaction and thus shall be removed from the GRN by

ARACNE in the DPI step. A similar algorithm was proposed
[43] to utilize conditional mutual information to explore
more than 2 regulators.

3.2. MINDy (Modulator Inference by Network Dynamics).
Similar toARACNE,MINDy is also an information-theoretic
algorithm [44]. However, MINDy aims to identify poten-
tial transcription factor-(TF-target) gene pairs that can be
modulated by a candidate modulator. MINDy assumes that
the expressions of the modulated TF-target pairs are of
different correlations under different expression state of the
modulator. For simplicity and computational consideration,
MINDy considers only two modulator expression states, that
is, up- (𝑚 = 1) or down-expression (𝑚 = 0). Then, it
tests if the expression correlations of potential TF-target pairs
are significantly different for modulator up-expression versus
down-expression. The modulator dependent correlation is
assessed by the conditional mutual information (CMI) or
𝐼(𝑥, 𝑦 | 𝑚 = 0) and 𝐼(𝑥, 𝑦 | 𝑚 = 1). Similar to ARACNE,
the CMI is calculated using the Gaussian kernel estimator. To
test if a pair of TF (𝑦) and target (𝑥) is modulated by 𝑚, the
CMI difference can be calculated as

Δ𝐼 = 𝐼 (𝑥, 𝑦 | 𝑚 = 1) − 𝐼 (𝑥, 𝑦 | 𝑚 = 0) . (7)

The pair is determined to be modulated if Δ𝐼 ̸= 0. The sig-
nificance 𝑃 values for Δ𝐼 ̸= 0 is computed using permutation
tests.

3.3. Mimosa. Similarly to MINDy, Mimosa [45] was pro-
posed to identifymodulated TF-target pairs. However, it does
not preselect a set of modulators of interest but rather aims to
also search for the modulators. Mimosa also assumes that a
modulator takes only two states, that is, absence and presence
or 0 and 1. The modulated regulator-target pair is further
assumed to be correlated when a modulator is present but
uncorrelated when it is absent. Therefore, the distribution
of a modulated TF-target pair, 𝑥 and 𝑦, naturally follows a
mixture distribution

𝑝 (𝑥, 𝑦) = 𝜋𝑝 (𝑥, 𝑦 | 𝑚 = 0) + (1 − 𝜋) 𝑝 (𝑥, 𝑦𝑚 = 1) , (8)

where 𝜋 is the probability of themodulator being absent. Par-
ticularly, an uncorrelated and correlated bivariant Gaussian
distributions were introduced to model different modulated
regulator-target relationship, such that
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1
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2
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2
)
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where 𝛼 models the correlation between 𝑥 and 𝑦 when the
modulator is present. With this model, Mimosa sets out to
fit the samples of every pair of potential regulator target
with the mixture model (7). This is equivalent to finding
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a partition of the paired expression samples into the cor-
related and uncorrelated samples. The paired expression
samples that possess such correlated-uncorrelated partition
(0.3 < 𝜋 < 0.7 and |𝛼| > 0.8) are determined to be
modulated. To identify the modulator of a (or a group of)
modulated pair(s), a weighted 𝑡-test was developed to search
for the genes whose expressions are differentially expressed
in the correlated partition versus the uncorrelated partition.

3.4. GEM (Gene Expression Modulator). GEM [46] improves
over MINDy by predicting how a modulator-TF interaction
affects the expression of the target gene. It can detect new
types of interactions that result in stronger correlation but
low Δ𝐼, which therefore would be missed by MINDy. GEM
hypothesizes that the correlation between the expression of a
modulator 𝑚 and a target 𝑥 must change, as that of the TF
𝑥 changes. Unlike the previous surveyed algorithms, GEM
first transforms the continuous expression levels to binary
states (up- (1) or down-expression (0)) and then works only
with discrete expression states. To model the hypothesized
relationship, the following model is proposed:

𝑃 (𝑥 = 1 | 𝑦,𝑚) = 𝛼
𝑐
+ 𝛼
𝑚
𝑚 + 𝛼

𝑦
𝑦 + 𝛾𝑚𝑦, (10)

where 𝛼
𝑐
is a constant, 𝛼

𝑚
and 𝛼

𝑦
model the effect of

modulator and TF on the target genes, and 𝛾 represents the
effect of modulator-TF interaction on the target gene. If the
modulator-TF interaction has an effect on 𝑥, then 𝛾 will
be nonzero. For a given (𝑥, 𝑦,𝑚) triplets GEM devised an
algorithm to estimate the model coefficients in (10) and a test
to determine if 𝛾 is nonzero, or𝑚 is a modulator of 𝑥 and 𝑦.

3.5.MuTaMe (Mutually TargetedMREEnrichment). Thegoal
of MuTaMe [21] is to identify ceRNA networks of a gene of
interest (GoI) ormRNA that sharemiRNA response elements
(MREs) of samemiRNAs. Figure 4 shows twomRNAs, where
one is the GoIy and the other is a candidate ceRNA or
modulator 𝑚. In the figure, the miRNA represented in color
red has MREs in both mRNA 𝑦 and mRNA 𝑚; in this case
the presence of mRNA 𝑚 will start the competition with 𝑦
for miRNA represented in color red.

Thehypothesis ofMuTaMe is thatmRNAs that havemany
of the same MREs can regulate each other by competing
for miRNAs binding. The input of this algorithm is a GoI,
which is targeted by a group of miRNAs known to the user.
Then, from a database of predicted MREs for the entire
transcriptome, it is possible to obtain the binding sites and
its predicted locations in the 3UTR for all mRNAs.This data
is used to generate scores for each mRNA based on several
features:

(a) the number of miRNAs that an mRNA𝑚 shares with
the GoI 𝑦;

(b) the density of the predicted MREs for the miRNA; it
favors the cases in which more MREs are located in
shorter distances;

(c) the distribution of the MREs for every miRNA; it
favors situations in which theMREs tend to be evenly
distributed;

(d) the number of MREs predicted to target 𝑚; it favors
situationswhere eachmiRNA containsmoreMREs in
𝑚.

Then each candidate transcript𝑚will be assigned a score
that results from multiplying the scores in (a) to (d). This
score indicates the likelihood of the candidates to be ceRNAs
and will be used to predict ceRNAs.

3.6. Hermes. Hermes [20] is an extension of MINDy that
infers candidate modulators of miRNA activity from expres-
sion profiles of genes and miRNAs of the same samples.
Hermes makes inferences by estimating the MI and CMI.
However, different from MINDy (7), Hermes extracts the
dependences of this triplet by studying the difference between
the CMI of 𝑥 expression and 𝑦 expression conditional on the
expression of𝑚 and theMI of 𝑥 and 𝑦 expressions as follows:

𝐼 = 𝐼 (𝑥; 𝑦 | 𝑚) − 𝐼 (𝑥; 𝑦) . (11)

These quantities and their associated statistical signif-
icance can be computed from collections of expression
of genes with number of samples 250 or greater. Hermes
expands MINDy by providing the capacity to identify can-
didate modulator genes of miRNAs activity. The presence
of these modulators (𝑚) will affect the relation between
the expression of the miRNAs targeting a gene (𝑥) and the
expression level of this gene (𝑥).

In summary, we surveyed some of the most popular
algorithms for the inference of modulator. Additional mod-
ulator identification algorithms are summarized in Table 1.
It is worth noting that the concept of modulator applies
to cases beyond discussed in this paper. Such example
includes themultilayer integrated regulatorymodel proposed
in Yan et al. [49], where the top layer of regulators could be
also considered as “modulators.”

4. Applications to Breast Cancer Gene
Expression Data

Algorithms of utilizing modulator concept have been imple-
mented in various software packages. Here we will discuss
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Table 1: Gene regulation network and modulator identification methods.

Algorithm Features References
ARACNE Interaction network constructed via mutual information (MI). [14, 42]

Network profiler A varying-coefficient structural equation model (SEM) to represent the
modulator-dependent conditional independence between genes. [47]

MINDy Gene-pair interaction dependency on modulator candidates by using the
conditional mutual information (CMI). [44]

Mimosa Search for modulator by partition samples with a Gaussian mixture model. [45]

GEM A probabilistic method for detecting modulators of TFs that affect the expression of
target gene by using a priori knowledge and gene expression profiles. [46]

MuTaMe Based on the hypothesis that shared MREs can regulate mRNAs by competing for
microRNAs binding. [21]

Hermes Extension of MINDy to include microRNAs as candidate modulators by using CMI
and MI from expression profiles of genes and miRNAs of the same samples. [20]

ER𝛼 modulator Analyzes the interaction between TF and target gene conditioned on a group of
specific modulator genes via a multiple linear regression. [48]

two new applications, MEGRA and TraceRNA, implemented
in-house specifically to utilize the concept of differential
correlation coefficients and ceRNAs to construct a modu-
lated GRN with a predetermined modulator. In the case of
MGERA, we chose estrogen receptor, ESR1, as the initial
starting point, since it is one of the dominant and systemic
factor in breast cancer; in the case of TraceRNA,we also chose
gene ESR1 and its modulated gene network. Preliminary
results of applications to TCGA breast cancer data are
reported in the following 2 sections.

4.1.MGERA. TheModulatedGeneRegulationAnalysis algo-
rithm (MGERA) was designed to explore gene regulation
pairs modulated by the modulator 𝑚. The regulation pairs
can be identified by examining the coexpression of two genes
based on Pearson correlation (similar to (7) in the context
of correlation coefficient). Fisher transformation is adopted
to normalize the correlation coefficients biased by sample
sizes to obtain equivalent statistical power among data with
different sample sizes. Statistical significance of difference
in the absolute correlation coefficients between two genes is
tested by the student 𝑡-test following Fisher transformation.
For the gene pairs with significantly different coefficients
between two genes, active and deactive statuses are iden-
tified by examining the modulated gene expression pairs
(MGEPs).TheMGEPs are further combined to construct the
𝑚 modulated gene regulation network for a systematic and
comprehensive view of interaction under modulation.

To demonstrate the ability of MGERA, we set estrogen
receptor (ER) as the modulator and applied the algorithm to
TCGA breast cancer expression data [3] which contains 588
expression profiles (461 ER+ and 127 ER−). By using 𝑃 value
<0.01 and the difference in the absolute Pearson correlation
coefficients >0.6 as criteria, we identified 2,324 putative
ER+ MGEPs, and a highly connected ER+ modulated gene
regulation network was constructed (Figure 5). The top ten
genes with highest connectivity was show in Table 2. The
cysteine/tyrosine-rich 1 gene (CYYR1), connected to 142
genes, was identified as the top hub gene in the network and
thus may serve as a key regulator under ER+ modulation.

Table 2: Hub genes derived from modulated gene regulation
network (Figure 5).

Gene Number of ER+ MGEPs
CYYR1 142
MRAS 109
C9orf19 95
LOC339524 93
PLEKHG1 92
FBLN5 91
BOC 91
ANKRD35 89
FAM107A 83
C16orf77 73

Gene Ontology analysis of CYYR1 and its connected neigh-
bor genes revealed significant association with extracellular
matrix, epithelial tube formation, and angiogenesis.

4.2. TraceRNA. To identify the regulationnetwork of ceRNAs
for a GoI, we developed a web-based application TraceRNA
presented earlier in [50] with extension to regulation network
construction.The analysis flow chart of TraceRNAwas shown
in Figure 6. For a selected GoI, the GoI binding miRNAs
(GBmiRs) were derived either validated miRNAs from miR-
TarBase [51] or predicted miRNAs from SVMicrO [52].Then
mRNAs (other than the given GoI) also targeted by GBmiRs
were identified as the candidates of ceRNAs. The relevant (or
tumor-specific) gene expression data were used to further
strengthen relationship between the ceRNA candidates and
GoI. The candidate ceRNAs which coexpressed with GoI
were reported as putative ceRNAs. To construct the gene
regulation network via GBmiRs, we set each ceRNA as the
secondary GoI, and the ceRNAs of these secondary GoIs
were identified by applying the algorithm recursively. Upon
identifying all the ceRNAs, the regulation network of ceRNAs
of a given GoI was constructed.
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Figure 5: ER+ modulated gene regulation network.

To identify ceRNA candidates, three miRNAs binding
prediction algorithms, SiteTest, SVMicrO, and BCMicrO,
were used in TracRNA. SiteTest is an algorithm similar to
MuTaMe and uses UTR features for target prediction. SVMi-
crO [52] is an algorithm that uses a large number of sequence-
level site as well as UTR features including binding secondary
structure, energy, and conservation, whereas BCMicrO [53]
employs a Bayesian approach that integrates predictions from
6 popular algorithms including TargetScan, miRanda, PicTar,
mirTarget, PITA, and DIANA-microT. Pearson correlation
coefficient was used to test the coexpression between the GoI
and the candidate ceRNAs. We utilized TCGA breast cancer
cohort [3] as the expression data, by using 60% of GBmiRs

as commonmiRNAs and Pearson correlation coefficient >0.9
as criteria. The final scores of putative ceRNAs (see Table 3,
last column) were generated by using Bordamergingmethod
which rerank the sum of ranks from both GBmiR binding
and coexpression 𝑃 values [54]. To illustrate the utility of the
TraceRNA algorithm for breast cancer study, we also focus on
the genes interacted with the estrogen receptor alpha, ESR1,
with GBmiRs including miR-18a, miR-18b, miR-193b, miR-
19a, miR-19b, miR-206, miR-20b, miR-22, miR-221, miR-222,
miR-29b, and miR-302c. The regulation network generated
by ESR1 as the initial GoI is shown in Figure 7, and the top
18 ceRNAs are provided in Table 3. The TraceRNA algorithm
can be accessed http://compgenomics.utsa.edu/cerna/.

http://compgenomics.utsa.edu/cerna/
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The GoI binding miRNA 
(GBmiRs)

Candidates of ceRNAs 
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Output to 
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Figure 6: The analysis flow chart of TraceRNA.
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Figure 7: (a) ceRNA network for gene of interest ESR1 generated using TraceRNA. (b) Network graph enlarged at ESR1.

5. Conclusions

In this report, we attempt to provide a unified concept of
modulation of gene regulation, encompassing earlier mRNA
expression based methods and lately the ceRNAmethod. We
expect the integration of ceRNA concept into the gene-gene
interactions, and their modulator identification will further

enhance our understanding in gene interaction and their
systemic influence. Applications provided here also represent
examples of our earlier attempt to construct modulated net-
works specific to breast cancer studies. Further investigation
will be carried out to extend our modeling to provide a
unified understanding of genetic regulation in an altered
environment.
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Table 3: Top 18 candidate ceRNAs for ESR1 as GOI obtained from TraceRNA. ESR1 is at rank of 174 (not listed in this table).

Gene symbol SVMicrO-based prediction Expression correlation
Final score

Score 𝑃 value Score 𝑃 value
FOXP1 1.066 0.0043 0.508 0.016 1212
VEZF1 0.942 0.0060 0.4868 0.020 1179
NOVA1 0.896 0.0067 0.479 0.023 1160
CPEB3 0.858 0.0074 0.484 0.022 1149
MAP2K4 0.919 0.0064 0.322 0.097 1139
FAM120A 0.885 0.0069 0.341 0.082 1130
PCDHA3 0.983 0.0054 0.170 0.215 1125
SIRT1 0.927 0.0062 0.230 0.162 1117
PCDHA5 0.983 0.0054 0.148 0.233 1113
PTEN 0.898 0.0067 0.221 0.168 1104
PCDHA1 0.983 0.0054 0.140 0.239 1103
NBEA 0.752 0.0098 0.491 0.020 1102
ZFHX4 0.970 0.0056 0.154 0.229 1097
GLCE 0.798 0.0087 0.3231 0.096 1096
MAGI2 0.777 0.0092 0.321 0.097 1086
SATB2 0.801 0.0086 0.243 0.151 1078
LEF1 0.753 0.0098 0.291 0.112 1065
ATPBD4 0.819 0.0082 0.170 0.215 1060
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