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A hybrid CNN‑LSTM model 
for pre‑miRNA classification
Abdulkadir Tasdelen1* & Baha Sen2

miRNAs (or microRNAs) are small, endogenous, and noncoding RNAs construct of about 22 
nucleotides. Cumulative evidence from biological experiments shows that miRNAs play a fundamental 
and important role in various biological processes. Therefore, the classification of miRNA is a critical 
problem in computational biology. Due to the short length of mature miRNAs, many researchers are 
working on precursor miRNAs (pre‑miRNAs) with longer sequences and more structural features. 
Pre‑miRNAs can be divided into two groups as mirtrons and canonical miRNAs in terms of biogenesis 
differences. Compared to mirtrons, canonical miRNAs are more conserved and easier to be identified. 
Many existing pre‑miRNA classification methods rely on manual feature extraction. Moreover, these 
methods focus on either sequential structure or spatial structure of pre‑miRNAs. To overcome the 
limitations of previous models, we propose a nucleotide‑level hybrid deep learning method based on 
a CNN and LSTM network together. The prediction resulted in 0.943 (%95 CI ± 0.014) accuracy, 0.935 
(%95 CI ± 0.016) sensitivity, 0.948 (%95 CI ± 0.029) specificity, 0.925 (%95 CI ± 0.016) F1 Score and 0.880 
(%95 CI ± 0.028) Matthews Correlation Coefficient. When compared to the closest results, our proposed 
method revealed the best results for Acc., F1 Score, MCC. These were 2.51%, 1.00%, and 2.43% 
higher than the closest ones, respectively. The mean of sensitivity ranked first like Linear Discriminant 
Analysis. The results indicate that the hybrid CNN and LSTM networks can be employed to achieve 
better performance for pre‑miRNA classification. In future work, we study on investigation of new 
classification models that deliver better performance in terms of all the evaluation criteria.

miRNAs (or microRNAs) are small, endogenous, and noncoding RNA constructs of about 22  nucleotides1. 
Cumulative evidence from biological experiments shows that miRNAs play a fundamental and important 
role in various biological processes such as regulation of gene expression by post-transcriptionally binding to 
5’untranslated regions (UTR), coding sequences, or 3´UTR of target messenger RNAs (mRNAs)2,3. According 
to the latest release of an online miRNA database, miRBase (v22), there are 38,589 entries representing hairpin 
precursor miRNAs that express 48,860 mature miRNAs from 271 organisms such as humans, mice, rat, etc.4. The 
human genome, as a sub-category of the organism classification, contains 1917 annotated hairpin precursors, 
and 2654 mature  sequences4. It is estimated that in mammals, approximately one-third of all protein-coding 
genes’ activities are controlled by  miRNAs5. Several studies show that the deregulations of miRNAs are associ-
ated with many types of human diseases, e.g. cancer, cardiovascular diseases, or autoimmune  diseases6–27. Due 
to these relationships between miRNAs and various diseases, studies to understand the functions, processes, 
and mechanisms of miRNAs are increasing  dramatically28. Thus, how to classify miRNAs is a critical problem 
in computational biology.

The discovery of the first miRNA started in Caenorhabditis elegans in 1993 by Ambros and Ruvkun’s studies. 
They found that the lin-4 was a small noncoding RNA but not a protein-coding  RNA29–31. Seven years later, in 
2000, the second miRNA, let-7, was reported. Experimental results show that let-7 consists of 21 nucleotide RNA 
and regulates timing in the transition from fourth level (L4) to adult C. elegans’ larval  development32.

The biogenesis of miRNAs involves several steps and cellular mechanisms (Fig. 1), some in the nucleus and 
some in the cytoplasm. Since those processes have some different pathways, pre-miRNAs can be categorized into 
two categories: mirtrons and canonical miRNAs. Compared to mirtrons, canonical miRNAs are more conserved 
and easier to be  identified33. The first step of the biogenesis of miRNAs begins with the transcription of miRNA 
genes that make up primary miRNA hairpins called pri-miRNA34–36. In the canonical pathway, pre-miRNAs with 
the hairpin structure are formed by the microprocessor complex consisting of Drosha and DGCR by dividing 
pri-miRNAs in the  nucleus37,38. Then, the pre-miRNAs are produced in the nucleus and transported into the 
cytoplasm by exportin-5. Following this, pre-miRNAs are cleaved in the cytoplasm into small RNA duplexes 
by another RNase III enzyme Dicer and finally, mature miRNA is  produced39,40. In the mirtron pathway, for 
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bypassing the nuclear enzyme Drosha, it uses splicing to produce short pre-miRNA hairpin  introns41,42. The next 
steps of those pre-miRNAs are in the same pathway as canonical  miRNAs43. Mirtrons can also be divided into 
three categories: canonical, 3′ tailed, and 5′ tailed due to their sequence and  structure42. Compared to canonical 
miRNAs, mirtron hairpins and small RNAs have numerous distinguishing  features44,45.

In previous studies, numerous computational methods, such as decision trees (DT), random forest (RF), 
and support vector machines (SVM), widely applied in miRNA identification and classification as applied in 
computational biology and  healtcare46–52. Recently, Deep Learning (DL) methods are also frequently used to 
achieve better prediction accuracy compared with other traditional machine learning methods 53–59. The convo-
lutional neural networks CNNs, a type of DL, have successfully employed for pre-miRNAs  clasification33,56. For 
instance, Zheng et al.33 proposed a nucleotide-level CNN model. They encoded the sequences using “one-hot” 
encoding then padded each entry with the same shape. The model had convolutions and max-pooling layers. 
Their investigation showed that their CNN-based network feasible to apply to extract features from biological 
sequences. CNN-based methods outperform to identify the miRNAs and extract features automatically from 
the raw input data without detailed domain  knowledge60–63. However, Park et al.64 show that the spatial informa-
tion of these structures is as important as the structures that make up miRNAs. Therefore, they focused on only 
long-term dependencies and proposed an LSTM based framework to identify precursor miRNAs. Moreover, 
much research reveals that CNN-LSTM networks give a solution to use both structural characterization and 
spatial information together. A CNN-LSTM network is a combination of CNN layers for feature extraction on 
input data and LSTM layers to provide sequence  prediction65. These networks are used in a variety of problems 
such as activity recognition, image description, video description, visual time series prediction, and generating 
textual annotations from image  sequences65,66. Quang et al. proposed a hybrid CNN-LSTM  framework67, DanQ, 
for predicting the function of DNA sequences. In this model, the convolution layer captures patterns, and the 
recurrent layer captures long-term dependencies. Similarly, Pan et al. proposed  iDeepS68, to identify the binding 
sequence and structure patterns from RNA sequences. Their model extract features by using CNN and reveals 
possible long-term dependencies by using bi-directional LSTM (BLSTM). These successful studies show that 
utilizing both spatial and sequential features provides higher performance, especially in computational biology.

Many existing pre-miRNA classification methods focus on either sequential structure or spatial structure 
of pre-miRNAs. The main features that distinguish pre-miRNAs from each other are the types, number, and 
sequence order of amino acids that make up their fundamental structure. Hence, using a hybrid CNN-LSTM 
based network can give a solution to classify pre-miRNA facilitating with both spatial and sequential features 
of pre-miRNAs.

Materials and methods
In this study, we presented a hybrid deep learning method for pre-miRNA classification based on both sequential 
and spatial structure of pre-miRNA by integrating two different networks respectively: CNN and LSTM. We first 
described the problem of pre-miRNA classification. Then, we introduced the dataset, which is used to train and 
evaluate the proposed method. The dataset consisted of human mirtrons and canonical miRNAs  sequences44. 
For consistency, the same sequence data were used as the previous  models33,46. CNN extracted features from 
the input data automatically. Thus, it gave a solution to the problem of manual extraction of features. LSTM 
layer was used to perform temporal modeling following the CNN layer that convolved the input data. Next, we 
gave comprehensive details about CNN, LSTM, and CNN-LSTM networks. Finally, we described our proposed 

Figure 1.  Overview of miRNA biogenesis.
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method and how to implement it in detail. The method was implemented in python using the Keras library 
(2.4.3) https:// github. com/ keras- team/ keras, with the backend of TensorFlow (2.4.0).

Problem statement. Many existing pre-miRNA classification methods rely on manual future extraction. 
These methods focus on either spatial structure or sequential structure of pre-miRNAs. To overcome the limi-
tations of previous models, we propose a nucleotide-level deep learning method based on a hybrid CNN and 
LSTM network together for pre-miRNAs classification. When we consider the structure and sequence of pre-
miRNAs, it is clear that the problem is a binary sequence classification problem consisting of mirtrons and 
canonical miRNAs. In literature, several models including machine-learning methods have been developed to 
find a solution for the problematic classification. On the other hand, they have approximately 90% of accuracy. In 
this study, in the pre-miRNA classification, our goal was to show how to accurately predict classes with a hybrid 
CNN-LSTM network.

Convolutional neural networks. A CNN network is a type of deep learning that produces excellent per-
formance and has been widely applied to many applications such as image  classification69,70, object  detection71,72, 
speech  recognition73, computer  vision74, video  analysis75, and  bioinformatics76,77. Apart from the traditional 
neural networks, CNN includes numerous layers that make it deeper. Moreover, CNN uses weights, biases, and 
outputs via a nonlinear activation. A typical CNN architecture fundamentally consists of convolutional layers, 
pooling layers, and fully connected  layers63.

The convolution operation used in the convolutional layer is as follows:

where I for input matrix, K for a 2D filter of size m × n, and F for the output of a 2D feature map. And, the con-
volutional layer representation is with I*K.

Long short‑term memory networks. An LSTM network is a class of recurrent neural network (RNN) 
that uses memory blocks that assist to run successfully and learn faster than traditional  RNN78,79. LSTM net-
works find practical solutions for the vanishing and exploding gradient problems of  RNNs80. Apart from the 
RNNs, a cell state is used in the LSTM network to save long-term states including input, forget, and output gates. 
Thus, the network can remember previous data and connect it with the present ones. Also, it solves complicated 
tasks difficult to find a solution by previous  RNNs79,81.

CNN and LSTM networks. A CNN-LSTM model is a combination of CNN layers that extract the fea-
ture from input data and LSTMs layers to provide sequence  prediction65. The CNN-LSTM is generally used 
for activity recognition, image labeling, and video labeling. Their common features are that they are developed 
for the application of visual time series prediction problems and generating textual annotations from image 
 sequences65,66.

Figure 2 shows the basic architecture of the CNN-LSTM network with the input layer, visual feature extrac-
tion, sequence learning, and output layer,  respectively65.

Training and test datasets. The dataset consists of mirtrons and canonical miRNAs’ data. We combined 
two different datasets in our preprocessing data phase with 707 (63%) canonical miRNAs and 417 (37%) mir-
trons. The first dataset (Dataset 1) consisted of mirtrons and canonical miRNAs derived from miRBase (v21) 
according to the annotation of Wen et.al.44. Moreover, the second dataset (Dataset 2) was derived also from the 
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Figure 2.  The basic architecture of the CNN-LSTM network.

https://github.com/keras-team/keras
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study of Wen et al.44, which included 201 entries, putative mirtrons data. In total, we used 1,124 entries in our 
proposed model. The same dataset used to be consistent with Zheng et al. and Rorbach et al.33,46.

Stratified k-folds cross-validation (CV) is a resampling procedure that splits of the dataset into folds accord-
ing to the output categories and ensures that each fold has the same proportion. It is useful for imbalanced 
 datasets82. Hence, we used stratified 5-folds CV for training and evaluating our  model82. At each iteration, it 
divided the data into training and test sets with a 80–20% split. In the next iteration, it used the other percentile 
as the training and test set.

Table 1 shows the distribution of the training and test datasets at each iteration in stratified 5-folds CV.

The preprocessing of the data. The entry with the most sequences had 164 bases. Therefore, we pre-
pared each sequence of entries with the maximum length (164) by padding. The word "N" was used for keeping 
the sequences in the same length. Like Zheng et al.33, “one-hot” encoding is used to encode each base of the 
sequences (Table 2). Next, we converted each sequence into a vector with a dimension of (164, 4) by the vectori-
zation process.

The method architecture. We designed the architecture of our model with nine layers: an input layer, four 
CNN layers wrapped by the time-distributed layers, an LSTM layer, a dense layer, a dropout layer, and an output 
layer, respectively. Figure 3 shows the illustration of the architecture with visualization of our method. Before 
constructing the model, we ensured that each data has been transformed into an appropriate form to be used. In 
this case, we used the padding process to guarantee the length (which is 164) of each miRNA sequence similar 
by adding "N" for each blank. The next vectorization step was transforming the padded sequences to like a m × n 
matrix by using one-hot encoding.

When all data are padded and vectorized, the network became ready for the feature extraction process. In this 
stage, three convolution layers were used to automatically extract features from input sequences using the relu 
activation function. In these convolutional layers, 128 filters were used. The kernel’s height was selected as 6 and 
the kernel’s width was selected 4 for convolution operation. This kernel size gives higher  performance33. In these 
convolutional stages. We wrapped the convolution layers in a time-distributed wrapper to reshape input data by 
adding extra dimension at the end. For concatenation of all extracted features, we employed a flatten layer for 
passing to the LSTM layer. Then, one LSTM layer was designed with 100 units following a dropout layer (0.5) on 
the fully connected layer. Finally, for binary classification, the softmax activation function was used for specify-
ing outputs. The model was optimized for 30 epochs, 6 for batch size, and 0.1 for validation split by training. 
The validation dataset monitors the convergence in the training process so that the training of the model can be 
canceled early according to the change in this convergence. Besides, adam optimizer with a 0,001 learning rate 
for optimization and categorical cross entropy for loss function was preferred during the optimization process. 
Adam is one of the gradient descent algorithms that calculate adaptive learning rates for each momentum-like 
 parameter83 and categorical cross entropy is one of the loss functions preferred when there are two or more one-
hot encoded label  classes84. It optimizes multi-class classification models with a softmax activation function.

Table 3 shows the model summary including the input layer, convolution layers, flatten layer, LSTM layer, 
fully-connected layer, softmax layer and classification layer with the shape and the number of the parameters.

Table 1.  Distribution of the training and test datasets in stratified 5-folds CV.

Training dataset Test dataset Total

Sequence # % Sequence # % Sequence # %

Mirtron 334 80 83 20 417 37

Canonical miRNA 566 80 141 20 707 63

Total 900 80 224 20 1124 100

Table 2.  “One-hot” encoding for the base sequence.

Base name Encoded base

A 1 0 0 0

U/T 0 1 0 0

G 0 0 1 0

C 0 0 0 1

N 0 0 0 0
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Method evaluation
In this study, the evaluation of our method was measured on the test dataset. We calculated five different measure-
ments for performance in the analysis: accuracy (Acc.), sensitivity (Sen.), specificity (Spe.), F1 score, and Mat-
thews Correlation Coefficient (MCC). They are calculated for evaluating predictive capability with the number of 
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) by the following equations:

Accuracy indicates the overall correctness of prediction:

Sensitivity, true positive rate, indicates the ratio of correctly classified actual positives:

Specificity, true negative rate, indicates the ratio of correctly classified actual negatives:

F1-Score is a combination of the precision and recall of the model by harmonic mean:

(2)Acc =
TP + TN

TP + FN + TN + FP

(3)Sen =
TP

TP + FN

(4)Spe =
TN

TN + FP

Figure 3.  Detailed architecture with visualization of the proposed methodology.

Table 3.  The method summary.

Layer name Output shape Param #

Input layer (None, none, 164, 4, 1)

Time distributed layer 1 (None, none, 82, 2, 128) 3200

Time distributed layer 2 (None, none, 42, 1, 128) 393344

Time distributed layer 3 (None, none, 21, 1, 128) 393344

Time distributed layer 4 (None, none, 2688) 0

LSTM layer (None, 100) 1115600

Dense layer 1 (None, 256) 25856

Dropout (None, 256) 0

Dense layer 2 (None, 2) 512
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Matthews Correlation Coefficient (MCC) is a binary classifier that measures the quality:

Results and discussion
Due to the automatic feature extraction without a comprehensive domain expert from pre-miRNAs sequences 
by using CNN and LSTM, we designed a hybrid method for the classification of pre-miRNAs. We started with 
preparing the dataset by converting the raw sequences to vectors using “one-hot” encoding. Next, all data were 
padded and vectorized. Then, we used three convolution layers to extract features automatically from input 
sequences using the relu activation function. For concatenation of all extracted features, we employed a flatten 
layer for passing to the LSTM layer. Then, one LSTM layer is designed with 100 units following a dropout layer 
(0.5) on the fully connected layer. Finally, for binary classification, the softmax activation function was used 
for the specifying outputs. Table 4 shows the performance results of our proposed network at each iteration. 
Additionally, we calculated mean, median, standard deviation, and confidence interval (CI) for each metric.

Table 5 shows the performance comparison of the average values of the proposed method with the previous 
methods. The prediction resulted in 0.943 (%95 CI ± 0.014) accuracy, 0.935 (%95 CI ± 0.016) sensitivity, 0.948 
(%95 CI ± 0.029) specificity, 0.925 (%95 CI ± 0.016) F1 Score and 0.880 (%95 CI ± 0.028) MCC (Table 4) When 
compared to the closest results, our network revealed the best results for Acc., F1 Score, and MCC. These were 
2.51%, 1.00%, and 2.43% higher than the closest result, respectively. The mean of sensitivity had the highest 
value like Linear Discriminant Analysis and ranked first. These ratios indicate that the hybrid CNN and LSTM 
networks can be employed to achieve better performance for pre-miRNA classification compared with previous 
methods. Even though the results show that our model has a higher ratio according to accuracy, sensitivity, F1 
score, and MCC; we have a lower ratio (94.8%) of correctly classified true negatives. In imbalanced or skewed 
datasets, the number of examples of the minority class might not be sufficient for learning. As a result, the minor-
ity group is more often misclassified than the majority  group85,86. The number of positive and negative samples 
in our training and test dataset is equally representative of the entire dataset. Thus, we solve the misclassification 
problem at the data preparation level.

This study is an investigation of the pre-miRNA classification problem through a convolutional neural net-
work and long short-term memory network. In contrast to other methods, we took into account both the 

(5)F1 Score =
2TP

2 TP + FP + FN

(6)MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN) (TN + FP)(TN + FN)

.

Table 4.  Performance of the proposed CNN-LSTM network for each fold.

Fold # Acc Sen Spe F1 Score MCC

1 0.942 0.952 0.937 0.924 0.878

2 0.964 0.916 0.993 0.950 0.924

3 0.933 0.952 0.922 0.914 0.862

4 0.929 0.929 0.929 0.907 0,850

5 0.946 0.928 0.957 0.928 0.885

Mean 0.943 0.935 0.948 0.925 0.880

Median 0.942 0.929 0.937 0.924 0.878

SD 0.014 0.016 0.029 0.016 0.028

95% CI 0.931–0.955 0.921–0.949 0.923–0.973 0.910–0.939 0.855–0.905

Table 5.  Performance comparison of pre-miRNA classification. *Average value of the stratified 5-folds CV 
results. **Data not available.

Method name Acc Sen Spe F1 Score MCC

Proposed method* 0.943 0.935 0.948 0.925 0.880

CNN filter6  12833 0.920 0.871 0.970 0.916 0.845

CNN concat  filters33 0.910 0.846 0.975 0.904 0.827

Support vector  machines46 ** 0.926 0.945 0.901 0.859

Random  forest46 ** 0.870 0.957 0.883 0.836

Linear discriminant  analysis46 ** 0.935 0.919 0.881 0.830

Logistic  regression46 ** 0.875 0.941 0.867 0.816

Decision  tree46 ** 0.861 0.943 0.863 0.808

Naive  Bayes46 ** 0.875 0.894 0.824 0.746
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sequence structure and the spatial information of each entry. The preprocessing of data is the first but the most 
important stage of our study. Indeed, inappropriate preparation of the data will cause the network to be trained 
incorrectly and will make it difficult to obtain reliable results. Thus, we checked all outputs after the encoding, 
padding, and vectorization process. In addition, cascading the different neural networks is another issue in the 
model construction. Inappropriate network design may increase the bias and cause unexpected results. Therefore, 
we ensured that all the layers cascaded correctly.

Hyper-parameters determine the general characteristics of deep neural networks. The number of the hidden 
units, order of the layers, batch size, optimizer selection, and learning rate, etc. directly affect the performance 
of the methods. In this study, we utilized the previous researcher’s experiments in addition to our experiments. 
For instance, Zheng et al.33 discovered that kernel size (6 × 4) and unit number (128) of the CNN network pro-
duced the best results according to other sizes and numbers in the pre-miRNA classification. When we tested 
hyperparameters like Zheng et al.33, we obtained similar performance results as they did. In our future work, 
we will take into account the experiences we have gained in these studies and we will do more extensive hyper-
parameter optimization to ensure performance increase.

Despite the promising performance of our model, there are still some limitations. The first limitation comes 
from the total number of entries (1124) in the datasets. Even though the datasets have well-defined data, it is 
important to feed the method with more training and testing data to obtain more reliable results. The second 
limitation is the unbalanced ratio of classes. In this study, the number of positive samples (417) was less than 
the number of negative samples (707). The ratio of positive and negative samples was approximately 1:1.7. This 
imbalanced ratio may lead to limit accuracy and other metrices. Thus, we will focus on more comprehensive 
datasets in the future research.

We consider that the quality and size of the related dataset are important for training a model and achieving 
robust classification prediction. In future studies, enhanced datasets may lead to the construction of more suc-
cessful models in terms of similar evaluation parameters.

Conclusion
In this paper, we proposed a nucleotide-level hybrid deep learning method based on a convolutional neural 
network and long-short term memory network together. In the data preprocessing phase, we used one-hot 
encoding to convert each base to a matrix of the same size by padding. Then, we employed three convolution 
layers wrapped by a time-distribution layer. For concatenation of all extracted features, we employed a flatten 
layer for passing to the LSTM layer. Then, we designed one LSTM layer following a dropout layer on the fully 
connected layer. Finally, for binary classification, the softmax activation function is used for specifying the out-
puts. Our results showed that the proposed method was successfully trained on the training dataset and had a 
better performance on the test dataset than the previous models.

The results indicated that the hybrid CNN and LSTM networks can be employed to achieve better perfor-
mance for pre-miRNA classification. In future work, we will study on the investigation of new classification 
models that deliver better performance in terms of all the evaluation metrics.
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