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Fibroblast growth factors (FGFs) are a large family of protein ligands that exert a wide range
of biological effects in many organs/tissues by activating receptors (FGFRs) of the tyrosine kinase
superfamily [1,2]. They are crucial for embryonic development as well as for tissue maintenance and
repair in the adult organism [3]. Based on these physiological functions it is not surprising that FGFR
signaling is dysregulated in practically every malignancy that has been analyzed in this context [4].
The FGFR activation is common in different tumor types, but only <10% of all tumors sequenced carry
FGFR aberrations, such as gene amplifications, mutations and rearrangements [5]. Most commonly
affected (up to 32%) are specific tumor types such as urothelial, breast, endometrial and squamous cell
lung cancer. The more frequent mechanism is the upregulation of FGFs to establish autocrine and
paracrine loops [6–8]. This adds an additional layer of complexity, because the secreted factors also
affect cells of the microenvironment while FGFs produced in the microenvironment may stimulate the
cancer cells [9].

Efforts to target FGF signaling in tumors have been going on for about a decade and
produced several mostly multi-target compounds that inhibit vascular endothelial growth factor
and platelet-derived growth factor in addition to FGFRs. Several such inhibitors are already in clinical
trials or used as cancer drugs [10,11]. With regard to the FGFR family, FGFRs1-3 are so closely related
that small molecule inhibitors usually affect all 3 in a similar way. Only for FGFR4 with its distinctly
different kinase domain, a specific inhibitor has been developed [10,12].

There is still much we do not know: the intricate signaling network underlying the impact of
FGFs on the growth, survival and invasiveness of cancer cells and the interaction of FGF-signaling
with healthy cells in a paracrine manner driving angiogenesis and metastasis need to be further
elucidated to define therapeutic targets and predictive markers for cancer therapy. Since 2017 several
excellent articles about general FGFR targeting in cancer have been published, e.g., [10,13]. However,
a translational perspective of targeting FGFR signaling for specific cancer subtypes was currently
the main topic of only a limited number of review articles, e.g., for squamous cell lung cancer [14],
breast cancer [15], endometrial cancer [16], pancreatic cancer [17], prostate cancer [18], and focusing on
FGFR4 signaling in hepatocarcinogenesis [19].

This Special Issue of Cells undertakes to cover translational research on FGFR signaling from
basic science to clinical studies with strong emphasis on the improvement of knowledge for clinical
application. Our call for this special issue entitled “Fibroblast Growth Factor Receptor (FGFR) Signaling
Pathway in Tumor” resulted in a total of 15 published articles, including seven reviews.

This specific collection of seven review articles delineate expression and targeting options extending
the current knowledge about the aforementioned cancer subtypes for glioblastoma [20], gastric
cancer [21] and skin cancer [22] and provides updates about hepatocellular carcinoma and targeting
FGFR4 signaling [23,24]. It includes structural information about FGFRs important for development
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of small molecule inhibitors [25] and offers information about the regulation of FGFRs especially by
plasma membrane-embedded partner proteins that may act as coreceptors [26]. In hepatocellular
carcinomas [23], but also in some other malignancies [24], upregulation of FGFR4 is coupled to
secretion of FGF19 to form an autocrine loop and offers a promising therapeutic target— especially
as FGFR4-specific targeting compounds have been developed and are already in clinical trials [24].
Dai et al. give a comprehensive overview of the development of FGFR inhibitors and their specificities
in relation to their interaction with the FGFR kinase domains [25]. Czys reports in her review on
melanomas that alterations in FGF-signaling are not driving the malignant process, but they do increase
with tumor progression and contribute to more aggressive phenotypes and therapy resistance [22].
Consequently, targeting FGFRs is suggested for combination therapy [22]. Similar observations have
been reported for other malignancies, such as colon cancer [27,28], mesothelioma [29], and lung
cancer [30].

Of the reports on original data, two articles by Nanni et al. and Csanaky et al. contribute results on
FGFR-dependent signaling and its biological impact on autophagy and differentiation in non-malignant
in vitro cell models [31,32]. FGFR variant expression and subcellular localization are essential for
the observed biological effects that could impact carcinogenesis. For example, the expression of
mesenchymal FGFR variants, such as the IIIc alternative splicing variant in epithelial tumor cells,
may increase FGFR signaling via paracrine FGF ligand effects [33]. Szybowska et al. analyzed the
impact of FGFR2 mutations on downstream signaling and feed-back loops [34]. Santolla et al. address
the issue of tumor cell–microenvironment cross-talk, as they report on interaction with the G-protein
estrogen receptor upregulating FGF2 in cancer associated fibroblasts that in turn impacts on the FGFR1
expressing breast cancer cells [35].

More tumor type-specific aspects are taken up in four research articles. Celik-Selvi et al. studied
members of the Sprouty protein family that are well-known to inhibit FGFR signaling but some show a
tumor-promoting function in brain cancer [36]. Vlacic et al. report about the expression of FGFRs and
their prognostic significance in a very rare malignancy—malignant pleural mesothelioma [37]—and
Jomrich et al. have analyzed FGFs as prognostic markers in adenocarcinomas of the esophageal–gastric
junction [38]. Sarcomas exhibit predominant FGFR1 expression that can be specifically blocked in vitro
in human and canine cell models [39]. FGFR expression profiles and blocking capacity were identical
and support future comparative research in both species. In this Special Issue, a preclinical study
in vivo by Hanes et al. identified amplified FRS2 as the determinant of response to FGFR-inhibitors
in high-grade metastatic dedifferentiated liposarcoma, thus paving the way for clinical trials with
a pan-FGFR inhibitor that may be more potent to block FGFR signaling in this specific sarcoma
subtype [40].

In conclusion, the data presented in this Special Issue extends our knowledge on targeting
FGFR signaling for cancer therapy to new compounds/strategies and to new tumor types. They also
demonstrate the need for further translational research to decipher the complex role of FGFR signaling
for improved targeting in different cancer subtypes.
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