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The number of publicly available microbiome samples is continually growing. As data set size increases, bottlenecks arise in

standard analytical pipelines. Faith’s phylogenetic diversity (Faith’s PD) is a highly utilized phylogenetic alpha diversity met-

ric that has thus far failed to effectively scale to trees with millions of vertices. Stacked Faith’s phylogenetic diversity (SFPhD)

enables calculation of this widely adopted diversity metric at a much larger scale by implementing a computationally effi-

cient algorithm. The algorithm reduces the amount of computational resources required, resulting in more accessible soft-

ware with a reduced carbon footprint, as compared to previous approaches. The new algorithm produces identical results to

the previous method. We further demonstrate that the phylogenetic aspect of Faith’s PD provides increased power in de-

tecting diversity differences between younger and older populations in the FINRISK study’s metagenomic data.

[Supplemental material is available for this article.]

In microbiome research, particular attention is given to evaluating
the diversity ofmicrobes within samples (TheHumanMicrobiome
Project Consortium 2012; Thompson et al. 2017; McDonald et al.
2018a). Alpha diversity (within sample diversity) represents a fam-
ily of summary statistics that can summarize the breadth of diver-
sity present in an environment. More recently, many examples
have been reported on the associations between various host or en-
vironmental factors and alpha diversity ofmicrobiomes, including
country and diet in human guts (McDonald et al. 2018a), disease
status in humans and canines (Gevers et al. 2014; Vázquez-Baeza

et al. 2016), and the pH (Lauber et al. 2009), salinity (Thompson
et al. 2017), and temperature (Zhou et al. 2016) of soils, among
many others (Jeffery et al. 2016; Youngblut et al. 2019). A popular
metric that accounts for the phylogenetic relatedness of the com-
munitymembers, Faith’s phylogenetic diversity (Faith’s PD) (Faith
1992), has been noted to be more sensitive in distinguishing dis-
ease factors in the human digestive system, relative to other alpha
diversity indices (Scherson and Faith 2018; Youngblut et al. 2021).
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Modern DNA sequencing instruments have enabled micro-
biome studies at the scale of tens of thousands of samples, which
presents a computational challenge for metrics that rely on a phy-
logeny, such as Faith’s PD. This metric is computed by summing
the branch lengths (edgeweights) of the phylogeny that exclusive-
ly represents the sequences contained in a biological sample. The
amount of memory and number of necessary operations needed
to calculate Faith’s PD depends on the number of edges in the phy-
logenetic tree, as well as the number of samples in the underlying
data table.

In today’s increasingly large and sparse data sets and meta-
analyses, these phylogenetic trees and tables can exceed hundreds
of thousands of samples and millions of tree tips (McDonald et al.
2018b). Recent advances have enabled efficient computation of
the UniFrac metric for beta diversity. UniFrac is also a metric com-
puted over phylogenetic trees (Lozupone and Knight 2005) and
is mathematically related to Faith’s PD (Faith et al. 2009).
Specifically, Striped UniFrac (McDonald et al. 2018b) improves
upon previous UniFrac implementations (Hamady et al. 2010)
by using space- and time-efficient tree data structures (Cordova
and Navarro 2016) and reducing the number of vectors required
to store intermediate scores in the tree.

Additionally, the usefulness of techniques like Faith’s PD and
UniFrac remains underexplored for metagenomics sequencing.
Recent molecular protocol optimizations, such as SHOGUN
(Hillmann et al. 2018), have enabled the metagenomic character-
ization of large human cohorts (Borodulin et al. 2015; Kaplan et al.
2019; Salosensaari et al. 2021). In this context, the applicability of
Faith’s PD has largely been limited by the technical difficulties as-
sociated with constructing phylogenies from metagenomic fea-
tures (Zhu et al. 2019). Efforts like the Web of Life (WoL) (Zhu
et al. 2019) and Genome Taxonomy Database (GTDB) (Parks
et al. 2018, 2020) are nowaddressing this issue by providing a phy-
logenomic tree as part of their database releases that can be used for
phylogeny-informed analysis.

Motivated by these advances in algorithms and resources for
analyzing phylogenies, phylogenomic trees, and sparse data, we
developed a new algorithm and implementation, stacked Faith’s
phylogenetic diversity (SFPhD), for rapidly computing Faith’s
PD. Additionally, we aim to demonstrate concrete benefits of phy-
logeny-informed analysis in metagenomic studies where this met-
ric is less frequently used.

Results

SFPhD is a new implementation for calculating Faith’s PD. The key
advances of SFPhD are using a sparse matrix representation, an ef-
ficient tree structure, and partial aggregation of metric constitu-
ents. Our BSD-licensed implementation of this algorithm is
available in the “unifrac” package (via PyPI and bioconda;
Grüning et al. 2018), which has 57,007 total conda downloads
and 40,434 conda downloads since the introduction of SFPhD,
as of the time of writing (August 28, 2021). The package produces
a C/C++ shared library with Python bindings and is additionally
linkable by any programming language (https://github.com/
biocore/unifrac). Additionally, by investigating the previously
documented relationship between age and bacterial richness of
the gut microbiome (de la Cuesta-Zuluaga et al. 2019), we demon-
strate that accounting for phylogeny in metagenomic data can in-
crease the statistical power for detecting group differences
(Supplemental Code).

Stacked Faith’s PD provides a faster and memory-efficient

implementation over the previous state-of-the-art algorithm

SFPhD uses the structure of microbiome data along with other
practical considerations to achieve decreased time andmemory re-
quirements. An example feature table is shown in Figure 1A, with a
corresponding phylogenetic tree in Figure 1B. Note that, for a giv-
en tree T , Faith’s PD can be expressed as

PDi =
∑
j[T

Iij × branchLenj(T ),

where PDi is Faith’s PD for sample i, Iij indicates if sample i has any
features that descend from node j, and branchLenj (T ) indicates
the length of the branch to node j in the tree T .

The previous state-of-the-art reference implementation (sci-
kit-bio, http://scikit-bio.org/) computes Faith’s PD for a batch of
samples by first fully computing Iij. Iij is computed by traversing
the entire phylogenetic tree in a postorder traversal, where the
children of a nodemust be visited before the node itself can be vis-
ited (the nodes in Fig. 1B are labeled in the order of a postorder tra-
versal). During the traversal, when a givennode Iij is visited, all j are
set by determining the features present in all children of node j.
Subsequently, the Iij × branchLenj(T ) for all branches is calculat-
ed. The results are obtained by summing over the branches for
each sample (Fig. 1C). However, this approach tends to use
much more space than is needed.

Microbiome data are known to be sparse (Morton et al. 2017;
Kumar et al. 2018; Martino et al. 2019), that is, of the entries in a
data table, many are likely to be zero. This issue is exacerbated
in large data sets, where many microbes are only observed in a
handful of samples. In an extreme case, such a table (McDonald
et al. 2018b), with 113,721 samples rarefied at 500 sequences per
sample, has only 0.0126% nonzero entries. Sparse representations
have been used previously for storingmicrobiome data (McDonald
et al. 2012a) and have been applied for accelerating microbiome
analyses (McDonald et al. 2018b), but they have not been previ-
ously applied to Faith’s PD. We identified that a major downfall
of the state-of-the-art implementation in scikit-bio is that it uses
a full, dense table to represent all of Iij in memory at once. A key
advancement of our approach is the use of a sparse matrix imple-
mentation for storing information on the taxa present for each
sample and feature. Sparse matrices save space by only retaining
information about positions in the matrix that have nonzero val-
ues (e.g., only the gray values in Fig. 1A and information about
their positions are retained by a sparse matrix).

Another key advance is the partial aggregation of Faith’s PD
(Fig. 1D). Note that Iij × branchLenj(T ), whichwewill call ametric
constituent, can be added in any order and that Iij only depends on
the children of node j. Thus, if node k is a child of node j, Iik is no
longer needed oncemetric constituents for node k have been com-
puted and Iij is known. As a result, we can reduce thememory used
to store Iij by traversing the phylogeny with a postorder traversal
and freeing Iik after they are no longer needed. Furthermore, we
can reduce the storage needed for the metric constituents by keep-
ing a running summation of them while traversing the tree. Thus,
this approach reduces the expected space complexity for storing
the metrics from O(nk) to O(n log[k]), where n is the number of
samples and k is the number of vertices in the tree.

In addition to the algorithmic improvements, we have in-
cluded several practical enhancements that improve the perfor-
mance of the code. The topology of the phylogenetic tree (Fig.
1B) is now represented as balanced-parentheses vector (Fig. 1E)
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that corresponds to additional vectors of branch lengths and node
names; this structure has a lower memory footprint and a sequen-
tial memory representation which reduces the number of cache
misses during a tree traversal (Cordova and Navarro 2016).
Finally, the software is written using C/C++ (with Python exten-
sions using Cython; https://cython.org/) and builds upon the
foundation established by Striped
UniFrac (McDonald et al. 2018b). Reuse
of this library facilitated our access to a
much faster Newick format parser, which
reduces the overheadwhen reading a tree
from disk. These factors make for an im-
proved expected and in-practice perfor-
mance, despite the time complexity and
worst-case memory complexity remain-
ing the same.

To demonstrate the scalability of
SFPhD, we used a collection of 307,237
public and anonymized private 16S
rRNA V4 microbiome samples amount-
ing to 1,264,796 phylogenetic tree tips
(after rarefaction at 500 sequences per
sample). The samples were retrieved us-
ing the redbiom command line interface
(McDonald et al. 2019) which queried a

cache of public and anonymized private studies available in
Qiita (Gonzalez et al. 2018). Amplicon sequence variants (ASVs)
were placed into the Greengenes (DeSantis et al. 2006;
McDonald et al. 2012b; Gonzalez et al. 2018) phylogeny using
SEPP (Mirarab et al. 2012). Computing the full alpha diversity vec-
tor took SFPhD 1 h and 5 min wall-clock time and required a

EBA

C D

Figure 1. Partially aggregating branch lengths reduces the space complexity of the algorithm. (A) Faith’s PD calculation depends on the representation of
features present in samples. In the table, the letters (R, O, B, K) represent samples and the numbers (0, 1, 2, 4, 6, 9, 10) represent features. A “1” in an entry
indicates the presence of a feature in the sample. SFPhD uses sparse table data structures, which reducememory by only keeping track of the nonzero values
in amatrix (highlighted in gray). (B) A mock reference phylogenetic tree is shown, with the features from A as tips. Labels for the samples from A are located
next to tips that they contain. The nodes are labeled by their order in a postorder traversal of the tree. (C) Graphic depiction of the reference implemen-
tation’s calculation of Faith’s PD by first aggregating the presence/absence information for each branch in the tree, followed by multiplication by the
branch lengths to get the metric constituents, and finally a sum over the entire branch × metric constituent table. (D) Graphic representation of the ex-
ecution of SFPhD. On the left, the stack of presence/absence information is shown at three points during the algorithm’s execution (i, ii, iii). Each of these
times shows the stack immediately beforememory is freed. On the right, the state of the partially aggregated phylogenetic diversity (PD) is shown after each
node is added to the stack. Each row represents the vector after a step in the algorithm. In practice, there is only one such vector. (E) The balanced paren-
theses’ representation for the phylogenetic tree from B.

BA

Figure 2. SFPhD outperforms the reference implementation in terms of runtime and memory usage.
(A) Runtime in seconds for computing Faith’s PD on data sets with thousands of samples and 100,000
tips in the phylogeny. Data are independently subsampled from a collection of 113,721 public samples
in Qiita (Gonzalez et al. 2018; Zhu et al. 2019) as previously processed (McDonald et al. 2018b). Mean of
n=10 repetitions with 95% CI error bars. (B) Memory usage for the same experiment as in A. For both A
and B, jobs were terminated if they exceeded 250 GB of memory.
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maximum resident set size of less than 3GB (seeMethods for hard-
ware details). In addition, we iteratively measured runtime and
memory consumption for increasingly large random subsets of
samples while fixing the size of the tree at 100,000 tips (Fig. 2A,
B; Supplemental Table S1). For the iteration with 20,000 samples,
the memory usage of the reference implementation exceeded 150
GB and the process ran for over 15 min. Contrastingly, with
SFPhD, the process took 14 sec to execute and required less than
0.5 GB of memory. Additionally, using Green Algorithms
(Lannelongue et al. 2021), we estimated the carbon footprint of
the scikit-bio reference implementation on the 20,000 sample ta-
ble to be 12.84 g CO2e, whereas we estimated the carbon footprint
of SFPhD would be 0.04 g CO2e in the United States, which is a
321-fold reduction in impact on global warming.

Phylogenetic diversity is a suitable metric to analyze stool

metagenomic samples

To demonstrate SFPhD’s versatility and applicability to newer data
sets, we reanalyzed 2661 paired 16S rRNA and metagenomic
data of stool samples from the FINRISK (Borodulin et al. 2015,
2018; Salosensaari et al. 2021) study (n=1563 aged 60 and older;
n=1098 aged 35 and under). In this experiment, we select random
subsets of the full sample set and compare each metric’s (observed
features and Faith’s PD) ability to detect differences in mean alpha
diversity distributions. For each step, we randomly select N paired
16S andmetagenomic samples and then compute the difference in
mean alpha diversity between samples taken from younger adults
(under 35 yr) and older adults (over 60 yr) together with an empir-
ical P-value. For both 16S andmetagenomics, the alpha diversity of
younger adults is lower than in older adults. Inmetagenomics, but
not in 16S sequencing, Faith’s PD provides improved statistical
power over observed features, a phylogenetically-agnostic alterna-
tive (Fig. 3A,B).With 16S data, the difference between the twomet-
rics is subtle (Fig. 3A). In both cases, the statistical power increases
as the number of samples grows. With metagenomic data, the
number of observed features shows a weaker effect compared to
Faith’s PD regardless of the number of samples (Fig. 3B). Unlike
16S data sets (5600 features), metagenomic data sets (1700 fea-
tures) are resolution-limited by the reference databases, whereas
the nature of amplicon sequence variants allows for a broader fea-
ture space that can capture age differences without the need for a
phylogeny.

We investigated the difference in mean alpha diversity in
metagenomic samples (Fig. 4A) by computing the log of the likeli-
hood ratio of older to younger adult samples present for each branch
in the WoL phylogenomic tree (Zhu et al. 2019). We were able to
identify portions of the WoL tree responsible for the increase in
phylogenetic diversity (Fig. 4B). From this analysis, we found that
the majority of the tree is comparably represented in young and
old adult samples. However, we also found two clades where older
adult samples were more prevalent than younger adult samples
(Clade1hasa log likelihood ratioboundedwithan80%confidence
interval of [1.20, 1.45] and Clade 2 has an 80% confidence interval
of [0.55, 0.74]). Clade 1 corresponds to amajority of Lactobacillales
genomes, andClade 2 corresponds to Proteobacteria genomes. The
branches in Clade 1 primarily have a large log likelihood ratio, in-
dicating that the features across the entire clade are more likely to
be found in samples from older adults. However, the internal
branches in Clade 2 additionally have low log likelihood ratios, in-
dicating that the enrichment of features in older adults is not
completely consistent across the entire clade. Lastly, although
not confined to a few clades, there are several tips (e.g.,
Staphylococcus aureus, Bavariicoccus seileri, Nitratireductor indicus,
and Campylobacter ureolyticus) in the phylogeny that are only asso-
ciated with younger adults.

Discussion

By accounting for the relationship between features in a data set,
Faith’s PD can mitigate issues with sparsity and heterogeneity
common to modern “omics” data sets. Although this metric was
first introduced 30 yr ago, the underlying algorithm for computing
this metric had largely remained unchanged. In this paper, we
demonstrated that our novel algorithm, SFPhD, performed effi-
ciently on data sets with hundreds of thousands of samples and
millions of tree tips, producing identical results to those of previ-
ous algorithms for computing this metric while producing a
speedup of up to 64× and requiring as little as 0.21% of the mem-
ory in our benchmarks.

An important aspect of SFPhD’s underlying algorithm is sub-
stituting calculation of the full presence/absence table over the
phylogeny, for a tree traversal that partially aggregates diversity
values and frees presence/absence information when no longer
needed. The result is a high-performance implementation that
demonstrates improved scaling with the number of samples in
the input data set.Much of the engineeringwork herewas facilitat-

ed by the balanced parenthesis tree im-
plementation provided in the UniFrac
package (McDonald et al. 2018b).
Therefore, we believe that increasing
the availability of efficient and flexible
data structures for phylogenetic analyses
is likely to accelerate and facilitate the de-
velopment of novel analytical methods.
In a broader sense, this is similar to the
impact of NumPy’s (McDonald et al.
2018b; Harris et al. 2020) N-dimensional
array in image processing, machine
learning, neuroscience, and other fields.

In addition, in a stool metagenomic
study, Faith’s PD demonstrates increased
statistical power compared to observed
features for differentiating younger
from older subjects based on their

BA

Figure 3. Phylogenetic diversity provides increased statistical power to differentiate age groups in shot-
gun metagenomics but not in 16S rRNA sequencing. (A) Statistical power to differentiate young adults
from old adults in two alpha diversity metrics at different sample sizes using 16S rRNA sequencing in the
FINRISK cohort. (B) Same as A but for shallow shotgun metagenomic sequencing.
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microbial communities. In this context, we show that Faith’s PD
consistently provided increased statistical power for determining
age-based differences in the shotgun metagenomic sequencing
data. While this metric was originally developed to analyze data
with vastly different statistical and biological properties, its use
here demonstrates the versatility and applicability behindmeasur-
ing diversity using a tree. Furthermore, enabling efficient Faith’s
PD computation on microbiome data sets is of particular impor-
tance when examining the impact of COVID-19 on gut health
(Kim et al. 2021).

Although we show the utility of SFPhD in large and complex
microbiome studies, the underlying implementation is not tied to
a particular molecular technology. Thus, this implementation will
be relevant to fields outside of microbiology, such as conservation
prioritization, which inspired the original version of Faith’s PD
(Faith 1992) and where it continues to be applied (Rosauer et al.
2017). We also envision that our implementation will be applica-
ble in fields like nutrition andmetabolomics research, that only re-
cently began adopting trees for analytical tasks (Johnson et al.
2019; Tripathi et al. 2021).

Methods

Construction of benchmarking tables

Data for the benchmarking in this study were subsampled from a
BIOM table of 113,721 and 761,003 ASVs, which is composed of
studies aggregated from several large sources of publicly available
microbiome data in Qiita (Amir et al. 2017; Gonzalez et al.
2018). This data table was produced as previously described
(McDonald et al. 2018b). The data was subset by uniformly ran-

domly sampling the desired number of ASVs and samples from
the table. Ten different tableswere created for each number of sam-
ples and ASVs. The published insertion tree (McDonald et al.
2018b) was collapsed to only contain sequences that were selected
to be included in the given subsampled table.

The table with 307,237 public and anonymized private 16S
rRNA V4 microbiome samples and 1,264,796 phylogenetic tree
tips was also prepared as previously described (McDonald et al.
2018b) but included samples with private sequencing data from
Qiita.

Benchmarking time and memory estimates

The SFPhD implementation available in the Python package uni-
frac v0.10.0 was used. The reference implementation uses the
Faith’s PD implementation from scikit-bio v0.5.4.

All methods were run single-threaded on shared compute
nodes that were not running other compute tasks. The nodes all
had Intel Xeon CPU E5-2640 v3 @ 2.60GHz processors. A job
was terminated if it exceeded 6 h ofwall time or 250GB ofmemory
(system max). Space was tracked using GNU Time. Time for both
implementations was tracked with a Python wrapper script. The
time needed to parse data is not included in the scikit-bio timings
but is included in the SFPhD timings, due to the lack of access to
this information in the unifrac interface. This is acceptable given
that it results in a conservative estimate of the speedup with
SFPhD.

Carbon footprint estimation

The Green Algorithms interface (Lannelongue et al. 2021) was
used to estimate the carbon dioxide equivalent (CO2e) of the

BA

Figure 4. Phylogenetic tree colored by age-group log of the likelihood ratio of older to younger adults per node. (A) Distribution of Faith’s PD by age
group on the full data set. (B) Web of Life (WoL) phylogenetic tree with branches colored by the log of likelihood ratio of old adults compared to young
adults in descendants of the branch, for the FINRISK data set. The inner circle is colored by the log of likelihood ratio of older adults compared to younger
adults in the tips of the tree. The outer circle is colored by the phylum of the taxon represented by each tree tip. Red ellipses mark two clades enriched for
samples from older individuals.
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benchmarked methods. The Intel Xeon CPU E5-2640 v3 CPUs
used in benchmarking have a thermal design power (TDP) per
core of the 11.25 TDP/core.

FINRISK processing

The 16S rRNA data were demultiplexed, quality filtered, and
denoised with deblur (Amir et al. 2017). The Greengenes
(McDonald et al. 2012b) 13.8 with a clustering level of 99% was
used as the reference phylogeny for open-reference feature picking
with SEPP (Mirarab et al. 2012). ASVs with a total frequency fewer
than 10 were discarded, and the table was then rarefied to a sam-
pling depth of 1000 reads/sample. The resulting table and inser-
tion tree were used for calculation of Faith’s PD.

The shotgun metagenomic data were trimmed and quality-
filtered using Atropos (Didion et al. 2017). They were aligned to
the WoL database using SHOGUN pipeline (v1.0.8) with a
Bowtie 2 alignment option. A table was generated from the align-
ments using the OGUworkflow (Zhu et al. 2021). OGUs with a to-
tal frequency fewer than 10 were discarded, and the table was then
rarefied to a sampling depth of 1000 reads/sample. The WoL phy-
logenomic tree (Zhu et al. 2021, 2019) was used for Faith’s PD.

Both tables were filtered to include only samples from indi-
viduals 35 and younger (younger criteria) or 60 and older (older
criteria).

Power estimation for mean difference in alpha diversity

For a given N (shown on the horizontal axis in Fig. 3A,B), the
FINRISK processed samples matching the younger/older criteria
were sampled to this depth. On the subsampled data, the differ-
ence in mean alpha diversity between younger and older adults,
�d, was computed. A null distribution, D̂, was generated by repeat-
ing 1000 repetitions of shuffling the age category associated with
an alpha diversity and recomputing the difference of mean alpha
diversity between the groups. The P-value was computed by find-
ing the percentile of �d in D̂.

This test procedure was repeated for 1000 repetitions. The
power for N is estimated as the proportion of tests found signifi-
cant at α= 0.05.

Older-younger log likelihood ratio calculation

The WoL tree (Zhu et al. 2019) was pruned and filtered to only in-
clude the OGUs (Zhu et al. 2021) belonging to the FINRISK sam-
ples with age ≤35 and ≥60. For each node t [ T in the tree,

log Likelihood Ratiot = log

∣∣Samplesolder(Descendants(t))
∣∣∣∣Samplesyounger(Descendants(t))
∣∣

( )

− log

∣∣Samplesolder(T )
∣∣∣∣Samplesyounger(T )
∣∣

( )
,

where Descendants (t) is the set of descendants of t in T , and for a
set of nodes N , Samplesgroup(N ) is the set of samples that contain
any features in N .

Phylogenetic visualization

Tree was visualized using EMPress (Cantrell et al. 2021). A
node in the tree was considered old if its agelog > 0 and young if
its agelog < 0.

Software availability

The data used for benchmarking Faith’s PD timing and memory
usage are available as per the Striped UniFrac paper (McDonald

et al. 2018b). The code for the benchmarking is available on
GitHub (https://github.com/biocore/faiths-pd-benchmarking).
The data and code needed for benchmarking the FINRISKmetage-
nomics data are also available on GitHub. The SFPhD code is avail-
able in the unifrac Python package (https://github.com/biocore/
unifrac). All of the software is also available in the Supplemental
Code.
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