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As a complex network of many interlinked brain regions, there are some central hub regions which play key roles in the structural
human brain network based on T1 and diffusion tensor imaging (DTI) technology. Since most studies about hubs location
method in the whole human brain network are mainly concerned with the local properties of each single node but not the global
properties of all the directly connected nodes, a novel hubs location method based on global importance contribution evaluation
index is proposed in this study. The number of streamlines (NoS) is fused with normalized fractional anisotropy (FA) for more
comprehensive brain bioinformation. The brain region importance contribution matrix and information transfer efficiency value
are constructed, respectively, and then by combining these two factors together we can calculate the importance value of each node
and locate the hubs. Profiting from both local and global features of the nodes and the multi-information fusion of human brain
biosignals, the experiment results show that this method can detect the brain hubs more accurately and reasonably compared with
other methods. Furthermore, the proposed location method is used in impaired brain hubs connectivity analysis of schizophrenia
patients and the results are in agreement with previous studies.

1. Introduction

Human brain is one of the most complex systems in the
world. The technology of human brain reconstruction based
on nuclear magnetic resonance imaging (MRI) provides a
powerful tool for the study of brain structure. The construc-
tion of human brain network may be realized in three levels:
microscale (neuron), small-scale (neural cluster), and large-
scale (brain region) [1]. Due to the physical particularity of
the human brain and the limitation of magnetic resonance
(MR) data collection technology, the large-scale brain region
network is still the focus of current researches, which takes
the different regions of the cerebral cortex as nodes and the
specific connectivity between two brain regions as the edge
of the network.Those researches based on large-scale human
brain network can help people to study the overall structure
and operation mechanism of human brain systematically
because it can take advantage of graph theory and complex

network theory [2]. The brain hubs refer to the phenomenon
that there exist some central nodes in the structural human
brain network, which have a large number of connections
with other regions and play key roles in the topology of
network [1, 3]. Recent studies have indicated the importance
of these hubs in brain network. A small amount of hubs plays
an important role in human brain’s information transmission
[4], and the damage of this kind of hubs will also cause a
devastating impact on the whole human brain network [5].
Researches on hubs are helpful for diagnosis and treatment
of common brain diseases such as Alzheimer’s disease and
schizophrenia [6]; furthermore, locating hub nodes in brain
network and then mapping them onto the brain correspond-
ing anatomical regions have an important clinical value in
neurosurgical operation navigation for avoiding important
brain functional region impairment [7].

In the studies for location method of brain hubs, a
method using rich-club connectivity coefficient has been

Hindawi
Computational Intelligence and Neuroscience
Volume 2017, Article ID 6174090, 9 pages
https://doi.org/10.1155/2017/6174090

https://doi.org/10.1155/2017/6174090


2 Computational Intelligence and Neuroscience

proposed to define the hub nodes [8] and it was verified in
the comparison experiment between schizophrenic patients
and healthy people [9]. The hubs definition methods based
on degree centrality, betweenness centrality, and closeness
centrality of nodes have been used to identify the hub nodes
in the human brain network and the results were analyzed
to compare the effects of these three different centrality
indexes [10]. Another hub detecting method has been pre-
sented from the perspective of functional regions, which
regarded the nodes involved in great number of subnetworks
as potential hubs and then identified the real hubs from
these potential hub nodes with spatial location information
[11].

Currently in the researches of cognitive science and
brain diseases, the most widely used brain hubs location
methods are almost based on the betweenness centrality and
degree centrality. On the basis of hubs identification method
with betweenness centrality, the support vector machine
algorithmwas used to classify the patients with schizophrenia
from normal people [12]. A rich-club connection coefficient
with degree centrality was defined and the connections
between core brains regions of the schizophrenic patients
were found to be more sparse than the normal ones because
the value is obviously decreased [13]. By comparing the
hubs located with betweenness centrality value, those major
depression disorder patients have shown abnormal changes
in structural brain network compared with healthy people
[14].

The aim of this study is to develop a framework for
assessing the importance of regions in structural human
brain network based on T1 and DTI data. Confined to
the nodes local property, most hubs location methods only
use one single index such as node degree centrality or
betweenness centrality to define the importance of a region in
the brain network, but as a part of complex system, the
global performance of a node in the whole brain network
is more important than its local performance. In this work,
the number of white matter streamlines (NoS) between brain
regions is taken as the weight to get a weighted adjacency
matrix as the original human brain network. Formore precise
description of brain essential biological property, anisotropic
fraction (FA) value is fused to correct the weight value
deviation; then a newweighted brain adjacencymatrix is built
which is called NoS-FA matrix in this paper. Taking account
of both local and global properties of a node, the brain region
importance contribution matrix and information transmis-
sion efficiency value are constructed, respectively, based on
NoS-FAmatrix. Finally these two factors are used together to
get an importance indicator for each node and then the hubs
can be located according to the value.

Three experiments have been designed and finished to
verify our proposed method. The results of hubs evaluation
performance contrast experiment show that this method
has better distinguishability and rationality. The results of
vulnerability analysis experiment exhibit that hubs obtained
with this method have more distinct influence on the overall
density and efficiency of the human brain network when they
are impaired.When applying thismethod for hubs locating in
schizophrenia patients, siblings, and healthy people, the

experiment results indicate that reasonable differences exist
in these three groups which is in accordance with previous
researches. The method proposed in this work could provide
a new insight into systematic analysis of brain region and it
is generalizable to the researches of how to find hub nodes in
other similar networks.

2. Reconstruction of NoS-FA Weighted
Brain Structural Network

2.1. Workflow for Reconstruction of Human Brain Structural
Network. MR data was acquired on a 1.5 tesla GE scanner
using the quadrature head coil and data acquisition included
anatomical DTI and T1 weighted image. Acquisition parame-
ters for the DTI-MR are as follows: high angular gradient set
of 15 different weighted directions and 1 unweighted b0 scan;
TR = 11000ms, TE = 74.7ms; b weighting of 1000 s/mm2;
matrix size = 128 × 128; field of view = 240mm × 240mm;
slice thickness = 4mm; slice gap = 0mm; 35 slices covering
the whole brain for each individual subject.

Several steps are necessary to construct the human
brain structural network from T1 and diffusion MRI data
as illustrated in Figure 1. Firstly T1 and DTI image data
need to be acquired. Then the data need to be preprocessed,
including format conversion of raw data, head realignment,
eddy current distortions, and other necessary processing.
Segmentation of the brain in white matter, grey matter, and
Cerebrospinal Fluid (CSF) with T1 weighted image needs to
be performed, and on this basis the brain cortical is divided
into 83 brain regions by using Automated Anatomical Label-
ing (AAL) template in Cortical Parcellation with FreeSurfer
[15], which will serve later on as 83 nodes of the brain
structural network. With DTI image data the intravoxel
reconstruction of diffusion information needs to be done to
get the FA quantity and the fiber tracking needs to be
performed with Tractography technique to get the number
of streamlines between brain regions.These can be defined as
the weight coefficients of the edges in the brain structural net-
work [16]. The connectivity matrix is obtained by registering
the two image spaces (morphological and diffusion). We can
use the weighted human brain network adjacency matrix to
represent the weighted human brain structural network. The
color of each brain region changes from blue to red in the
matrix, which represents the connectivity strengths that vary
from the lowest to the highest. All the steps are processedwith
the Connectome Mapping Toolbox [17].

2.2. Fusing Method of NoS-FAWeighted Matrix. When using
graph theory for the research, the weighted human brain
network can be expressed with an undirected graph 𝐺 ={𝑉, 𝐸}, which consists of 𝑛 nodes and 𝑚 edges. Here 𝑉 ={V1, V2, V3, . . . , V𝑛} represents the collection of nodes and 𝐸 ={𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑛} represents the set of edges in the human
brain network.𝑊 is the weighted connective matrix of the network 𝐺
and 𝑤𝑖𝑗 is used to represent the weight value between node𝑖 and node 𝑗. Since diffusion is a symmetric process and
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Figure 1: The workflow to create weighted human brain network.

the connection between two brain regions is regarded as
undirected,𝑊 is a symmetric matrix; that is to say, 𝑤𝑖𝑗 = 𝑤𝑗𝑖.

𝑊 =(𝑤11 . . . 𝑤1𝑗... d
...𝑤𝑖1 ⋅ ⋅ ⋅ 𝑤𝑖𝑗). (1)

Taking the number of streamlines between brain regions𝑀NoS
𝑖𝑗 as the strength of connection between adjacent nodes𝑖 and 𝑗, which is always a positive value [18], the edge weight

value 𝑤𝑖𝑗 of the adjacency matrix should be𝑤𝑖𝑗
= {{{{{{{{{

Inf , 𝑖 = 𝑗,𝑀𝑖𝑗, 𝑖 ̸= 𝑗, 𝑖 and 𝑗 are connected directly,0, 𝑖 ̸= 𝑗, 𝑖 and 𝑗 are not connected directly.
(2)

The number of streamlines connecting two regions is a
simplistic and direct measure of connectivity, but in the
process of Tractography, there exist a large number of white
matter fibers crossing, convergence, and branching in a single
voxel [19]. Because the size of each brain region is different,
the region with larger area will access more fiber connections
than the smaller ones. As a result, the numbers of streamlines
between brain regions obtained by Tractography do have
some deviations.

In order to reduce the influence of the deviations
mentioned above, we propose a weighted adjacent matrix
construction technique by fusing the fractional anisotropy
index together with the number of streamlines.The fractional
anisotropy value is based on the normalized variance of the
eigenvalues and its range is between 0 and 1 (0 = isotropic dif-
fusion, 1 = highly directional). As a physical characteristic of

different tissues in the brain, the FA value of the same
object is comparability in different time, different objects, and
different imaging equipment [20, 21]. FA can give information
about the shape of the diffusion tensor at each voxel and it is
a kind of diffusion properties of water molecules in the brain,
so it can be used to characterize the connectivity strength
among each pair of brain region.

Firstly, in order to eliminate the influence of different
physical variables, the FA weighted adjacent matrix 𝑀FA is
normalized as follows:

𝑀FA
𝑖𝑗 = 𝑀FA

𝑖𝑗 −min𝑀FA
𝑖𝑗

max𝑀FA
𝑖𝑗 −min𝑀FA

𝑖𝑗

. (3)

Then taking𝑀FA
𝑖𝑗 as the correction parameters, each ele-

ment in𝑀NoS
𝑖𝑗 adjacency matrix is combined with this value

so as to get a fused NoS-FA weighted adjacency matrix𝑀NoS-FA
𝑖𝑗 which is defined as𝑀NoS-FA

𝑖𝑗 = 𝑀NoS
𝑖𝑗 ×𝑀FA

𝑖𝑗 . (4)

This network has included not only the connection
strength of fibers between two connected brain regions but
also the inherent physical property of each region, so it can
show more comprehensive bioinformation of the brain and
we will take it as the foundation of our study in this work.

3. Human Brain Hubs Location
Method Based on NoS-FA Matrix

3.1. Construction of Brain Region Importance Evaluation
Matrix. Just like other complex networks, the human brain
network is an integration of nodes and edges, and the impor-
tance of each node will be affected by all those connections
which it has. That means when change happened with even
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one node, it will lead to the disorder or collapse of the entire
network [22].The relationships with other brain regions have
very important influence on the performance of a node, and
it is not enough to describe the complexity of topological
relation only by the local characteristic of the brain region.On
the basis of reference [23], in which a contribution matrix of
the node importance degree in undirected and unweighted
networks was presented, a hub evaluation method with
weighted importance contribution matrix is proposed in our
work. In this method, both the contribution of a single brain
region for the other connected brain regions in the whole
brain network and the information transfer ability of this
brain region are considered together to find the hubs in the
brain network effectively.

In a brain structural network with 𝑛 brain regions, if the
average connection degree of all brain regions is 𝑘, which
indicates the average number of all connections in the human
brain, and the average brain connection strength is 𝑆, which
represents the average number of white matter fibers in
all brain regions, then a single brain region V𝑖 will have a
contribution 𝐷𝑖/𝑆𝑘2 to its connected brain regions. Because
the NoS-FA adjacency matrix is weighted, the contribution
of each brain region V𝑖 to other connected brain regions
should also consider the weight value 𝑤𝑖𝑗, so the importance
contribution matrix of brain regions in the human brain
network𝐻BRIM is defined as

𝐻BRIM =
[[[[[[[[[[[[[

1 𝐷2𝑤21𝑆𝑘2 ⋅ ⋅ ⋅ 𝐷𝑛𝑤𝑛1𝑆𝑘2𝐷1𝑤12𝑆𝑘2 1 ⋅ ⋅ ⋅ 𝐷𝑛𝑤𝑛2𝑆𝑘2... ... ⋅ ⋅ ⋅ ...𝐷1𝑤1𝑛𝑆𝑘2 𝐷2𝑤2𝑛𝑆𝑘2 ⋅ ⋅ ⋅ 1

]]]]]]]]]]]]]
. (5)

Here the diagonal elements have a contribution value of 1.
On the other hand, in order to reflect the ability of a single

brain region V𝑖 in the information process, the information
transmission efficiency 𝐸𝑤𝑖 is defined as

𝐸𝑤𝑖 = 1𝑛∑
𝑖∈𝑛

∑𝑗,ℎ∈𝑛,𝑗 ̸=𝑖 𝑎𝑖𝑗𝑎𝑗ℎ (𝑑𝑤𝑖𝑗)−1𝐷𝑖 (𝐷𝑖 − 1) . (6)

Here 𝑎𝑖𝑗 is used to indicate whether there is a direct link
between nodes 𝑖 and 𝑗, if the connection exists, 𝑎𝑖𝑗 = 1;
otherwise, 𝑎𝑖𝑗 = 0. 𝑑𝑤𝑖𝑗 represents the shortest weighted
distance between two different brain regions, which is the
harmonic mean weight of each brain region.

𝑑𝑤𝑖𝑗 = min( 11/𝑤𝑖𝑘 + ⋅ ⋅ ⋅ + 1/𝑤𝑛𝑗 , 11/𝑤𝑖V + ⋅ ⋅ ⋅ + 1/𝑤𝑤𝑗 ,
. . . , 11/𝑤𝑖𝑙 + ⋅ ⋅ ⋅ + 1/𝑤𝑘𝑗) .

(7)

It can be seen from the definition of 𝐸𝑤𝑖 that the trans-
mission efficiency can reflect how important a brain region

is in the information transfer process in human brain. If 𝐸𝑤𝑖
value of a brain region is very big that means it plays a more
important role in information transmission; therefore, when
this brain region is injured, the information transmission
ability of the whole brain network will suffer a greater loss.

By now for each brain region we have a local contribution
index 𝐷𝑖𝜔𝑖𝑗/𝑆𝑘2 and a global importance property index 𝐸𝑤𝑖 ;
then the values of these two index are integrated into an
evaluation matrix𝐻RC as follows:

𝐻RC =
[[[[[[[[[[[[[

𝐸𝑤1 𝐷2𝑤21𝑆𝑘2 𝐸𝑤2 ⋅ ⋅ ⋅ 𝐷𝑛𝑤𝑛1𝑆𝑘2 𝐸𝑤𝑛𝐷1𝑤12𝑆𝑘2 𝐸𝑤1 𝐸𝑤2 ⋅ ⋅ ⋅ 𝐷𝑛𝑤𝑛2𝑆𝑘2 𝐸𝑤𝑛... ... ⋅ ⋅ ⋅ ...𝐷1𝑤1𝑛𝑆𝑘2 𝐸𝑤1 𝐷2𝑤2𝑛𝑆𝑘2 𝐸𝑤2 ⋅ ⋅ ⋅ 𝐸𝑤𝑛

]]]]]]]]]]]]]
. (8)

Here 𝐻RC(𝑖, 𝑗) indicates the important influence of brain
region 𝑖 to brain region 𝑗, which depends not only on the
quantity of white matter fibers between 𝑖 and 𝑗 but also on
the important level of brain region 𝑖 in the information
transmission.Through the application of the hubs evaluation
matrix𝐻RC, the important index of brain regions is expressed
as follows:

RC𝑖 = 𝐸𝑤𝑖 × ∑𝑛𝑗=1,𝑗 ̸=𝑖𝐷𝑗𝑤𝑗𝑖𝐸𝑤𝑗𝑆𝑘2 . (9)

We can calculate all the RC𝑖 values in the brain network
and choose the 15 highest values of the brain regions as hubs
in a human brain network [24].

3.2.Workflow ofHubs Location Based on Important Index𝑅𝐶𝑖.
The brain hubs location algorithm based on important index
considers both the global property of a brain region and the
relationships with other connected regions in the brain; the
overall workflow is as follows:

(1) The quantity of white matter fiber between regions is
fused with anisotropic fraction value of this region
to get𝑀NoS-FA according to (4), which is used as the
input data of the algorithm.

(2) The importance matrix of all brain regions to the
other connected brain regions is computed, respec-
tively, according to (5).

(3) The information transfer efficiency values of each
region are computed with (6) and integrated into the
relative importance matrix.

(4) RC𝑖 value is calculated according to (8) and (9), which
represents the importance of each brain region.
Ranking the RC𝑖 values in descending order, the
nodes with the first 15 highest values are considered
as hubs in brain structural network.
The algorithm flow diagram is shown as Figure 2.
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4. Effect Analysis of Hubs Location Algorithm
Based on NoS-FA Matrix

4.1. Effectiveness Analysis of the Algorithm. We use both the
weighted betweenness hubs location method which is the
most popular method in evaluating brain hubs and proposed
hubs location method to calculate the importance value of
each brain region for the same healthy people’s brain network,
and the results were shown in Figure 3.

There are three improvements when using the proposed
method. Firstly, from the results, we can see when using the
region evaluation method with weighted betweenness that
there exist some nodes that have the same importance value.
While in the results based on the proposed method every
region has different value of importance, so our method is
more accurate for evaluating the importance of brain regions.
In addition, it can be seen clearly in the region evaluation
results with weighted betweenness method that some brain
regions have the same importance value of zero, but it is
impossible for a region to have no importance in the network.
While in the results of proposed method even the last one
also has a no-zero importance value, so our method is
more reasonable for evaluating the importance of brain
regions. Finally in the region evaluation results with weighted
betweenness method, the distribution of importance value is
more even and the values in different regions are closed to
each other. While in the results with proposed method the
distribution looks sharper, the difference between the hubs
and other noncore nodes in the brain network is more

apparent. For further analysis, the most important 15 brain
regions located with two methods and some corresponding
properties are listed in sort order in Table 1.

The location of hubs with the proposed method in brain
space is shown in Figure 4; it can be seen that the human brain
hubs are mainly located on the frontal lobe, parietal lobe, and
the flat layer part of the organization, including the superior
parietal gyrus, parietal gyrus, superior frontal gyrus, precen-
tral gyrus, paracentral gyrus, thalamus, putamen, and brain
stem. Benefitting from fusing two kinds of bioinformation,
the NoS-FA weighted network involves more comprehensive
information of brain, so it can distinguish the hub nodes from
those noncore nodes more accurately; at the same time, the
ranking of hubs importance value is more reasonable and
highly recognizable.

4.2. Algorithm Vulnerability Analysis and Comparison. In
order to verify the actual importance of the hubs, which are
located by the proposed algorithm, the vulnerability analysis
experiment is presented in our work.When a node in the net-
work is removed, the global property of the network will be
changed. Usually the ratio of the change of network property
to the network property before the removal is defined as the
vulnerability [25]. The greater vulnerability a node has, the
higher damage will be put on the entire network, and the role
of this node is more important. It needs to be emphasized
that, in the experiment, when one node is removed, all the
white matter fibers, which are connected with this brain
regions, are invalid and the NoS weight of related edges in the
network will be zero. Therefore, the vulnerability of brain
region 𝑖 is defined as

𝑉𝑖 = PropValue − PropValue
PropValue

. (10)

Here PropValue represents one kind of network proper-
ties value before a node is removed, and PropValue repre-
sents this property value after the removal. In this research,
the network properties of global efficiency and network
density are taken as the vulnerability analysis parameters,
respectively, which are shown as

DensityValue = ∑𝑛𝑖=1,𝑗=1𝑀𝑖𝑗 (𝑤𝑖𝑗 ̸= 0)𝑛 (𝑛 − 1) ,
EfficiencyRating = 1𝑛∑

𝑖∈𝑛

∑𝑗∈𝑛,𝑗 ̸=𝑖 (𝑑𝑤𝑖𝑗)−1𝑛 − 1 . (11)

The network density reflects the ratio of the actual num-
ber of edges and the maximum number of edges the network
may have, and it is an important attribute to test the
network size. The global efficiency reflects the information
transmission capability of a network.

To compare the influence that a hub may have on the
entire brain network, three cases are considered in this
experiment: brain hubs are computed and chosen with our
proposed method, with weighted betweenness method or at
random. The vulnerability change curves of three methods
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Table 1: Comparison of the evaluation results under different methods.

Hub order number Weighted betweenness method Proposed method
Importance value Region number region name Importance value Region number Region name

1 1234 12 R-RAC 15.515 8 R-SF
2 1162 56 L-ISTC 13.099 49 L-SF
3 748 32 R-ST 12.868 37 R-PUT
4 714 63 L-PCAL 8.070 78 L-PUT
5 644 62 L-CUN 7.987 83 BS
6 622 42 L-LOF 7.204 35 R-THA
7 616 15 R-ISTC 6.942 18 R-SP
8 598 37 R-PUT 5.972 10 R-PREC
9 568 59 L-SMAR 5.892 59 L-SP
10 498 36 R-CAU 5.315 76 L-THA
11 482 55 L-PC 4.693 51 L-PREC
12 472 35 R-THA 4.346 60 L-IP
13 448 25 R-FUS 2.961 19 R-IP
14 448 34 R-INS 2.942 20 R-PCUN
15 436 71 L-MT 2.509 34 R-INS
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Figure 3: Comparison of the region evaluation results with different methods.

L R

Figure 4: Location map of hubs in weighted human brain network
based on NoS-FA.

are given and compared as shown in Figure 5. It can be seen
that when one brain region is damaged, the properties of
the whole brain network have also changed and the hubs
obtained by proposed method have the greatest impact on
the overall properties of the human brain network in both
density and efficiency. Because both the local characteristic of

a single brain region and the global contribution that a brain
region has to its connected regions are considered together,
the evaluation process is based on more comprehensive
bioinformation and so the hubs located with this method will
have more important influence on the human brain network.

4.3. Hubs Property Analysis of Schizophrenia. The proposed
method was applied to the MRI data of schizophrenia for the
analysis of human brain structural network changing. Total
of 205 people were divided into three groups: schizophrenia
patients group (Patients) with 62 people, siblings of patients
(Siblings) with 83 people, and healthy people group (healthy
people) with 60 people. All the MRI data were processed
according to the workflow in Figure 1.

Firstly three types of global brain network properties were
calculated, respectively, to make the comparison. (1) Brain
region connection strength 𝑆 = (1/𝑁)∑𝑗∈𝑁 𝑎𝑖𝑗, which is the
mean value of the weight values of all connections in the
weighted brain network.The connection strength is the direct
reflection of the numbers of white matter fibers in the
human brain network. (2) The global efficiency 𝐸 = (1/𝑁)∑𝑛𝑖=1,𝑖 ̸=𝑘(1/𝑑𝑘𝑖) of the brain network, which is the mean of
all the reciprocals of the shortest path. Efficiency value reflects
the transmission speed of information in the human brain
network. (3) Clustering coefficient 𝐶 = (1/𝑁)∑𝑖∈V 𝐶𝑖 of
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Figure 6: Experiment process diagram.

the brain network, which is the mean value of all clustering
coefficients of all regions. Clustering coefficient is a measure
of the degree of brain network group indicating the extent of
the network clustering.

Taking the healthy human brain network as the bench-
mark, three local property values of each hub were calculated
for each subject: connection strength 𝑆𝑖 = ∑𝑗∈𝑁 𝑎𝑖𝑗, local
efficiency 𝐸𝑖 = ∑𝑛𝑖=1,𝑖 ̸=𝑘(1/𝑑𝑘𝑖), and clustering coefficient𝐶𝑖 = 2𝐸𝑖/𝑘𝑖(𝑘𝑖 − 1); then the average values in each groups
were calculated, respectively. The experiment is designed as
the process shown in Figure 6 and all the computations are
executed by the MATLAB brain connectivity toolbox [26].

The experiment results are shown in Table 2. The average
global properties values of the brain network are presented in
Table 2(a); the average local properties values with weighted

betweenness method are presented in Table 2(b) and the
average local properties values with proposed method are
presented in Table 2(c). It can be seen from the results in
Table 2 that both global and local properties in patients, sib-
lings, and healthy people group have shown some interesting
differences.

The global properties values are shown in Table 2(a),
and compared with healthy group, the average values of
connection strength, global efficiency, and clustering coeffi-
cient in patients group were decreased by 3.95%, 2.69%, and
3.55%, respectively. The significant ordered differences, such
that healthy people > siblings > patients, were found in both
connection strength and clustering coefficient, while for
global efficiency patient group has a weak higher value than
sibling group but still lower than healthy group.
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Table 2: Experiment results comparison.

(a) Global properties values of the human brain network

Experimental group Connection strength Global efficiency Clustering coefficient
Healthy people 9261.2 224.27 134.74
Siblings 9030.7 214.34 127.25
Patients 8895.3 218.24 122.49

(b) Local properties values of hubs based on weighted betweenness method

Experimental group Connection strength Local efficiency Clustering coefficient
Healthy people 14491 231.57 102.92
Siblings 14188 221.82 99.95
Patients 14170 222.58 98.82

(c) Local properties values of hubs based on the proposed method

Experimental group Connection strength Local efficiency Clustering coefficient
Healthy people 28097 410.74 189.37
Siblings 27142 392.82 181.56
Patients 25365 376.04 173.33

Table 3: Variance analysis results.

(a) Variance analysis result of connection strength 𝑆𝑖

Sum of square Degree of freedom Mean of square 𝐹 Sig.
Between-group 2.369𝐸8 2 1.185𝐸8 8.496 .000
Intragroup 2.817𝐸9 202 13943176.62
Total 3.053𝐸9 204

(b) Variance analysis result of clustering coefficient 𝐶𝑖

Sum of square Degree of freedom Mean of square 𝐹 Sig.
Between-group 7851.000 2 3925.500 5.325 .006
Intragroup 148924.522 202 737.250
Total 156775.522 204

(c) Variance analysis result of local efficiency 𝐸𝑖

Sum of square Degree of freedom Mean of square 𝐹 Sig.
Between-group 36705.578 2 18352.789 5.864 .003
Intragroup 632256.889 202 3129.985
Total 668962.467 204

The local properties values based on weighted between-
ness method are shown in Table 2(b). The sequence that
healthy people > siblings > patients still can be found but not
so obvious in connection strength and clustering coefficient
between three groups. The local efficiency of patient group is
very close to that of sibling group, but the former was slightly
higher than the latter.

For the local properties values based on the proposed
method in Table 2(c), the significant ordered difference is that
healthy people > siblings > patients were found clearly in
connection strength, clustering coefficient, and local effi-
ciency. The average values of hubs’ local efficiency were the
highest in healthy people, intermediate in siblings (4.36%
reduced relative to healthy people), and lowest in patients
(8.44% reduced compared with healthy people). Connection
strength in patients hubs was decreased by 9.72% compared
with healthy people and 6.55% compared with siblings.

Clustering coefficients in patients hubs were decreased by
8.47% compared with healthy people and 4.53% compared
with siblings.

These results are consistent with the conclusion in [13].
More importantly, from the results of the above analysis, we
can see that the difference between the hubs of healthy people,
siblings, and patients in the proposed method is more appar-
ent than inweighted betweennessmethod.These results indi-
cate that hubs location with method proposed in this paper
is more reasonable and accurate than the weighted between-
nessmethod,which ismost popular in finding hubs at present
researches.

At the meantime, analysis of variance (ANOVA) was fin-
ished in our work to test the data difference and the results are
shown in Table 3.The 𝐹 value of connection strength 𝑆𝑖, clus-
tering coefficient 𝐶𝑖, and local efficiency 𝐸𝑖 was 8.496, 5.325,
and 5.864, and the 𝑃 value of each group was less than 0.05.
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5. Conclusions

In this work, we presented a novel hub location method for
the human brain structural network, which is based on MRI
image reconstruction technique.Onemeaningful work is that
the NoS weights matrix was fused with FA values to get more
comprehensive bioinformation for brain region connections.
The other valuable work is the construction of contribution
matrix of the region’s importance, which is an index including
local contribution of a region to other correlative brain
regions and the global transmission efficiency of this region
in NoS-FA weighted human brain network. The experiment
results testify that the proposed method can provide more
precise and reasonable hubs location method compared with
the most frequently used weighted betweenness evaluation
index. The experiment results also emphasize the findings
discovered by other researches; the hubs of human brain
network in schizophrenia patients are impaired compared
with healthy people.
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