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rithm with isotope distribution
pattern in LC-MS based on support vector machine
(SVM) learning model†

Jian Cui, *a Qiang Chen,‡a Xiaorui Dong,‡a Kai Shang,‡a Xin Qi‡b and Hao Cui‡b

In proteomics, it is important to detect, analyze, and quantify complex peptide components and differences.

The key is to match the elution time peaks (LC peaks) produced by the same peptide in replicate

experiments. Warping functions are currently widely used to correct the mean of time shifts among

replicates. However, they cannot reduce the ambiguity to distinguish the corresponding peak pairs and

the non-corresponding ones because the time shifts are random based on each extracted-ion-

chromatogram (XIC). In this paper, besides time feature, isotope distribution pattern similarity is

considered. The novelty is that compared with other feature based methods including the isotope

feature, the algorithm is not based on the peak profile similarity as usual, but on the isotope distribution

similarity. First, the training set of peptides including the corresponding and non-corresponding peak

pairs were selected from the MS/MS results. Second, we generated time difference and isotope

distribution pattern similarities for each peak pair. Third, Support Vector Machine (SVM) classification was

used based on the two features. Finally, the accuracy was measured along with final coverage. We first

used a 10-fold cross validation to test the effectiveness of the SVM learning model. The accuracy of

correct matching could reach 97%. Second, we evaluated the coverage based on the learning model,

which could be from 75% to 91% in different datasets. Thus, this matching algorithm based on time and

isotope distribution pattern features could provide a high accuracy and coverage for the corresponding

peak identification.
1 Introduction

Liquid chromatography-mass spectrometry/tandem mass
spectrometry (LC-MS/MS) is a powerful tool for protein identi-
cation and quantication.1 Replicates can improve its accuracy
– these spectra should be the same. Theoretically, each experi-
mental results should contain the same peptide compositions,
and the peaks of a specic peptide in different spectral results
should have the same LC time and m/z value. However, various
uncontrollable factors lead to differences between the experi-
mental results. Most of the popular approaches align the time
shi rst and then nd the corresponding peaks. Most of the
alignment approaches use warping functions2 that correct the
mean of the elution time shis between the different datasets.
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Correlation optimized warping was proposed by Nielsen3 to
which Bylund later proposed many modications.4,5 Parametric
time warping (PTW) was proposed by Eilers,6 based on which
Van developed an extension called semi-parametric time
warping (STW).7 Wehrens described a new formulation based
on PTW. Prince8 proposed an Obi-Warp by generating a warping
function based on dynamic time warping with a one-to-one
smooth warp function. Tomasz9 proposed a method for classi-
cation with the nearest neighbor rule, which combined the
dynamic time warping (DTW) distance between multivariate
time series (MTS) and the DTW distance between derivatives of
MTS. These worked on peak-picked features rather than on
complete proles.10

The feature-based approaches mainly focus on either
matching LC peaks or signicant features in images.11,12 Jaitly13

proposed a very sophisticated algorithm called LCMSWARP and
compared six freely available alignment algorithms. OpenMS14

performed the best on proteomics data, closely followed by
XAlign, XCMS and MZmine. For the metabolomics data sets,
XCMS performed best with OpenMS not far behind. Voss's
paper15 focused on the alignment of multiple datasets at the
same time, in which the method combined hierarchical pair-
wise correspondence estimation and global retention time
correction. However, the performance was slightly worse than
This journal is © The Royal Society of Chemistry 2019
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OpenMS on proteomics data. In addition, some popular so-
ware package such as OpenMS16,17 or msInspect18,19 could align
and match the peptides that were identied by the tandem MS;
this generated low quantication coverage.20 MaxQuant21,22

looked for the LC elution peaks of all the identied peptides in
LC/MS to ensure that the identied peptides fromMS/MS could
be quantied at least once.23 However, if the peptide was
identied in dataset 1 and not in dataset 2, then it was hard to
quantify the corresponding peak in dataset 2.

As mentioned above, most matching algorithms processed
the data via MS/MS. This could lead to accurate peptide infor-
mation including m/z and LC time value. However, the XICs
generated based on the MS/MS information have crowed peaks
(Fig. 1)

Even aer using the warping function to correct for the mean
time difference, there still were ambiguous multiple LC peaks
within a narrow time window. For example, it was difficult to
identify which peak was the corresponding one for peptide
“AGGPTTPLSPTR” in data 1 based on the real peak information
in data 2. Time was still an important key for aligning, but there
were some ambiguous peaks that could interrupt the correct
matching. A unique statistical corresponding feature identi-
cation algorithm (SCFIA) was proposed in by Cui,24 which used
peak shape correlation between two peaks as an additional
feature for matching. The peak shape correlation feature was
directly calculated based on peak shapes. Another algorithm
named PeakLink (PL) was proposed by Bari,25 which used
wavelet decomposition to reduce noise and calculated peak
shape correlation scores aer de-noising, and used the support
vector machine (SVM) based on time and peak shape feature.
The accuracy could achieve almost 90% with 5–8% improve-
ment compared with SCFIA. These two methods proved that
beside LC time, the additional feature could improve the
aligning and matching accuracy. However, the selection of the
second feature was crucial. As observed from the experiment
result, the peak shape were affected by both signal and noise. If
the peak shape was affected only by white noise, the wavelet
decomposition could effectively remove it, because the statis-
tical characteristics of white noise had not been changed aer
wavelet decomposition. However the composition of noise was
complex, which affected the peak shape seriously.
Fig. 1 Interference of peptide “AGGPTTPLSPTR”. (a) The LC peak
between 2800–3400 of peptide “AGGPTTPLSPTR” in data 1. (b) The LC
peak between 2800–3400 of peptide “AGGPTTPLSPTR” in data 2.

This journal is © The Royal Society of Chemistry 2019
At present, the analytical techniques of stable isotopes such
as 13C, 18O and 15N were widely used in the biological eld,
because the isotope of peptide followed the same distribution. A
computational platform entitled MetSign was proposed by
Wei,26 in which peak list alignment was based on isotope peaks.
It also applied wavelet transformation (WT) for noise removal in
order to get isolated peak proles. MetSign performed peak
alignment based on peak m/z values and the peak intensity
prole of peaks.

So till now, these feature based methods including the
isotope feature were all based on the peak prole similarity, not
on the distribution. The common way they used was calculating
Pearson correlation coefficient to measure the similarity
between the peaks. In this paper, compared with the peak
intensity prole, the isotope distribution pattern was selected as
the second feature, of which the characteristics of distribution
of the peptide XICs were analyzed. The main (monoXICs), the
rst and second isotopes XICs should be very stable in the total
distribution. Fig. 2 was the example of the peptide
“ACNLDVILGFDGSR”.

The SVM learning model was applied to align the peaks of
the same peptide in different datasets via time features and also
isotope distribution pattern similarity. The model would judge
whether they correspond or not aer calculation of time
differences and isotope distribution pattern similarities. Taking
two datasets as example in Fig. 3, there were 1944 peptides in
dataset 1 and 1603 in dataset 2 detected by MS/MS. Fig. 3
showed that the intersection part (zone 2) had only 700
peptides; each peptide had the real LC time and m/z value
information. These were selected as the total training candidate
peptide set to build and test the SVM classication model. The
nal goal of this paper was to align and match all the peptides
in zone 1 and zone 3 as well as possible.
2 Data and methods
2.1 Data

The datasets processed here were produced by RCMI Proteo-
mics and Protein Biomarkers Cores at UTSA Laboratory. We
totally used 3 groups of datasets. The X!Tandem in Trans-
Proteomic Pipeline (TPP) was used to process all the datasets
for tandem MS identication. The MS/MS list of each dataset
contained peptide information, charge state, LC time value,
intensity value and so on.
Fig. 2 The isotope XICs of peptide “ACNLDVILGFDGSR”.

RSC Adv., 2019, 9, 27874–27882 | 27875



Fig. 3 Venn diagramof two datasets withMS/MS information in Group
1.

Fig. 5 Peptide “EGGWDSVQDWMDVLSGGEK” isotope XICs in data 1
(Group 1). (a) Isotope XICs of peptite “EGGWDSVQDWMDVLSGGEK” in
dataset 1, (b) isotope peak profile, (c) isotope distribution pattern.
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Group 1 contained two replicates of TAGE tumor datasets
processed from the LTQ Orbitrap Velos instrument, which had
already shown in Fig. 3. The dataset 1 contained 1944 peptide
detected by MS/MS while the data 2 had 1603. The intersection
had 700 peptides.

Group 2 contained the data from three fractions of breast
cancer tissue together with a super-SILAC mix collected on an
Orbitrap instrument. There were 6552, 6383, 4156 peptides
detected by MS/MS in data 1, data 2 and data 3. The intersection
of data 1 and 2 contained 1697, while 906 for data 1 and 3; 2409
for data 2 and 3. The intersection of the three datasets had 795
peptides.

Group 3 contained three technical replicates without prior
separation collected on a new generation LTQ-Orbitrap Velos
instrument. The number of peptides detected by MS/MS in data
1, 2 and 3 are 6207, 5892 and 6502. There were 4187 peptides in
the intersection between data 1 and 2, while 4355 between data
1 and 3, 4287 between data 2 and 3. The intersection of these
three datasets contained 3467 peptides.

These data groups were representative of real biological datasets
collected on different instruments, each of which contained
hundreds of thousands of isotopically labeled peptides.
2.2 Methods

The algorithm was developed by Matlab R2016a with SVM
classication toolbox. The computer used for processing
Fig. 4 Flowgram of algorithm.

27876 | RSC Adv., 2019, 9, 27874–27882
contained CPU i7-8700, 16 G RAM, 2T HDD and so on. Fig. 4
showed that the algorithm contained four parts: data pre-
processing, generating total training candidate set, model
building and testing, and full-scale alignment and matching.

2.2.1 Data preprocessing. First, the two MS/MS datasets
were combined to get unied peptide information. Second,
based on the information list, we calculated the m/z value for
the peptide as the center m/z value and generated the full-time
XICs of mono-isotope, rst isotope and second isotope for each
peptide with a 20 ppm width window. Third, we detected the LC
intervals in each XIC of the peptide. Finally, peptides with the
intervals that contained the MS/MS time information were
selected. We then had two kinds of peptides, one of which were
in intersection set and the others were in difference set.

2.2.2 Generating total training candidate peptide set. The
total training candidate peptide sets were all from the inter-
section set. Here, the peptides had the exact m/z and time value
based on MS/MS information. These data were all real and
reliable, which were selected as the total training candidate
peptide set with the ground truth.

2.2.3 Model building and testing. Based on the total
training candidate peptide set, we calculated the time differ-
ence and isotope distribution pattern similarity for each peptide
peak pair. The denitions were as follows. The peak (mono-
peak, 1st isotope peak or 2nd isotope peak) that contained the
MS/MS time points for each dataset was called the real peak.
The others that did not contain the MS/MS time point were
Fig. 6 Peptide “EGGWDSVQDWMDVLSGGEK” isotope XICs in data 2
(Group 1). (a) Isotope XICs of peptite “EGGWDSVQDWMDVLSGGEK” in
dataset 2, (b) isotope peak profile, (c) isotope distribution pattern.

This journal is © The Royal Society of Chemistry 2019



Fig. 7 Histogram of time difference, peak similarity and KL divergence. (a) Histogram of corresponding time difference. (b) Histogram of cor-
responding peak similarity. (c) Histogram of corresponding KL divergence. (d) Histogram of non-corresponding time difference. (e) Histogram of
non-corresponding peak similarity. (f) Histogram of non-corresponding KL divergence.
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called the interference peaks. The peak pair with real peaks in
both data 1 and 2 was called the corresponding peak pair, while
the peak pair that contained one real peak and one interference
peak was called a non-corresponding peak pair. The time
difference and isotope distribution pattern similarity of the
corresponding peak pairs were all corresponding values; the
time difference and isotope distribution pattern similarity of
non-corresponding peak pairs were all non-corresponding
values.

We took a specic peptide in dataset 1 and 2 in Group 1 as an
example. As shown in Fig. 5 and 6(a) was the three-dimensional
Fig. 8 Time and isotope pattern similarity of each peak pair.

This journal is © The Royal Society of Chemistry 2019
XICs spectra, (b) was the isotope XICs based on time and
intensity, (c) was the isotope distribution pattern fromm/z view,
in which the isotope distribution was obtained by summing the
intervals. It could be seen that the isotope LC peaks of the same
peptide were highly consistent in time and shape. Therefore,
assumed that the isotope distribution of data 1 in Fig. 5(c) was
P, and that of data 2 in Fig. 6(c) was Q, the KL divergence was
calculated by the following formula:

DKLðPkQÞ ¼
XN
i¼1

PðxiÞ log
�
PðxiÞ
QðxiÞ

�
(1)
RSC Adv., 2019, 9, 27874–27882 | 27877



Fig. 9 Flowchart of OpenMS.

Fig. 10 Warping Function.
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DKL (PkQ) described the information loss when the proba-
bility distribution Q was used to t the distribution P, where P
denoted the real distribution and Q denoted the tting distri-
bution of P. The closer the value of DKL (PkQ) was to zero, the
more consistent the two distributions were, that was, the more
probably the two interval signal were generated by the same
peptide. This paper took the value of natural logarithm for the
obtained KL divergence values in order to distribute them in the
whole coordinate axis.

Here, peak shape similarity feature was also calculated
between the two peaks. It was described by calculating the
linear regression determinant R2 of the two peak sequences. As
shown in Fig. 5 and 6, mono intervals of one peptide in data 1
and 2 could be considered as two series. The total sum of the
squares SStot, regression sum of the squares SSreg, error sum of
the squares SSres, and R2 value were calculated as follows:

SStot ¼ SSres + SSreg (2)

R2 ¼ SSreg/SStot (3)

The R2 value was between 0 and 1. If the two peaks were similar,
the value should be close to 1. While not, it was close to 0.
Table 1 The result of Warping function of datasets in Group 1

Index 1 2 3 4 5

Accuracy (%) 0.8333 0.8333 0.8167 0.7833 0

27878 | RSC Adv., 2019, 9, 27874–27882
Fig. 7 showed the histogram of the time difference, peak
shape similarity and KL divergence of isotope distribution
pattern between dataset 1 and 2 in Group 1. From the gure, the
time difference feature was still a very important feature to
distinguish the peak pair because the variance of the corre-
sponding peak difference was much smaller than that of the
non-corresponding one. However, the histogram of the non-
corresponding peak time difference (d) still had an overlap (a)
from �200 s to 100 s with a high intensity, which meant false
positive judgement.

Fig. 7 showed the histogram of peak shape similarity in (b)
and (e). The overlap from 0.6 to 1 between corresponding and
non-corresponding features in (b) and (e) was too obvious to be
ignored, which could cause high false positive. Compared with
the peak shape similarity, as shown in Fig. 7(c) was the histo-
gram of ln(KL divergence value) of correlated peaks, and (f) was
the histogram of ln(KL-divergence-value) of non-correlated
peaks. By comparing these two graphs, the histogram of non-
corresponding was distributed between �10 and 0 with high
intensity from �5 to 0 in (f), while the corresponding ones were
concentrated from �10 to �5 with just a few larger than �5 in
(c). We could easily see that the discrimination got from the (c)
and (f) was much better than that from (b) and (e), which meant
that the isotope distribution pattern feature should have
a stronger distinction characteristic with low false positive than
peak shape feature.

We selected time and isotope feature for both corresponding
and non-corresponding peak pair and plotted the Fig. 8 based
on the Group 1. This gure told us that it was necessary to nd
a classication curve that divided the area into two parts
labelled as corresponding and non-corresponding. We tried the
SVM classication model to verify the peak pair in a two-
dimensional way to reduce the false positive rate. SVMs were
supervised learningmodels with associated learning algorithms
that analyze data used for classication and regression analysis.
The training dataset we selected here were the peak pairs with
labels in two categories of corresponding and non-
corresponding. Thus, SVM could build a model with training
data that assigned a new point to one category or the other. This
was a non-linear classication problem (Fig. 8), and thus we
tested four kernel functions in our algorithm: quadratic kernel,
polynomial kernel, Gaussian radial basis function kernel,
multilayer perceptron kernel. The results would be shown in the
next section.

2.2.4 Model testing & full-scale alignment and matching.
Because the peptide peak pairs in the total training candidate
peptide set were all with ground truth, we applied a 10-fold
cross validation based on them to estimate the performance of
the model: 90% was used as the training set and 10% was the
6 7 8 9 10

.8333 0.7833 0.8333 0.8500 0.7500 0.8333

This journal is © The Royal Society of Chemistry 2019



Table 2 The result of Warping function of datasets in Group 2

Index
Data 1 and data
2 in Group 2

Data 1 and data
3 in Group 2

Data 2 and data
3 in Group 2

Mean of accuracy (%) 0.8480 0.8171 0.8272
Standard deviation of accuracy 0.0251 0.0368 0.0236
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validation set. This was repeated 10 times until all the peak
pairs were validated once and then generated the average
accuracy for the SVM classication model.

The difference set (zone 1 and zone 2 in Fig. 3) contained the
peptides that were identied only once in only one dataset. Aer
interval detection in the other datasets, several peak pairs with
one real peak was generated. All of these peak pairs were put
into the SVM classication model and veried as either corre-
sponding or non-corresponding. The nal result aligned and
matched the peptide peaks in the union part as many as
possible. The coverage rate was calculated by the number of
matched over total number of peptides need to be matched,
which was given in the next section.
3 Results and discussion
3.1 Model testing results

There were four parts in this section depending on the method
we used, which were OpenMS, Warping function and the SVM
model in this paper.

3.1.1 The result of OpenMS. We checked the performance
of OpenMS in dataset 1 and 2 in Group 1. First We created two
.edta les27 according to the required data format with ve
columns: RT, m/z, intensity, charge, and mymeda. In the rst
le of Q1, we listed the intervals that contained the retention
time points reported by tandem MS for every peptide in the
testing set. In the second le of Q2, all candidate intervals for all
testing peptides were listed. We subsequently converted the
.edta les to .featureXML les using the function FileConverter
in OpenMS. We then applied MapAligner to align the two fea-
tureXML les. Finally, we used FeatureLinker in OpenMS to nd
the corresponding features. In this step, the parameter max pair
distance had two elds that require user input values: RT and
MZ. We set RT to two possible values 500 and 700; MZ was set as
0.01. We tried different settings to ensure the best result. The
processing procedure in OpenMS was shown in Fig. 9.

At last, we checked how many peptides with linked peak pair
generated from OpenMS could be nd in the intersection
peptide list. It can achieve 81.67% accuracy in dataset Group 1
Table 3 The result of Warping function of datasets in Group 3

Index
Data 1 and data
2 in Group 3

Mean of Accuracy (%) 0.8393
Standard deviation of accuracy 0.0209

This journal is © The Royal Society of Chemistry 2019
under these settings, which makes little difference to Warping
functions.

3.1.2 The result of warping function.We used a polynomial
tting curve as the warping function to get the accuracy result
based on the total training candidate peptide set. The warping
curve based on dataset 1 and 2 in Group 1 was shown in Fig. 10.

The LC peak that was the closest to the mapped time point
was considered to correspond to the real peak, and checked
with the ground truth. The results of Group 1 were shown in
Table 1.

The average accuracy was 81.50%, and the standard devia-
tion was 0.030. The performance was almost similar to the
OpenMS. If the elution time was shorter, then the real peak of
a peptide would have much closer neighbor peaks. The warping
function-based methods were less effective in aligning corre-
sponding peaks.

Then we applied warping function in each two datasets in
Group 2 and 3, which were calculated with 10-fold validation
with the mean and standard deviation. The results were shown
in Tables 2 and 3.

Here we could see that the results of Warping function were
stable around 82% for each datasets pair in Group 1, 2 and 3.

3.1.3 The result of SVM classication model. First, we
tested four kernel functions in the SVMmodel (Fig. 11) based on
Group 1.

As the Fig. 11 showed, Gaussian kernel performed a little
better and the accuracy result of Group 1 was based on the
Gaussian kernel in Table 4.

The average accuracy was 96.87%, and the standard devia-
tion was 0.003. Fig. 12 plotted the receiver operating charac-
teristic curves of the SVM classication model. The true positive
rate could reach almost 97% with a false positive rate of 8%.

We also applied SVM with Gaussian kernel in each datasets
pair in Group 2 and 3. The results with mean and standard
deviation were shown in Tables 5 and 6.

Here the results showed that the average accuracy of SVM
were higher than Warping function. However, the SVM results
of Group 1 and 3 were similar and a little better than Group 2.
This might be cause by the experiment, because datasets of
Data 1 and data
3 in Group 3

Data 2 and data
3 in Group 3

0.7867 0.8444
0.0208 0.0155

RSC Adv., 2019, 9, 27874–27882 | 27879



Fig. 11 SVM classification model of four different kernels. (a) Quadratic, (b) Gaussian radial basis function, (c) polynomial, (d) multilayer per-
ceptron kernel.

Fig. 12 ROC of SVM classification model.
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Group 1 and 3 were all from Velos instrument, while the Group
2 was generated by traditional Obitrap.

3.1.4 Hypothesis testing of SVM and warping method. We
next examined if there was a signicant improvement between
the two methods via the Wilcoxon rank-sum test.

Method 1 was only based on the Warping Function (OpenMS
obtained a similar result);

Method 2 was the SVM classication model.
The results of these two methods, which were all based on

the same training and testing datasets in Group 1, were listed in
Tables 1 and 4. We assumed no signicant difference between
the two methods. The hypotheses were as follows: H0, there was
no signicant difference between the two methods;

H1, there was a difference between the two methods.
The Wilcoxon rank sum tested at a signicance level of 0.05

had a P-value of 0.001. The H value was 1, which rejected H0 at
a signicance level of 5%. Thus, the data showed that method
2 performed much better than method 1. The SVM classi-
cation model used not only a time feature but also an isotope
distribution pattern similarity to improve outcomes by almost
15%.
3.2 The coverage rate of the union dataset

First we checked the coverage rate of Group 1. The MS/MS
information in Fig. 3 showed 4247 peptides in data 1 and
data 2; 1944 peptides in zone 1; and 1603 peptides in zone 3.
Table 4 Accuracy result of SVM model in datasets Group 1

Index 1 2 3 4 5

Accuracy (%) 0.9681 0.9681 0.9656 0.9740 0

27880 | RSC Adv., 2019, 9, 27874–27882
The total difference set contained 3547 peptides. Aer applying
our SVM classication model, there were 3226 real peaks from
3547 peptides that matched the corresponding peak. The
coverage rate reached 91.0%.

We also applied the model to match the difference set in
Group 2 and 3. In Group 2, the data 1 and data 2 had the
difference set of 11238 peptides, in which the coverage rate
reached 75.67%. The data 1 and data 3 had the difference set of
9802 peptides with the coverage rate of 82.42%. The difference
set of data 2 and data 3 contained 8130 peptides with coverage
rate of 74.07%. In Group 3, the difference set of data 1 and data
2 contained 7912 peptides. The coverage rate reached 84.89%.
The data 1 and data 3 had the difference set of 8354 peptides, in
6 7 8 9 10

.9681 0.9664 0.9723 0.9681 0.9673 0.9690

This journal is © The Royal Society of Chemistry 2019



Table 6 Accuracy result of SVM model in datasets Group 3

Index
Data 1 and data
2 in Group 3

Data 1 and data
3 in Group 3

Data 2 and data
3 in Group 3

Mean of accuracy (%) 0.9733 0.9612 0.9693
Standard deviation of accuracy 0.0044 0.0077 0.0050

Table 7 The coverage rate of each datasets pair in Group 2

Index of the difference set
Data 1 and data
2 in Group 2 (11238 peptides)

Data 1 and data
3 in Group 2 (9802 peptides)

Data 2 and data
3 in Group 2 (8130 peptides)

Coverage rate (%) 0.7567 0.8242 0.7407

Table 8 The coverage rate of each datasets pair in Group 3

Index of the difference set
Data 1 and data
2 in Group 3 (7912 peptides)

Data 1 and data
3 in Group 3 (8354 peptides)

Data 2 and data
3 in Group 3 (8107 peptides)

Coverage rate (%) 0.8489 0.7666 0.8850

Table 5 Accuracy result of SVM model in datasets Group 2

Index
Data 1 and data
2 in Group 2

Data 1 and data
3 in Group 2

Data 2 and data
3 in Group 2

Mean of accuracy (%) 0.9057 0.9103 0.9485
Standard deviation of accuracy 0.0185 0.0166 0.0080
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which the coverage rate was 76.66%. The difference set of data 2
and data 3 contained 8107 peptides with coverage rate of
88.50%. The coverage rate result was shown in Tables 7 and 8.
3.3 Discussion

These results showed that there were still some problems
requiring further study.

First, the accuracy of interval detection needs to be
improved. This paper used simple interval detection. The
threshold was set to detect three times the standard deviation of
the background noise in the high-intensity peak area. The
interval should contain six consecutive points (values above the
threshold were considered candidate LC peaks). Taken the
dataset Group 1 as example, aer interval detection, only 599
peptides were seen of the 700 that intersected from the MS/MS
time point. The detection rate was 85%; thus, the interval
detection algorithm needs to be improved.

Second, the results showed that the time discrimination was
high, but it could not solve all problems-especially in the noisy
XICs. The isotope distribution pattern similarity feature could
improve this by almost 15%. However, there were still some
non-corresponding peak pairs with a low time difference and
a high isotope distribution pattern similarity. Thus, more
features should be studied.
This journal is © The Royal Society of Chemistry 2019
4 Conclusions

We used a SVM learning method based on the time difference
and isotope distribution pattern similarity features in LC-MS
replicated datasets, which was not based on the peak prole
similarity as usual, but on the isotope distribution. This method
was applied on three groups of datasets to align spectra and
match the corresponding peak pairs. The accuracy could reach
more than 90%, and most could be around 97%. The coverage
rate were most around 80%, and some could reach nearly 91%.
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27 M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong,
E. Lange, N. Pfeifer, T. O. Schulz, A. Zerck and K. Reinert,
BMC Bioinf., 2008, 9, 163.
This journal is © The Royal Society of Chemistry 2019


	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...

	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...

	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...
	A matching algorithm with isotope distribution pattern in LC-MS based on support vector machine (SVM) learning modelElectronic supplementary...


