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In recent years, medical disciplines have moved closer together and rigid borders have been increasingly dissolved.
The synergetic advantage of combining multiple disciplines is particularly important for radiology, nuclear medicine,
and pathology to perform integrative diagnostics. In this review, we discuss how medical subdisciplines can be
reintegrated in the future using state-of-the-art methods of digitization, data science, and machine learning. Integra-
tion of methods is made possible by the digitalization of radiological and nuclear medical images, as well as patholog-
ical images. 3D histology can become a valuable tool, not only for integration into radiological images but also for the
visualization of cellular interactions, the so-called connectomes. In human pathology, it has recently become possible
to image and calculate the movements and contacts of immunostained cells in fresh tissue explants. Recording the
movement of a living cell is proving to be informative and makes it possible to study dynamic connectomes in the di-
agnosis of lymphoid tissue. By applying computationalmethods including data science andmachine learning, newper-
spectives for analyzing and understanding diseases become possible.
The multidisciplinary nature of medicine

Medicine has become increasingly multidisciplinary. Multidisciplinary
has proven to be highly effective over the past decades. It has been applied
in both diagnostics and therapy, where radiologists visualize tumors with X-
rays, pathologists examine histological sections, and surgeons excise tumors.
However, it is becoming more and more obvious that a comprehensive defi-
nition of a clinical picture is not possible through the independent consider-
ation of different tumor characteristics. Experts from various medical
disciplines have set up interdisciplinary tumor boards for several years to
improve the diagnosis and treatment of individual tumor patients.
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An example is the interdisciplinary identification of sentinel lymph
nodes (SLNs).1–3 Here, the average number of extirpated lymph nodes per
patient as well as related side effects could be reduced through the incorpo-
ration of non-invasive macroscopic methods from nuclear medicine and
histological investigations used in pathology.

The formation of interdisciplinary medical specialties and the combina-
tion of various types of data leads to an increase in data complexity. The in-
crease in complexity hampers individual experts to evaluate the data on
their own. Here, computer-assisted detection (CAD), including machine
learning and data analytics, will create opportunities for a new understand-
ing of interdisciplinary tumor characteristics.4,5
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Fig. 1. Workflow to visualize and analyze organs and tissues in radiology and
pathology. The flow chart illustrates possibilities to combine disciplines.
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It is obvious, that digitalization enables a tremendous power of data
acquisition.6,7 Digitized images change many established procedures in
the way to handle clinical diagnostic and therapeutic processes,8 shown
in Fig. 1. Radiology and nuclear medicine pioneered the digitalization of
data. Pathology is only starting the digital transformation.8 Digitalization
will bring more and more established disciplines closely together.6

A comparison of radiology, nuclear medicine, and pathology

Until now, there are still differences in diagnostic opportunities be-
tween radiology and nuclear medicine on the one side and pathology on
the other. In radiology and nuclear medicine, non-invasive techniques
such as X-ray and ultrasound are used to define tumor infiltrates. The ap-
plied techniques lead to macroscopic images that enable the measurement
of structures in the resolution of cm and mm. Additionally, biological pro-
cesses can be visualized with the help of tracers to measure hypoxia or to
figure out special pathways. In contrast, pathological examinations are
based on invasively obtained biopsymaterial. Tumor characteristics are de-
fined at a microscopic scale, ranging from mm to μm. In pathology, immu-
nohistochemistry and immunofluorescence provide high specificity and
sensitivity to detect and characterize a positive cell within a population of
thousands of negative cells. Commonly applied methods are light micros-
copy, confocal laser, spinning disc laser microscopy, and light sheet
microscopy.9–11 Even higher resolutions are possible by electron micros-
copy and cryo-electron tomography. The information of the cell can be ad-
ditionally enriched by molecular features through the detection of proteins
(immunohistochemistry), RNAs (in situ hybridization), and DNA mutation
analysis (deep sequencing, methylation, and others).12,13

Apart from the different opportunities that arise from these medical
sub-disciplines, they also differ in the challenges that need to be overcome.
Imaging techniques in radiology and nuclear medicine face up with lower
resolution than microscopic images in pathology. On the other hand, the
high resolutions biopsy material has the downside of a restricted and lim-
ited area that can be examined. There is also a risk of clinical complications
in pathology due to the invasiveness of tissue extirpation.

Digitization and computer-assisted detection in the clinical context

In radiology, the resolution of techniques is steadily increasing. The risk
of clinical complications in pathology is steadily decreasing due to smaller
biopsies. Even though, both disciplines can benefit from each other. Prereq-
uisites for interdisciplinary workflows are the identification and definition
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of interfaces. The data must be comparable, standardized, and of high
quality.14 CAD and machine learning methods offer possibilities for data
normalization, localization, analysis, and integration.15,16 The latest devel-
oped computational methods propose the simple and practicable integra-
tion of standardized pipelines to benefit from CAD methods in everyday
clinical practice.9,10,17–23 Clinical routine shows that many issues and chal-
lenges need to be resolved before the advantages of digitalization and CAD
methods can be fully exploited.

a) Which data are useful?
b) What is necessary to generalize the quality of medical data?
c) What degree of quality, standardization, and comparability of medical

data is sufficient to integrate CAD methods?
d) What kind of CAD methods are applicable in the daily routine?
e) How canmachine learningmethods be effectively used in the context of

medical data which are characterized by their rarity and uniqueness?
f) How can the turnover rate of translational approaches be increased?

A good example of how to push digitalization can be seen in the devel-
opment of radiology over the last few years. Radiology started digital image
processing several years before other clinical disciplines. In radiology, one
of the driving forces was the reduction of costs of archives of conventional
X-ray images, as well as enhancing the speed to produce these images com-
pared to conventional photographic techniques. In addition, sending con-
ventional images to other clinics is time-consuming.

Concerning digitalization, pathology is several years behind radiology.
The reasons are multifaceted. One of the most important reasons is the
cost. The implementation of digital pathology is expensive. Associated ini-
tial investment volume of a million and more euros is a serious obstacle for
many clinics. Note that, the hematopathological examination is balanced
with comparable low running costs. Established workflows must be
changed dramatically. New generalized guidelines for medical data stan-
dardization and quality must be developed and introduced. Standardiza-
tion and quality control are needed because CAD methods are much more
vulnerable to deviations and artifacts of the dataset than visual inspection
by humans.

Besides the analysis of raw data, machine learning methods are more
and more used for post-processing tasks.18,24 Modern machine learning al-
gorithms are employed to identify and verify new essentials and correla-
tions of data sets at a scale that may exceed human capabilities. The
combination of computational efficiency with the human capability for in-
terpretation and abstraction enables a new level of comprehension of the
human organism and neoplastic changes. The usefulness of methods and
applications ofmachine learning systems have to be evaluated to assist phy-
sicians in daily standard tasks.25–27 The specific goals and requirements of
digitalization should be discussed, defined, and formulated together by ra-
diology, nuclear medicine, and pathology:

a) Precise the diagnosis
b) Compressing data with archives and files
c) Discovering digital biomarkers
d) Quantifying markers on cell surfaces and intracellular niches etc.

Digitization and computer-assisted detection in the context of science

Computer-aided systems and machine learning methods will be essen-
tial aid in diagnostic and therapeutic processes. However, the precise and
realistic definition of short-term goals remains open. It has to be distin-
guished between scientific goals and goals for routine clinical practice. In
scientific research, a better understanding of the behavior of tumor cells
and their microenvironment could be a priority. Tracking a tumor and its
surrounding cells throughout the body with low- and high-resolution imag-
ing techniques will provide valuable insights to the researcher. The addi-
tional inclusion of data on cell motility, tissue structures, molecular
components of a cell, and signaling pathways will further complement
this. In comparison, combining all of these techniques is not practical in
clinical practice due to the high cost and time involved.



Fig. 2. Sinus network of a human lymph node visualized by confocal microscopy. The tissue sample was immunostained with smooth-muscle actin (green) to visualize
fibroblastic reticular cells and CD68 (red) to highlight macrophages. The impact of different tissue preparation and image processing methods is shown.
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In the following, we exemplify 2 new technologies that can bridge pa-
thology and radiology. Modern confocal laser microscopes enable efficient
3-dimensional visualization of histological tissue samples. Sensitive photon
detectors, fast automated scanners, and stable immunofluorescence pro-
duce high-quality images in the μm range in minutes. This detailed visual-
ization of the entire cell surfaces reveals cellular networks, so-called
connectomes,22 e.g., see Fig. 2. Capturing connectomes in different organs
such as the immune system can provide new insights into the functional un-
derstanding of immune cells and lymph node disorders.9 In addition, 3D
histological sections can enable the localization of microscopic images in
3D radiological images. Thus, 3D connectomes can be linked to radiological
3D visualizations to provide an augmented multi-layered perspective of tu-
mors and organs. This augmented representation could be used to identify
and interpret possible correlations ofmicroscopic andmacroscopic changes
in the future.

To understand the interrelation between cellular networks and pheno-
typic changes of organs, e.g., lymph nodes, it is indispensable to understand
underlying cell dynamics.28 Investigating large amounts of cells in time and
space, machine learning turned out to be helpfull.28 Cellular interactions in
some organs, such as the brain, may be relatively stable and static. In the im-
mune system, the movements of most cells are fast, and interactions are
highly dynamic. Several studies in mouse models have characterized the
fast speed of T-lymphocytes that migrate along reticulum cell networks in
lymph nodes.29 Immune cells have been tracked in various reactive and neo-
plastic murine organs.29 Recently, a technology based on thick slices
(400 μm) of human tissues combined with confocal imaging has been
Fig. 3.Movement study of lymphadenitis with confocal laser. Left picture: A confocal ima
antibody (green), and follicular T helper cells visualized with an anti-PD1 (red) antibo
function of the Imaris software. Right picture: The colors of vectors indicate low speed (b
a 20-min recording.
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established.11 The approach allows the analysis of dynamic cellular networks
in a preserved environment using CAD technologies,11,19,30 see Fig. 3.

The combination and integration of microscopic cell tracking, macro-
scopic visualization, and nuclear tracing provide a comprehensive visuali-
zation and a completely new understanding of the flow and behavior of
reactive and neoplastic cells within and across organs.

The future concept of medicine: Integrative, holistic, and individual
diagnostics and therapy

Incorporating multiscale approaches based on radiology, nuclear medi-
cine, and pathology will be a future concept in integrative diagnostic and
cell therapy to cover a holistic scope of possible neoplastic changes, as
shown in Fig. 4. CAD methods and machine learning will play a major
role in aggregating, structuring, and understanding acquired and designed
data and abstraction levels. The ongoing integration of CAD methods in
clinical practice and the establishment of interdisciplinary workflows will
enable inevitable and holistic medical approaches to improve the diagnosis
and treatment of individual patients.
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Fig. 4. Features of holistic diagnostics for the incorporation of methods from
pathology, radiology, and nuclear medicine.
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