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Congenital athymia can present with severe T cell lymphopenia (TCL) in the newborn
period, which can be detected by decreased T cell receptor excision circles (TRECs) on
newborn screening (NBS). The most common thymic stromal defect causing selective
TCL is 22q11.2 deletion syndrome (22q11.2DS). T-box transcription factor 1 (TBX1),
present on chromosome 22, is responsible for thymic epithelial development. Single
variants in TBX1 causing haploinsufficiency cause a clinical syndrome that mimics
22q11.2DS. Definitive therapy for congenital athymia is allogeneic thymic
transplantation. However, universal availability of such therapy is limited. We present a
patient with early diagnosis of congenital athymia due to TBX1 haploinsufficiency. While
evaluating for thymic transplantation, she developed Omenn Syndrome (OS) and life-
threatening adenoviremia. Despite treatment with anti-virals and cytotoxic T lymphocytes
(CTLs), life threatening adenoviremia persisted. Given the imminent need for rapid
establishment of T cell immunity and viral clearance, the patient underwent an
unmanipulated matched sibling donor (MSD) hematopoietic cell transplant (HCT),
ultimately achieving post-thymic donor-derived engraftment, viral clearance, and
immune reconstitution. This case illustrates that because of the slower immune
recovery that occurs following thymus transplantation and the restricted availability of
thymus transplantation globally, clinicians may consider CTL therapy and HCT to treat
congenital athymia patients with severe infections.

Keywords: TBX1 congenital athymia, hematopoietic-stem-cell-transplantation, definitive treatment, newborn
screening (NBS), adenoviremia
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INTRODUCTION

Primary thymic disorders, especially complete DiGeorge
Syndrome (cDGS), that cause TCL have been increasingly
recognized over the last decade with the initiation of population
based NBS for severe combined immunodeficiency (SCID).
Depending on the genetic basis of disease, thymic disorders can
have variable penetrance with a range of mild to severe
immunodeficiency. Differentiating between hematopoietic and
thymic causes of TCL can be challenging based on clinical
presentation and immunophenotype. Genetic analysis can aid in
establishing a definitive diagnosis. Additionally, rapid assessment
of T cell differentiation can discern intrinsic hematopoietic defects
from thymic defects in vitro, providing a valuable tool in the
evaluation of combined immunodeficiency (CID) patients (1, 2).

The thymus is the major site of T lymphocyte maturation and
plays a crucial role in establishing and maintaining central and
peripheral immune tolerance through positive and negative
selection of developing T lymphocytes (3). The most common
thymic stromal defect presentingwithTCL is causedbyadeletion in
the long arm of chromosome 22 at the position q11.2, otherwise
called the 22q11.2 deletion syndrome (22q11.2DS). 22q11.2DS is
quite prevalent, occurring between 1 in 3,000 to 1 in 6,000 live
births, and is usually de novo in nature (4). The immunologic
manifestations observed in 22q11.2DS can be attributed to deletion
of TBX1, chicken tumor virus number 10 regulator of kinase-like
(CrkL), and extracellular signal-regulated kinase 2 (Erk2), all
present on chromosome 22q11. TBX1 regulates thymic epithelial
development, while CrkL and Erk2 play important roles in T cell
signaling (4–7).

The 22q11.2DS is frequently associated with DiGeorge
syndrome (DGS) (8, 9), which classically includes variable
degrees of TCL, hypoparathyroidism, cardiac malformations,
and facial abnormalities. Along with the thymus, the
parathyroid glands and the great vessels of the heart are
derived from the third and fourth pharyngeal pouches (3, 10).

TBX1 is a member of a group of transcription factors with a
conserved DNA binding domain known as T-box; TBX1 is
involved in thymic epithelium development. Haploinsufficiency
of several T-box genes have been described as causes of Holt-
Oram Syndrome, ulnar-mammary syndrome, cleft palate with
akyloglossia, and isolated adrenocorticorticotropic hormone
deficiency (11–14). Murine homozygous tbx1 deletion cause a
lethal clinical phenotype with cardiac malformations and thymic
agenesis while heterozygous tbx1 deletion displays a milder
phenotype with variable thymus dysgenesis and fertile offspring
(15). In humans, TBX1 haploinsufficiency due to deletion in the
22q11.2 region or truncating single gene defects in TBX1 have
shown variable DGS features including thymic hypoplasia (7, 16,
17). Even small heterozygous truncations at the C-terminal have
been described as clinically significant disrupting the
transactivation domain and the nuclear localization signal of
TBX1 (18). Interestingly, TBX1 gain of function variants have
also been linked to the DGS clinical spectrum (17).

DGS can present with a variable degree of TCL from mild
lymphopenia to a T-B+NK+ SCID phenotype (4). Athymia in
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cDGS is characterized by significant T cell depletion (<50 cells/
mm3), reduced naïve T cells (CD3+CD45RA+CD62L+), and reduced
or absentTcell proliferation tomitogens. In atypical cDGS,Tcells are
present either through maternal engraftment or through oligoclonal
expansion that develops in the absence of thymic negative and
positive selection (19, 20). Development of T cell oligoclonality in
atypical cDGS can lead to OS characterized by erythroderma,
eczematous skin rash, eosinophilia, lymphadenopathy, and
enteropathy (10).

While definitive treatment of SCID caused by hematopoietic
defects includes allogeneic HCT or gene therapy, the preferred
treatment for congenital athymia caused by thymic stromal
defects is allogeneic transplantation of the thymus (21).
Treatment of cDGS with thymus transplant has proven to be
effective, achieving immune reconstitution with diverse T cell
repertoires and robust T cell proliferation (22).

Although largely successful when available, access to thymic
transplantation has been limited. In 2021, the United States (US)
Food and Drug Administration approved the first cultured human
thymus tissue product for patients with congenital athymia
expanding access to post-natal thymic transplantation within the
US. Limited accessmay continue to be problematic outside of theUS
or in those with financial or travel constraints. Additionally, patients
with cardiac abnormalities having had recent cardiac surgery or
anticipated imminent cardiac surgery and patients with respiratory
failure requiring ventilatory assistance are not candidates for timely
thymus transplantation. Since patients with cDGS may often have
congenital heart disease, the availability of thymus transplantmay be
even more limiting for them. In a report of 60 patients (< 2 years of
age)with cDGS treatedwith allogeneic thymus transplant,more than
70%(33/44) of recipientswere long-termsurvivors,with robustT cell
immune recovery, as evidenced by naïve T cell populations and
diverse T cell receptor repertoires. Post-transplant infectious
complications were common in recipients until the development of
naïve T cells occurred. Viral infections were most problematic and
were the cause of death in 4 patients. Post-transplant autoimmune
manifestations occurred in 24% (21).

Pre-thymus viral infections in cDGS patients undergoing
thymus transplant have been especially problematic (23). In a
recent report of 12 cDGS subjects who underwent thymus
transplantation in the United Kingdom 9/12 had good long-
term survival at a median follow-up of 49 months, including one
patient with a putative TBX1 mutation (P9). Thymopoiesis was
observed in 10 patients 5 to 6 months following thymus
transplant. Notably, one patient died due to complications
from pre-thymus transplant systemic cytomegalovirus (CMV)
infection at 8 months. Interestingly, this subject did not achieve
thympopoiesis indicating that pre-thymus transplant systemic
viral infections may affect the outcome of immune reconstitution
post-thymus transplant in cDGS patients (21, 23, 24). Two
additional patients expired within this cohort, one with
parainfluenza infection who died 2 weeks after transplant with
no immunereconstitution and a subject who died at 23 months
post-thymus transplant from immune thrombocytopenic
purpura associated cerebral hemorrhage (23). The outcomes of
this cohort indicate that allogeneic thymus transplant is the
January 2022 | Volume 12 | Article 721917
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preferred definitive therapy for cDGS infants except in select
patients with severe pre-existing viral infections in which thymus
transplant may not be as successful. Autoimmune complications
reported in survivors were similar to those observed in the large
US cohort (21, 23).

T cell replete HCT, is another therapeutic approach used to
correct the immunodeficiency in patients with cDGSwhen patients
are not eligible for thymus transplant (25). HCT relies on adoptive
transfer of mature post-thymic T cells, with the most promising
long-term survival rates (60%) occurring in patients receivingMSD
HCTs (26–28). Immune reconstitution is variable with
improvement in lymphocyte proliferation, but often low CD4+

counts, and limited T cell receptor repertoire (10, 25). Success with
unmanipulated, unconditioned, MSD HCT has also been effective
in the management of cDGS with life-threatening adenoviremia,
resulting in infection eradication and a donor derived T cell
repertoire (29).

Before NBS, SCID patients often were not diagnosed until
presentation with life-threatening infections. Herpesviruses,
including CMV and Epstein Barr virus (EBV), and respiratory
viruses, are common infections in this population and can be
potentially fatal before immune reconstitution. Several studies
have demonstrated that presence of active infections worsens
survival of HCT in SCID patients (30), and as mentioned, affects
survival post thymus transplant (23). CTLs that are virus specific
have beenused successfully for treatment of invasive viral infections
post-HCT in patients with malignancy and immunodeficiency
diseases, and in fewer cases have been used in immunodeficiency
Frontiers in Immunology | www.frontiersin.org 3
patients pre-HCT. Unlike donor lymphocyte infusions (DLI), graft
versus host disease (GvHD) and other infusion reactions are rare
following CTL infusion (31, 32).

Herein, we report the clinical presentation, disease progression,
and treatment of an infant with athymic TCL detected by newborn
screening due to TBX1 haploinsufficiency. Her disease was
complicated by OS and life-threatening adenoviremia.
Adenoviremia was partially treated with third-party off the shelf
CTL therapy. She was eventually treated with unmanipulatedMSD
HCT, and, now more than four years later, she has achieved and
maintained immune reconstitution.
CASE PRESENTATION

The patient is a ten day old Caucasian female who presented to
Immunology for abnormal NBS with undetectable TRECs. She had
no perinatal complications; family history was significant for
congenital deafness in her mother, father, and maternal
grandfather of unclear etiology. She had two living non-hearing
impaired healthy siblings (Figure 1). Physical exam revealed low
set ears, thin upper lip, thin palpebral fissure, and bulbous nose. She
had appropriate weight (3.53kg) and length (51cm) for age. Severe
TCL was was observed on initial evaluation (CD3+ 8 cell/mL).
Further lymphocyte quantification revealed a T-B+NK+ phenotype
and absent lymphocyte proliferation to phytohemagglutinin (PHA)
consistent with a diagnosis of SCID (33) (Table 1). The patient
failed her initial newborn hearing screen by measuring auditory
FIGURE 1 | Family Pedigree.
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TABLE 1 | Immunologic phenotyping and post-HCT monitoring over time.

-HCT Age-appropriate ranges

-24
nths

36-38
months

41-52
months

0-3 months 12-18 months 24-72 months

onths 24 months 36 months
,200 6,130 4,230 7,200 -

18,000
6,400 -
12,000

5,200 -
11,000

40 200 100 Mean 300

010 1,858 1,975 3,400 - 7,600 3,600 - 8,900 2,300 - 5,400
80 799 786 2,500 - 5,500 2,100 - 6,200 1,400 - 3,700
64 421 424 1,600 - 4,000 1,300 - 3,400 700 - 2,200
62 331 295 560 - 1,700 620 - 2,000 490 - 1,300
91 771 920 300 - 2,000 720 - 2,600 390 - 1,400
26 271 257 170 - 1,100 180 -920 130 - 720
) (6%) 43 (L)

(10.2%)
1,200 - 3,700 1,000 - 2,900 430 -1,500

) (42%) 111 (33.5%) 450 - 1,500 490 - 1,700 380 - 1,100

n IgRT) 927 (on IgRT) 487 (off IgRT) 251 - 906 345 - 1213 424 - 1,236
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2 2 3
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1
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brainstem response at two days of life, and subsequent assessment
at one month of age confirmed a right sensorineural hearing defect.

Further diagnostic evaluation excluded maternal T cell
engraftment by short tandem repeat analysis. Chromosomal
microarray was normal. Next generation sequencing for
genetic causes of SCID was performed at 6 weeks of age,
identifying a novel TBX1 heterozygous pathogenic variant
(c.1176_1195dup20, p.Glu399Glyfs), leading to a frameshift
that determined a premature stop codon at position 467. This
C-terminal truncation in exon 9 is predicted to disrupt the
transactivation domain of TBX1 where the nuclear localization
signal is located and lead to loss of normal protein function.
TBX1 haploinsufficiency was consistent with T-B+NK+
immunophenotype and facial dysmporphism. Single variant
sanger sequencing of both the mother and father showed
normal sequence of TBX1. Cultured peripheral blood CD34+
hematopoietic stem cells from the patient differentiated normally
up to the CD3+ T cell stage, with pro-T, double-positive and
double-negative T cells present as normal levels, indicating that
the primary disorder was most likely outside of the
hematopoietic compartment (34). HLA typing of family
members identified an HLA-matched six year old sibling who
had received all age appropriate vaccines. Other evaluations
included a chest X-ray that was remarkable for the absence of
thymic tissue, a normal transthoracic echocardiogram, and
normal parathyroid hormone and calcium levels.

Given the diagnosis for TBX1 haploinsufficiency, definitive
therapy with thymic transplantation was pursued. During this
time, the patient remained in protective isolation on
antimicrobial prophylaxis. At 2 months of age, she developed a
mild maculopapular erythematous rash on her face, trunk, and
extremities. Skin biopsy showed spongiotic dermatitis on
hematoxylin and eosin staining consistent with eczema.
Infectious evaluation for systemic viral infections including
EBV, CMV, herpes simplex virus, human herpesvirus 6, and
adenovirus (ADV) were negative. Peripheral blood T-cell
receptor (TCR) spectratyping at 2 months age revealed an
abnormal TCR Vb repertoire with 21/28 TCR Vb families and
sub-families showing an oligoclonal (<5 independent peaks)
distribution, two families displaying no peaks, and five families
demonstrating a polyclonal, non-Gaussian distribution. She
responded well to topical steroids, and the rash quickly
resolved. Two months later (4 months of age), she developed
fever and rhinorrhea secondary to Rhinovirus. Concurrently, she
developed an eczematous generalized rash with associated
erythroderma, severe pruritus and alopecia universalis.
Laboratory assessment was notable for an elevated IgE,
increased absolute eosinophil counts, and CD3+, CD4+, and
CD8+ lymphocytosis, mainly with a memory phenotype
(Table 1). Repeat peripheral blood TCR spectratyping was
consistent with previous abnormal TCR Vb repertoire findings.
Clinical and laboratory features were consistent with OS. She was
treated with high dose systemic steroids and then transitioned to
cyclosporine leading to skin rash and alopecia resolution after 3
weeks of treatment. The development of OS led to re-evaluation
of treatment strategies and consideration of MSD HCT.
Frontiers in Immunology | www.frontiersin.org 5
However, given the thymic epithelial defect present, a decision
to hold and wait for thymic transplantation was made.

At seven months of age, the patient developed new onset
protracted vomiting and fever. Infectious evaluation was
remarkable for severe adenoviremia (ADV PCR: >1,000,000
copies/mL) and elevated transaminases. Viral load and
transaminases continued to increase over the following month
despite treatment with cidofovir. Due to persistent adenoviremia
despite maximal antiviral therapy, presence of life-threatening
end-organ involvement, and lack of expected immune recovery,
the patient was subsequently treated with two infusions
(2x107cells/m2) of CTLs specific for adenovirus (HLA class-II
mediated antiviral restriction). These virus specific CTLs were
generated from third-party, healthy donors who were partially
HLA-matched (5/10 and 4/10) with the recipient, and whose
cells were confirmed to have class II HLA-restrictions that were
shared with the patient. Partial clinical improvement with
reduction in liver function tests, improvement of liver
synthetic dysfunction, and reduced adenovirus viral load were
achieved but not sustained (Figure 2). Due to persistent
adenoviremia and hepatitis despite antiviral therapy and
adenovirus-specific CTL infusions, the patient underwent an
unconditioned, unmanipulated bone marrow transplant from
10/10 MSD (10x106 CD34+ cells/kg; 5.2x107 CD3+ cells/kg) 2
months after developing adenoviremia. Immediately after cell
infusion, there was a surge of adenoviral load attributed to
massive lysis of adenovirus infected cells, that corresponded to
development of fulminant hepatitis and ultimately hepatic
failure. The degree of viremia (Figure 2) progressively declined
and was <1,000 copies/mL within seven weeks post-HCT with
associated improvement in transaminases. GvHD prophylaxis
included cyclosporine, replaced by tacrolimus on Day +6.
Unfortunately, despite a decline in adenoviremia, she developed
direct hyperbilirubinemia with biopsy confirmed acute stage 3
liver GvHD (Figure 3) without signs of skin or intestinal GvHD.
Despite initial response to systemic corticosteroids and calcineurin
inhibitor, chronic liver GvHD developed during withdrawal of
immune suppression, ultimately requiring sirolimus (added on
Day +79), a course of rituximab (4 doses spaced weekly),
ruxolitinib, and extracorporeal photopheresis (ECP) for eight
months to achieve adequate response.

Over the last four years, immune reconstitution, and donor
chimerism have been monitored closely. She has shown
consistently appropriate T cell engraftment with > 90% donor-
derived T cells (Figure 4). After an initial robust T cell response,
CD3+, CD4+, and CD8+ absolute counts have plateaued in the
low-normal range. Lymphocyte function has remained normal.
TCR Vb repertoire at 3.5 years of age demonstrated
improvement but persistent skewed repertoire, with polyclonal
Gaussian distribution in 17/28 probes, nine polyclonal probes
with non-Gaussian distribution, and two showing oligoclonality.
Most recent CD4+ T cell flow cytometry analysis performed at 4
years of age showed a low naïve T cell compartment for age
(CD45RA+RO-CD4+: 8%) with a predominant central and
effector memory signature (CD45RA-RO+CD4+ 92%). Recent
thymic emigrants were also found to be decreased with only 3.7%
January 2022 | Volume 12 | Article 721917
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CD4+ T cells expressing recent thymic emigrant markers
CD45RA+RO-CD4+CD31+. Clinically, the patient has thrived
with normal liver function as assessed by transaminases (ALT,
AST, GGT), albumin, and bilirubin. She has remained free of
serious invasive infections. Immunoglobulin replacement therapy
was required for 2.5 years following HCT, which was attributed to
rituximab exposure during GvHD treatment, but was able to be
discontinued at 3 years of age successfully. Finally, upon last
assessment, the patient has demonstrated robust responses to
diphtheria and tetanus vaccinations along with persistent 100%
donor derived T cell chimerism. Ultimately, our patient is enrolled
in school and continues to thrive living an age appropriate lifestyle.
DISCUSSION

Abnormal newborn screening due to profound T cell
lymphopenia can be observed in patients with complete or
Frontiers in Immunology | www.frontiersin.org 6
partial DGS with a T-B+NK+ immune phenotype. Hypoplastic
thymi and athymia with variable other DGS features have been
described in in a small number of patients with TBX1
haploinsufficiency, among other single gene defects (7, 17, 23,
35, 36). The International Union of Immunological Societies
classifies TBX1 defects in the same category as 22q11.2DS:
thymic defects with additional congenital abnormalities,
distinguished from hematopoietic defects that cause SCID.
This classification delineates thymic from hematopoietic
defects as causes of TCL (37).

In general, SCID is universally fatal in the first year of life due
to life-threatening opportunistic infections if untreated, and the
best outcomes are achieved when definitive therapy is delivered
before infectious complications (38–40) (2-year survival of 95%
vs. 81% for those with active infection pre-HCT) (40). In patients
with congenital athymia, the long-term survival is higher after
thymus transplantation (75%) compared to even MSD HCT
(60%) (21, 26), likely related to the fact that in these patients,
A B

FIGURE 3 | Histopathology of liver graft-versus-host disease. (A) H&E stain showing predominantly portal lymphoplasmacytic infiltration disrupting the interface
(square) expanding two adjacent portal zones; arrow to interlobular bile duct. (B) CD3 Immunochemistry showing T cell lymphocytic infiltrates in the epithelium of the
bile duct, lymphocytic infiltrates predominantly in the portal tracts with associated interlobular bile duct injury.
FIGURE 2 | Adenoviremia cleared with Unmanipulated MSD HCT. Adenovirus viral load followed over time as compared with ALT and absolute CD3+T cell quantity.
ALT is an indicator of liver inflammation and CD3+T cell quantity changes after MSD. Post MSD HCT, adenoviral load rapidly increases, as does ALT, likely
secondary to rapid viral lysis from donor-derived CD3+ T cells. ADV, adenovirus; ALT, alanine aminotransferase; CTL, cytotoxic T lymphocyte infusion; GvHD, graft
versus host disease HCT, hematopoietic cell transplant; MSD, matched sibling donor.
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bone marrow-derived T cell precursors are normal, but
thymopoiesis is impaired. However, currently, only two centers
worldwide perform thymus transplantation. Often, clinicians
face a challenging balance between the need for early definitive
treatment and limited access to the preferred therapy.

We describe a patient identified by NBS who was found to have
profound T cell lymphopenia, absent thymic tissue on imaging, and
facial dysmorphism, all consistent with a subsequently identified
TBX1 haploinsufficiency. Additionally, she met diagnostic criteria
for SCID including CD3+ T cell quantites <300 cells/µL and absent
lymphocyte response to PHA (33). Patients with SCID or cDGS can
present with or develop atypical oligoclonal mature T cells that can
lead to OS characterized by eosinophilia, hyper-IgE, diarrhea, and
erythroderma (41). Our patient developed OS shortly after
contracting Rhinovirus and responded well to systemic
immunosuppression. OS can vary in severity and response to
treatment (42). Although OS was controlled with topical
corticosteroids and cyclosporine, the development of
immunodysregulatory symptoms added to the sense of urgency to
provide prompt definitive therapy for our patient. While HCT were
immediately accessible, particularly in this patient with an available
HLA-identical sibling, immunologic outcome and survival are
inferior to the preferred but less readily available approach of
thymic transplant.

Initially, thymic transplantation was vigorously pursued for this
patient but was not immediately available; unfortunately, during
this delay, she developed severe life-threatening adenoviral hepatitis,
refractory to antivirals and CTL salvage therapy. Although CTL
therapy has the potential risk of causing organ damage due to direct
cytopathic effects, in our patient CTL therapy provided ADV viral
load reduction and clinical improvement that was unfortunately
transient. An unconditioned unmanipulated MSD HCT facilitated
sustained viral clearance and clinical improvement but precipitated
an exacerbation in the underlying hepatitis, presumably from lysis
of virus-infected cells, followed by GvHD. Given that our patient
had a MSD and that nearly all pediatric donors have immunity to
adenovirus, this donor was the most appropriate choice. In the
setting of a mismatched donor or when there are multiple MSD or
Frontiers in Immunology | www.frontiersin.org 7
matched unrelated donors, picking donors based on CMV and/or
EBV serostatus which correlates with T cell immunity against these
viruses is often helpful when active infection or susceptibility to
infection is present. The quality of the immune reconstitution
obtained after HCT in a patient with complete athymia is variable
due to presence of an often restricted post-thymic T cell repertoire.
In the case of our patient, there was robust donor T cell
engraftment, improvement in distribution of TCR repertoire, and,
as predicted, a sustained reduced naïve T cell compartment. She was
able to become immunoglobulin replacement independent and
mounted appropriate antibody responses to diptheria and tetanus
vaccination, both of which are vaccines her donor had received. The
efficacy of her immune reponse to novel infections that her donor
had not encountered is unclear. Interpretation of her immunologic
reconstitution is confounded by the need for prolonged GvHD-
directed immune suppression, which is known to have profound
long term impact on lymphoid cell recovery, particularly when
chronic in nature (43).

To our knowledge, this is the second case in which
unconditioned MSD HCT has been performed as treatment for
life threatening ADV infection in a patient with athymia and
associated TCL (29). Ip et al. described a 7.5 year old female with
22q11DS and Tetralogy of Fallot who developed a cidofovir non-
responsive, rapidly progressive, ADV respiratory tract infection
at 7.5 months of age after recent cyclosporin taper for an
erythematous rash. As in our case, profound lymphopenia,
diminished lymphocyte proliferation to PHA, absent TREC,
and T cell receptor clonality were observed consistent with the
diagnosis of SCID. Also as in our patient, shortly after MSD
HCT, ADV clearance was achieved. Sustained T cell donor
chimerism, normal T cell quantities, and lymphocyte
proliferation to PHA were achieved by 10 months post-HCT.
Long term follow-up regarding immune reconstitution was not
included (29).

As mentioned in the previously published case and in our
patient, donor T cells led to viral clearance and immune
reconstitution. Notwithstanding, in our patient, post-HCT
complications included liver failure related to viral lysis, acute
liver GvHD and development of recalcitrant chronic GvHD
requiring multiple second-line therapies to achieve remission.
Currently, she has normal liver function tests and normal
appearance on imaging. The liver GvHD occurring in our case
could have been due to ADV antigen presentation in the setting
of an inflammatory milieu around the time of graft infusion.
Chronic viral infections affecting the liver when present pre-
HCT are associated with increased risk of transplant-related
mortality, specifically liver GvHD (44–46). Given the association
between uncontrolled viral infections primarily affecting the liver
leading to increased risk of GvHD of the liver, reducing the
infection burden with anti-viral medications use of CTLs has the
potential benefit to reduce the incidence or severity GvHD post-
HCT (44).

The decision to proceed with HCT in this patient responds to
several considerations from the patient and donor perspectives.
This child could have been potentially treated with a matched
family DLI which has been described as a successful approach in
FIGURE 4 | Donor percent chimerism as measured by STR was followed
over time. Full donor-derived T cell chimerism was maintained. HCT,
hematopoietic cell transplant; STR, single tandem repeat.
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DGS (47). Logistically since the patient had a young sibling
donor, an unmanipulated HCT was preferred due to the logistics
of leukapheresis with need for apheresis catheter placement in
the donor in order to obtain a therapeutic T cell dose for DLI.
Immune reconstitution achieved in congenital athymia patients
receiving either HCT or DLI is based on the engraftment of post-
thymic donor cells and not naïve stem cells (26).

As described in cases of SCID secondary to thymic aplasia
showing favorable outcomes with unconditioned, unmanipulated,
unrelated partially matched DLI, success relies on adoptive
transfer of donor derived mature post-thymic T cells, which
translate into donor T cell engraftment, and subsequent normal
T cell quantities and function (47–49). The same principle dictates
the success of HCT in athymic patients, and is likely the reason for
successful immune reconstitution in our patient (50). Currently,
since transplantation of postnatal allogeneic cultured thymus
remains first line of therapy, it is unknown if there is any
difference regarding overall survival, event free survival and/or
GvHD in congenital athymic patients presenting with SCID and
undergoing DLI versus HCT as second line of therapy.

Our patient showcases how, despite infection prophylaxis and
isolation, congenital athymia patients remain at high risk for
lethal infections before definitive therapy. In athymic patients,
delivery of the preferred curative treatment option of thymus
transplantation can be challenging, especially given the limited
worldwide availability. Access to thymic transplantation has
recently improved with the FDA approval of allogeneic thymic
transplantation as treatment for immunodeficiency secondary to
athymia. The delay to optimal thymus transplantation in DGS
must be weighed against proceeding with a suboptimal but still
potentially lifesaving approach of unmanipulated MSD HCT.
Frontiers in Immunology | www.frontiersin.org 8
In the setting of severe infection, cellular therapy with CTLs and
HCT should be strongly considered.
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