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Abstract

Homologous recombination is expected to increase natural selection efficacy by decoupling the fate of beneficial and
deleterious mutations and by readily creating new combinations of beneficial alleles. Here, we investigate how the
proportion of amino acid substitutions fixed by adaptive evolution (a) depends on the recombination rate in bacteria.
We analyze 3,086 core protein-coding sequences from 196 genomes belonging to five closely related species of the genus
Rhizobium. These genes are found in all species and do not display any signs of introgression between species. We
estimate a using the site frequency spectrum (SFS) and divergence data for all pairs of species. We evaluate the impact of
recombination within each species by dividing genes into three equally sized recombination classes based on their
average level of intragenic linkage disequilibrium. We find that a varies from 0.07 to 0.39 across species and is positively
correlated with the level of recombination. This is both due to a higher estimated rate of adaptive evolution and a lower
estimated rate of nonadaptive evolution, suggesting that recombination both increases the fixation probability of ad-
vantageous variants and decreases the probability of fixation of deleterious variants. Our results demonstrate that
homologous recombination facilitates adaptive evolution measured by a in the core genome of prokaryote species in
agreement with studies in eukaryotes.

Key words: adaptive evolution, rhizobium, recombination, beneficial mutations.

Introduction
Genetic recombination is expected to facilitate adaptive evo-
lution by increasing the fixation probability of adaptive muta-
tions and decreasing the probability of fixation of deleterious
mutations (McVean and Charlesworth 2000). This is because
recombination decouples the fate of adaptive and deleterious
variants, decreasing the amount of selective interference
throughout the genome (Hill and Robertson 1966;
Felsenstein 1974). Selective interference––also termed the
Hill–Robertson (HR) effect––is, therefore, strongest in regions
of the genome where recombination is low (McVean and
Charlesworth 2000). The HR effect is predicted to cause 1)
a reduction in the number of neutral polymorphisms, 2) the

accumulation of slightly deleterious polymorphisms, and 3) a
decrease in the probability of fixation of advantageous alleles
(see Charlesworth et al. 2009). By mitigating the HR effect,
homologous recombination is expected to increase the per-
centage of amino acid substitutions that are due to adaptive
evolution (a).

The parameter a can also be viewed as the relative pro-
portion between the rate of amino acid changes fixed by
positive selection (xa) and the rate of nonadaptive amino
acid changes relative to neutral (xna) (as:
a ¼ xa=ðxa þ xnaÞ) (Galtier 2016; Moutinho et al. 2020).
Distinguishing between xa and xna allows us to test more
precisely two expectations of the effect of increased
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homologous recombination: overall genes with higher recom-
bination rates should experience more efficient purifying se-
lection (and hence lower xna) and increased probability of
fixation for beneficial mutations (a higher xa).

Empirical evidence based on population genomics data
supports theory with a positive correlation between recom-
bination and a reported in diverse species of eukaryotes, in-
cluding flies (Drosophila melanogaster, [Campos et al. 2014;
Castellano et al. 2016]), fungi (Zymoseptoria tritici
[Grandaubert et al. 2019]), plants (Arabidopsis thaliana
[Moutinho et al. 2019]), and nonmodel animal species
(Galtier 2016; Moutinho et al. 2020).

Whereas recombination is ubiquitous and mandatory for
the reproductive success of most eukaryotes (Page and
Hawley 2003), this is not the case for prokaryotes.
Nevertheless, many studied prokaryotes show high rates of
genetic exchange (Didelot and Maiden 2010), and it is there-
fore of interest to explore whether such recombination also
facilitates adaptive evolution in prokaryotes. Here, we study
how rates of adaptive evolution and intraspecific homologous
recombination co-vary in a species complex of Rhizobium
leguminosarum responsible for nitrogen fixation in white clo-
ver (Trifolium repens) nodules. We have previously reported
the full genomic sequence of 196 isolates (Cavassim et al.
2020). Of 22,115 orthologous gene groups identified among
the 196 strains, 4,204 genes are present in all isolates (the core
genome). Although substantial adaptive evolution might be
attributed to accessory genes through their gains and losses
via horizontal gene transfer (HGT) (Young et al. 2006; Tian et
al. 2010; Porter et al. 2017; Cavassim et al. 2020), we focus here
on genes vertically inherited and examine how much varia-
tion in rates of homologous recombination explains variation
in a and its components (xa and xna).

Ourpreviousanalyses(Cavassimetal.2020)showedthatthe
196strainsclusterintofivecloselyrelatedspecies(2–5%average
nucleotide divergence), with HGT between these species only
affecting the nitrogen fixation genes and a few well-defined ge-
nomic regions––that we exclude in the present analysis. This
species complex thus offers a unique opportunity among pro-
karyotestoestimatetheratesoffixationofaminoacidchangesby
adaptive evolution from isolates sampled from natural popula-
tions––enabling multiple comparisons of polymorphism and
divergence patterns among species. Our analyses demonstrate
that the rate of adaptive protein evolution increases with the
recombination rate in this species complex.

Results and discussion
To estimate the proportion of adaptive evolution (a) across
this Rhizobium species complex and study how a covaries
with intraspecific recombination rate estimates, we restricted
analyses to polymorphism data from regions of the core ge-
nome without evidence of recent interspecies HGT.

Of the 18 species observed within this species complex
(Young et al. 2021), we have collected genomic data for five
species (gsA–gE). Across all five species (196 strains, gsA: 32,
gsB: 32, gsC: 112, gsD: 5, gsE: 11) (Supplementary fig. S1), a
total of 22,115 orthologous gene groups were previously

identified (Cavassim et al. 2020); of those, 4,204 genes are
present in all strains (core genes). Most core genes are found
in the large chromosome (3,304 genes), but some are located
in the chromids (Rh01, Rh02) and in one of the plasmids
(Rh03) (see Harrison et al. 2010; Cavassim et al. 2020). The
chromosome, chromids, and the plasmid are hereafter re-
ferred to as genomic compartments. To assess the effect of
intraspecies homologous recombination on adaptive evolu-
tion using a high-quality data set, we filtered out genes that
showed evidence of recent interspecies HGT or unexpectedly
high rates of nucleotide diversity (see Materials and Methods)
(Supplementary fig. S2), leaving a total of 3,086 genes (total
alignment length: 3091179 bp) and 334040 variable sites for
analysis (Supplementary fig. S3).

First, we estimated nucleotide diversity, intragenic linkage
disequilibrium (LD), and the site frequency spectrum (SFS)
(see Materials and Methods) within each species (fig. 1a–c).
The average nucleotide diversity, p, an estimator of 2Nel in
haploids, is significantly different among genomic compart-
ments (fig. 1a and Supplementary table S1). Across the spe-
cies, p differs by up to a factor of 4.5 (gsA: 0.018, gsB: 0.0045,
gsC: 0.0140, gsD: 0.00512, and gsE: 0.008), with the most poly-
morphic species being gsA and the least gsB. If we assume
similar mutation rates among these closely related species,
nucleotide diversity differences reflect interspecies differences
in long-term effective population size, Ne.

When recombination occurs, we expect that levels of non-
random association between pairs of alleles, quantified by
measures such as r2 (see Materials and Methods), decay
with genomic distance (LD decay). To evaluate the recombi-
nation rate differences among the five species, we used
within-species polymorphism data and computed the aver-
age intragenic LD decay for each gene in each species. We
observed a rapid decay of LD within the first 1,000 base pairs
for all species, suggesting substantial amounts of within-
species homologous recombination (fig. 1b). The slower de-
cay observed in species gsB either reflects a lower per gener-
ation recombination rate or a smaller effective population
size (Ne). The latter is consistent with the low level of nucle-
otide diversity measured in gsB. To reliably estimate interspe-
cies differences in r2, we used genes with at least 10
informative sites within each species while also excluding
variants only found in one strain (singletons) and evaluated
their r2 distributions separately (fig. 1c). As expected, the
species with the most striking LD decay (gsC) has the lowest
r2 median (median r2: 0.248) and the opposite is also true
(gsD, median r2: 1.00). In summary, these species can be
ranked by their recombination levels, from the most recom-
bining to the least, as follows: gsC (median r2: 0.248) > gsA
(median r2: 0.341)> gsE (median r2: 0.561)> gsB (median r2:
0.651) > gsD (medianr2: 1.00).

Next, we computed the folded SFS of synonymous and
nonsynonymous mutations within each species. Overall, both
synonymous and nonsynonymous SFSs differ from the “L”
shaped patterns (many rare alleles and fewer frequent alleles)
expected in a stationary population at mutation–selection–
drift equilibrium (fig. 1d). The observed excess of intermediate
frequency single-nucleotide polymorphism (SNPs) indicates
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the presence of population structure in some of the species.
The effect of population structure is particularly evident in
gsC, and this excess is likely driven by strains isolated from
French soils (Supplementary fig. S4). Differences among spe-
cies suggest distinct demographic histories, with gsC showing
an SFS compatible with population expansion and gsA with
population decline (Pool et al. 2010).

Using the counts of polymorphism in synonymous and
nonsynonymous SFS within each species, we can estimate
the overall strength of purifying selection via piN=piS (see
Materials and Methods). The strength of purifying selection
ranks species similarly to their average recombination rate,
with more recombining species showing stronger purifying
selection (individual piN=piS sorted by recombination rate
are: gsC ¼ 0.037, gsA ¼ 0.039, gsE ¼ 0.051, gsB ¼ 0.057,
and gsD¼ 0.07). This observation is in line with the theoret-
ical expectation of a positive effect of recombination on the
overall efficacy of natural selection. We also observed an ex-
cess of rare nonsynonymous relative to synonymous variants
(fig. 1e), consistent with the segregation of nonsynonymous
variants under weak purifying selection (Ohta 1976). Rare
nonsynonymous variants are often deleterious (s�1/Ne)
(Hughes et al. 2003; Hughes 2005). Because deleterious var-
iants contribute substantially to polymorphism but rarely to
divergence (Fay et al. 2001; Charlesworth and Eyre-Walker

2006), their presence in the genomes, if not controlled for,
will lead to an underestimation of a (Eyre-Walker and
Keightley 2009).

We used GRAPES (Galtier 2016) to estimate the distribu-
tion of fitness effects (DFEs) (Eyre-Walker and Keightley 2007)
and the proportion of adaptive evolution (a) from polymor-
phism and divergence data while accounting for the presence
of deleterious mutations. This approach uses the site fre-
quency distribution of both synonymous and nonsynony-
mous SFS counts to estimate the DFE while also accounting
for the effect of demography. The significant amount of
shared polymorphism among species (Supplementary table
S2) makes it difficult to reliably call ancestral and derived
states (Schneider et al. 2011; Tataru et al. 2017).
Accordingly, we chose to estimate the DFE and a using the
folded SFSs (Galtier 2016). To determine the model of the DFE
that best fit our data, we used a variety of DFE distribution
models (Supplementary table S3). The DFE models we tested
differ by the classes of mutations (deleterious, beneficial, and
neutral) included in each DFE model and how fitness effects
are distributed within these classes. When using Akaike’s
Information Criterion (AIC) to select the best DFE model,
we found that the GammaZero model overall provides the
best fit to the SFS data (Supplementary fig. S5). This model
assumes the existence of weakly deleterious nonsynonymous
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compartments (chromosome, chromids: Rh01, Rh02, and plasmid: Rh03). To exclude outliers only genes with p � 0:03 are shown. (b)
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mutations, modeled as a continuous Gamma distribution
(Galtier 2016).

The proportion of adaptive evolution was first computed
between all combinations of “mirror” species (aspecies1 species2),
in which “species 2” is used as outgroup (divergence) for
“species 1” (polymorphism) and vice versa (aspecies2 species1).
This yielded 20 combinations in total. Because “mirror”

species share an identical history of divergence, their a esti-
mates can be considered as “biological replicates” (Galtier
2016) (table 1). Except for the comparison between gsA
and gsB, in which differences between agsA gsB and agsB gsA

exceeded 0.09, the overall discrepancy in the values estimated
between mirror species does not exceed 0.1. Using each spe-
cies’ focal polymorphism data, we calculated four a estimates
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FIG. 2. The proportion of adaptive evolution (a) by classes of recombination. For each pairwise estimates of a, the polymorphism data from one
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Table 1. The Proportion of Adaptive Evolution (a) across Pairs of Species.

Polymorphism (focal) Divergence (outgroup)

gsA gsB gsC gsD gsE

gsA – 0.28 [0.26–0.31] (2) 0.35 [0.33–0.39] (1) 0.25 [0.23–0.28] (1) 0.29 [0.27–0.32] (2)
gsB 0.18 [0.16–0.21] (4) – 0.26 [0.24–0.29] (3) 0.15 [0.13–0.17] (3) 0.17 [0.15–0.19] (3)
gsC 0.36 [0.33–0.39] (1) 0.36 [0.33–0.38] (1) – 0.25 [0.23–0.28] (1) 0.30 [0.27–0.32] (1)
gsD 0.25 [0.22–0.28] (3) 0.25 [0.23–0.27] (4) 0.25 [0.22–0.28] (4) – 0.12 [0.10–0.15] (4)
gsE 0.27 [0.24–0.30] (2) 0.25 [0.23–0.27] (4) 0.27 [0.24–0.30] (2) 0.10 [0.07–0.13] (4) –

The a estimates were computed based on the best-fitting DFE model (GammaZero) (Supplementary table S3). For each pairwise estimate of a (aspecies1 species2), the
polymorphism data from a focal species (rows) is compared against the divergence counts of an outgroup (columns), and vice-versa (aspecies2 species1). Confidence intervals
(CIs) are displayed in brackets and numbers in parentheses represent the a ranking (in decreasing order) by outgroup (by column).
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by comparing it to the divergence counts of the remaining
species (table 1). The most recombining species (gsC) is ob-
served to have the highest a across all outgroups used, while
the least recombining species (gsD) had the lowest a in three
out of the four cases.

We then investigated whether intraspecies differences in
recombination rate affect the amount of adaptive evolution
(a) estimated. For each species, we split genes into three
equally sized recombination classes based on their average
r2 values and computed a for each class using the
GammaZero model (Supplementary fig. S6 and
Supplementary table S4). Because we only kept genes with
at least 10 informative sites, the number of genes evaluated
across species was different (see fig. 1c). For most species
comparisons (gsA, gsB, gsC, and gsE), there is a decrease in
the proportion of adaptive evolution with a reduction in
recombination (increase in r2) (fig. 2). Except for cases in
which we used gsD polymorphisms to estimate a, where all
comparisons were nonsignificant, all the other species

pairwise comparisons led to at least one significant difference
(based on nonoverlapping confidence intervals [CIs]) be-
tween recombination classes. The low sample size of gsD
(five strains) and its skewed LD distribution (fig. 1c) may
have reduced statistical power to discriminate among recom-
bination classes and to estimate a reliably.

We further assessed the significance of the pattern
reported here by permuting, 200 times, across recombination
classes (see Materials and Methods). Except for simulations in
which gsD polymorphisms were used, all the other simula-
tions led to significant differences (P-value � 0.05) among
the two most extreme classes of recombination
(Supplementary fig. S7).

The parameter a can also be viewed as the relative pro-
portion between the rate of amino acid changes fixed by
positive selection (xa) and the rate of nonadaptive amino
acid changes (xna): a ¼ xa=ðxa þ xnaÞ. Thus, an increase
in a with recombination could be due to either an increase in
the rate of adaptive substitutions, a decrease in the rate of

FIG. 3. The rates of adaptive (xaÞ and non� adaptive ðxna) evolution by classes of recombination. For each pairwise estimates of xa (in blue)
and xna (in yellow), the polymorphism data from one species are compared against the divergence counts of an outgroup, and vice-versa. Results
are divided into classes of recombination based on r2(a measure that is inversely proportional to the level of recombination). An opposite effect of
recombination on xa and xna is observed in most pairwise comparisons. The rate estimates (xa;xna) and their associated confidence intervals
(CIs) were obtained using the best fitting DFE model (GammaZero).
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nonadaptive substitutions, or both. Figure 3 shows that xa

increases with recombination rate whereas xna decreases
with recombination rate for most combinations and that
the quantitative effects are almost equal in magnitude.
Thus, classes of genes evolving under higher recombination
rates exhibited lower rates of nonadaptive substitution and
increased rates of fixation of adaptive variation. This matches
the predictions from selective interference theory (Felsenstein
1974; Barton 1994; McVean and Charlesworth 2000).

To evaluate the robustness of these results, we computed
two alternative measures of recombination (R/h, and D0). We
then made new recombination classes and evaluated how
each recombination measure correlated with a. R/h measures
the importance of recombination (R) relative to mutation (h)
across sequences (Vos and Didelot 2009; Didelot and Wilson
2015), while D0 measures LD between sites using a different
metric than r2 (see Materials and Methods). Although the
distributions of R/h and D0 across genes are different than
that of r2 (fig. 1c and Supplementary fig. S8), these three
measures are not independent (Pearson’s correlation be-
tween r2and R/h or D0 ranged from 0.19 to 0.70)
(Supplementary fig. S8). For most species comparisons, the
trend between a and recombination remains consistent: the
higher the amount of recombination (measure by R/h or D0),
the higher a is (Supplementary figs. S9 and S10). The mean
rates of adaptive evolution (xa) obtained among classes
based on D0 or on R/h estimates also generally agree with
those estimated using r2 (Supplementary figs. S11 and S12).

The genomes of the Rhizobium species comprise three
genomic compartments (chromosomes, chromids, and plas-
mids) that may have undergone different selection regimes.
We tested that by building distinct SFSs for each genomic
compartment (see Materials and Methods). The mean a es-
timate differs slightly among genomic compartments with
higher a observed in core genes sampled from the chromo-
some and the smallest plasmid (Rh03) (table 2). However, the
sampling variance of estimates is large, and differences ob-
served are not statistically significant. We also evaluated the
rate of recombination among these genomic units
(Supplementary fig. S13), recombination is heterogeneous
within and across species, as observed for nucleotide diversity
(fig. 1a). We conclude that we are underpowered to detect
differences in the effects of adaptive evolution as a function of
recombination between these genomic compartments.

In this study, we applied a methodology that estimates the
proportion of amino acid changes that have been fixed by
positive selection (a) while also estimating the individual
components of a (xa and xna). We have only included genes
that are present in all sampled genomes––the so-called core
genome. Because the methodology used requires summariz-
ing the data by building an SFS, the analyses cannot be readily
extended to the accessory genome––given that many acces-
sory genes are a result of HGT (Popa and Dagan 2011), a DFE
computed from this source will not necessarily reflect the DFE
of the studied species. The accessory genome represents
roughly 40% of the genome of these species (Cavassim et
al. 2020), and likely also contributes to adaptive evolution
(e.g., acquired symbiotic ability [Kumar et al. 2015;
Cavassim et al. 2020]) as also shown in other studies (e.g.,
antibiotic resistance in Staphylococcus aureus [Harris et al.
2010]; or adaptation to a new ecological niche [Ochman et
al. 2000; Wiedenbeck and Cohan 2011]).

It has been previously shown experimentally that both
recombination via plasmid-mediated gene transfer (con-
jugation) or via transformation can accelerate bacterial
adaptation in populations of Escherichia coli (Cooper
2007) and Helicobacter pylori (Baltrus et al. 2008). These
studies are in line with previous simulation studies (Cohen
et al. 2005; Levin and Cornejo 2009). Homologous recom-
bination was shown to accelerate adaptation when incor-
porated in simulations, including mutation and selection,
at rates typical of species like Escherichia coli, Haemophilus
influenzae, Bacillus subtilis (Levin and Cornejo 2009).
Cohen et al. (2005) studied recombination in the context
of a simple fitness landscape model with evolution imple-
mented as a continuous Markov process and observed a
drastic speed up on the rate of adaptive evolution with
increased population sizes. Cooper (2007) concluded that
recombination only had a positive effect on adaptation
when beneficial mutations were abundant in the popula-
tion––implying that standing genetic variation, possibly
driven by higher mutation rate (l) or higher effective pop-
ulation size (Ne), may be crucial for recombination to be
useful. Assuming that mutation rate (l) is similar among
these sibling species, then the observed adaptive differ-
ences among them may reflect differences in effective
population size, recombination rate, or a combination of
both (Cohen et al. 2005; Arnold et al. 2018).

Table 2. The Proportion of Adaptive Evolution (a) across Genomic Compartments.

Species Genomic compartments

Chrom Rh01 Rh02 Rh03

gsA – – – –
gsB 0.4393 [0.29–0.60] 0.3593 [0.20–0.53] 0.2192 [0.02–0.44] 0.4484 [0.26–0.66]
gsC 0.4399 [0.24–0.67] 0.3116 [0.10–0.56] 0.2413 [20.03 to 0.57] 0.4682 [0.26–0.71]
gsD 0.3568 [0.19–0.54] 0.3247 [0.17–0.50] 0.1383 [20.09 to 0.41] 0.3444 [0.16–0.56]
gsE 0.4013 [0.24–0.58] 0.3650 [0.22–0.52] 0.2235 [0.03–0.45] 0.4203 [0.25–0.61]

The a estimates were computed based on the best-fitting DFE model (GammaZero) (Supplementary table S3). For each genomic compartment (chrom¼ chromosome; Rh01
and Rh02¼ chromids; Rh03¼ plasmid), we compared the polymorphism data from species gsA against the divergence counts of an outgroup (rows). Confidence intervals are
displayed in brackets.
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Conclusion
We have found that five bacterial species within the species
complex Rhizobium leguminosarum display different yet high
levels of recombination. The estimates of a ranged between
0.07 and 0.39 among species. These estimates are lower than
those based on 410 orthologs observed in E. coli (0.58,
CI¼ 0.45–0.68) but close to estimates from Salmonella enter-
ica (0.34, CI¼ 0.14–0.50) previously reported (Charlesworth
and Eyre-Walker 2006)––however, in this study population,
fluctuations were not accounted for.

Levels of recombination correlate––both across and
within species––with higher amounts of adaptive evolution
estimated either as the rate of adaptive substitutions (xa) or
as the proportion of amino acid changes that have been fixed
by positive selection (a). For instance, the most recombining
species (gsC) consistently exhibited the largest a, indepen-
dent of the outgroup used. Within each species, we also find a
positive correlation between intragenomic recombination
rate and a: This is both due to a higher estimated rate of
adaptive evolution (xa) and a lower estimated rate of non-
adaptive evolution (xna), suggesting that recombination
both increases the fixation probability of advantageous var-
iants and decreases the probability of fixation of deleterious
variants. These findings are robust to the measure of recom-
bination (r2, R/h, and D0) used to define classes and the choice
of outgroup used for computing divergence. Despite variation
in recombination rate among genomic compartments, we
did not observe significant differences in adaptive evolution
among them.

The positive association between amounts of homologous
recombination and a we report here is in line with population
genetic studies conducted in vertebrates (Galtier 2016;
Moutinho et al. 2020) and invertebrates (Presgraves 2005;
Betancourt et al. 2009; Arguello et al. 2010; Mackay et al.
2012; Campos et al. 2014; Grandaubert et al. 2019); it is also
in line with experimental and simulation studies of adaptive
evolution in prokaryotes (Cohen et al. 2005; Cooper 2007;
Baltrus et al. 2008; Levin and Cornejo 2009). It points to re-
combination being a general facilitator of adaptive evolution
across the tree of life.

Material and Methods

Identification of Orthologous Genes
We previously isolated and sequenced 196 strains from white
clover (Trifolium repens) root nodules harvested in Denmark,
France, and the UK. To identify a set of orthologous genes
shared across strains, we followed the methods outlined in
Cavassim et al. (2020). Briefly, the strains were previously
subjected to whole-genome shotgun sequencing using
2� 250 bp Illumina paired-end reads (Illumina, USA).
Genomes were assembled using SPAdes (Bankevich et al.
2012) (v. 3.6.2) and assembled further, one strain at a time,
using a custom Python script (Jigome, available at https://
github.com/izabelcavassim/Rhizobium_analysis/tree/master/
Jigome).

From the assembled genomes (Cavassim et al. 2020), we
predicted protein-coding sequences using prokka (Seemann

2014) (v1.12); this resulted in a total of 1468264 protein-
coding sequences. To predict orthologous genes from these
sequences, we used Proteinortho (Lechner et al. 2014;
Seemann 2014) (v5.16b) with default parameters except for
enabling the synteny flag. We identified a total of 22,115
orthologous gene groups, including a total of 17,911 orthol-
ogous observed in at least two strains (accessory genes), and
4,204 orthologous found in all 196 strains (core genes).

Orthologous gene groups were aligned using clustalo
(Sievers et al. 2011) (v.1.2.0) in a codon-aware manner. To
determine the genetic relationship among all 196 strains, we
previously calculated their pairwise average nucleotide iden-
tity (ANI) across 305 conserved orthologous gene alignments
(Cavassim et al. 2020). Under the 95% ANI threshold that
delineates species boundaries (Konstantinidis et al. 2006), we
demonstrated that these 196 Rhizobium strains constitute
five distinct R. leguminosarum species (gsA, gsB, gsC, gsD,
and gsE) (Supplementary fig. S1). To ensure that we had a
high-quality orthologous data set for extracting segregating
sites, we filtered it further (see below).

Filtering Out Orthologous Gene Groups with Evidence
of Interspecies HGT or Misassigned Orthologous Gene
Groups
To evaluate the impact of intraspecific homologous recom-
bination on adaptive evolution, we excluded genes that
showed signals of recent HGT across the five species analyzed.
We have previously developed and applied a phylogenetic
method to quantify HGT (introgression score) (Cavassim et
al. 2020). This method evaluates the possible number of shifts
from one species to another in a given phylogenetic tree. The
pipeline takes a gene tree as an input and traverses the tree––
using the depth-first search approach––searching deeper in
the tree whenever possible. Once the tip is reached the spe-
cies classification for that given strain is stored. A list contain-
ing the species in order of search is collected for the entire
tree, the introgression score is then computed as the number
of shifts from one species to another in the list minus the set
of species plus 1.

We previously showed that most of the core genes shared
among the present species respect the species-tree topology
(introgression score ¼ 0) (Cavassim et al. 2020). The excep-
tions are genes sitting in the symbiosis conjugative plasmids
and two chromosomal islands (introgression score > 7). To
ensure that we were only analyzing high-quality gene align-
ments, with no evidence of misassigned orthologous gene
groups and with little evidence of HGT, we imposed some
restrictions. We only accepted genes that passed the follow-
ing criteria: 1) were present in every strain (196 strains), 2)
with a nucleotide diversity (p) below 0.1 (see Supplementary
fig. S2a), 3) identifiable replicon origin (chromosome and
chromids), 4) and with an introgression score � 3. A total
of 3,086 out of 4,204 core genes were kept, and of these, 2,550
genes were found in the chromosome, 288 genes in chromid
Rh01, 160 genes in chromid Rh02, and 88 genes in plasmid
Rh03.
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Variant Calling
To identify SNPs along with our high-quality set of core genes,
we evaluated each gene codon-aware alignment using a cus-
tom python script https://github.com/izabelcavassim/
Popgen_bacteria. For a given core gene alignment and posi-
tion, we first counted the number of unique nucleotides (A,
C, T, and G). Only sites containing two unique nucleotides
were considered variable sites (bi-allelic SNPs). SNP matrices
were then built and encoded as follows: major alleles were
encoded as 1 and minor alleles as 0. The nucleotide diversity
(p), gene length, and the distributions of segregating sites
across core genes are described in Supplementary fig. S2b–d.

Transition Transversion Rate Bias (Kappa) and
Expected Number of Synonymous and
Nonsynonymous Sites
Because transitions are more often synonymous at third co-
don positions than are transversions, to correctly identify the
expected number of synonymous (Lps) and nonsynonymous
sites (Lpn), we first estimated the average transition/trans-
version rate bias (kappa) (Ina 1995) across species. To this
end, we followed the methods described in (Yang and Nielsen
2000) and used two classes of sites: 4-fold-degenerate sites at
the third codon positions and nondegenerate sites.
Mutations at the 4-fold-degenerate sites are synonymous,
and therefore kappa at those sites should reflect only the
mutational bias. All mutations at nondegenerate sites are
nonsynonymous and were also used to estimate kappa. We
computed an average kappa by combining these two classes
based on equations (8)–(11) of Yang and Nielsen (2000).
These equations have been implemented within the
CodonSeq class in Biopython (Cock et al. 2009) (private func-
tion “_count_site_YN00()”), and these private functions were
adapted to our data set.

To estimate a common kappa for each gene alignment
(including all species and strains), we averaged estimates from
pairwise analyses across 50 randomly chosen strains. The
kappa distribution has a mean of 5.6 and a median of 5.20
(Supplementary fig. S3a), we used the median to compute
the expected number of synonymous and nonsynonymous
sites. To this end, we followed the methods described by (Ina
1995) and modified by (Yang and Nielsen 2000)––also imple-
mented within Biopython. A total of 284,742 synonymous,
49,298 nonsynonymous sites were counted (Supplementary
fig. S3b and c).

Divergence Sites and Shared Polymorphisms
For each pair of species (a focal and an outgroup), we eval-
uated their variable sites and computed the number of shared
synonymous (pS) and nonsynonymous (pN) polymorphisms.
Given a bi-allelic SNP (0 and 1), we considered shared poly-
morphic sites as sites for which both alleles (0,1) were segre-
gating in both species (Supplementary table S2). We
restricted the estimates of divergence to those sites for which
we had variable sites across species. We classified synonymous
(dS) and nonsynonymous divergent sites (dN) as those sites in
which we observed fixed differences between a focal species
and an outgroup.

Calculating the Folded SFS
One can infer the DFEs from SFS data (Eyre-Walker and
Keightley 2009). Because of the amount of shared polymor-
phism among the present species (Supplementary table S2), it
becomes problematic to confidently distinguish ancestral
from derived polymorphisms (Hernandez et al. 2007).
Therefore, we chose to estimate the DFE using a method
that uses the folded SFSs of synonymous and nonsynony-
mous sites (Galtier 2016). To this end, we built the folded
synonymous and nonsynonymous SFSs by tabulating the ob-
served counts of the minor allele frequencies. The synony-
mous and nonsynonymous SFSs, and the divergence counts,
were then used to estimate the DFE and the proportion of
adaptive substitutions (a) across pairs of species.

Calculating the Strength of Purifying Selection
The strength of purifying selection was measured as the ratio
of nucleotide diversity at nonsynonymous (piN) and synony-
mous sites (piS). For each gene and class of polymorphisms
(synonymous and nonsynonymous) nucleotide diversity was
computed as: p ¼

Pm
1 ð2pqÞ=Lp, in which p and q are the

allele frequencies, and Lp is the expected number of synon-
ymous (Lps) or nonsynonymous positions (Lpn) along the
gene. We use the median of the piN=piS distribution among
genes as a proxy for the strength of purifying selection per
species.

Estimation of Adaptive and Nonadaptive
Nonsynonymous Substitutions Rates
Fitted parameters of the DFE were used to compute the
expected dN=dS under the different models, which was com-
pared with the observeddN=dS to estimate the adaptive sub-
stitution rate (xa); nonadaptive substitution rate (xna), and
the proportion of adaptive substitutions (a) with xa ¼ adN

=dS and xna ¼ ð1� aÞdN=dS.
To account for potential departures of the SFS from de-

mographic equilibrium (assuming the Wright–Fisher
model)––possibly driven by changes in the effective popula-
tion size or by population structure––the method uses nui-
sance parameters to correct for these SFS distortions (Eyre-
Walker et al. 2006). The different DFE models were compared
using the Akaike’s Information Criterion (AIC) (Akaike 1992).

Recombination Rate Estimates
To estimate the recombination rate per gene per species, we
used three approaches: two based on the degree of associa-
tion (or LD) between pairs of alleles in a sample of haplotypes
(r2 and D0), and a third approach, ClonalFrameML (R/h) (Vos
and Didelot 2009; Didelot and Wilson 2015), which relies on
the maximum-likelihood inference to detect recombination
events that disrupt a clonal pattern of inheritance in bacterial
genomes.

(1) Linkage disequilibrium (r2)
Intragenic LD measures the correlation between pairs of
alleles with genomic distance in a gene. Here, we used
Pearson’s r2 correlation measure.
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Each gene genotype matrix (containing a minimal set of 10
SNPs) was first normalized as follow: let N denote the total
number of individuals and M the total number of SNPs, the
full gene genotype matrix (X) has dimensions N�M with
genotypes encoded as 0’s and 1’s for the N haploid individuals.
Each column Si (i¼ 1, . . . , M) of the X matrix is a vector of
SNP information of size N. To compute LD, we discarded
SNPs found only in one sample (singletons). We then applied
a Z-score normalization to each SNP vector by subtracting the
vector by its mean and dividing it by its standard deviation

Si�li

ri

� �
, resulting in a vector with mean 0 and variance 1. The

LD was then calculated as a function of distance d (maximum
1,000 base pairs apart) and was computed as the average LD
of pairs of SNPs d base pairs away from each other. The
calculations were done in the following way:

Cor Xi; Xj

� �
¼ CovðXi; XjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðXiÞvarðXjÞ
p

r2 ¼ CorðXi; XjÞ2:

In which j > i and Xi is composed of the genotypes of all
individuals of a given species for SNP position i in the ge-
notype matrix. Xj is formed of the genotypes of all individ-
uals of the same species for position j in the genotype
matrix, and d ¼ j� i with d � 1; 000 base pairs. Results
were then summarized into bins of 100 base pairs apart; for
each bin, a mean r2 was computed and then averaged to a
singular r2 value.

(2) Linkage disequilibrium (D0)
The average LD within genes was also measured by D0

(Lewontin 1964) as follow: given two locus i and j (with alleles
A and a, observed in locus i and alleles B and b observed in
locus j), we first computed the frequency of all possible hap-
lotype combinations (fAA; fAB; fAb; fab) and allele frequencies
(fA, fB, fa, and fb). The coefficient D was then computed as:
DAB ¼ fAB � fA � fB and D0 was computed by standardizing
jDj by its maximum possible value as: D’ ¼ D

minðfAfb;fafBÞ ; ifD
> 0; or D’ ¼ �D

minðfAfB;fafbÞ ; ifD < 0. An average value per gene
was stored and computed similarly to the r2 statistics (see
above).

(3) ClonalFrameML
To estimate the changes in the clonal phylogeny by recom-
bination (R), relative to mutation (h) (R/h), we used the soft-
ware ClonalFrameML (Vos and Didelot 2009; Didelot and
Wilson 2015). For each species, we first concatenated all
core gene alignments (3,086 genes) to build the starting phy-
logenetic species tree using a maximum-likelihood approach
(Raxml-ng [Stamatakis 2014]). We then input each phyloge-
netic tree within each gene alignment to estimate R/h.

Calculating the Significance Levels between
Recombination Classes
To test whether differences in a among recombination classes
were statistically significant across species comparisons, we
conducted a nonparametric test by shuffling genes among
recombination classes (200 permutations) and recording the
amplitude of differences between a estimates
(Da ¼ maxa �mina). We calculated a P-value by comparing
the observed Da against the simulated Da distribution.

Estimation of Adaptive Substitutions by Genomic
Compartments
To estimate adaptive evolution (a) by genomic compart-
ments, we first down-sampled the genes from genomic com-
partments (chromosome, Rh01, Rh02) to reach the size of the
smallest genomic compartment (Rh03). Due to the paucity of
data, we chose to compute a using polymorphism data from
the most polymorphic species (gsA) and contrasted it against
each outgroup (gsB–gsE). The a estimates and their associ-
ated CIs were obtained using the GammaZero DFE model
within GRAPES.

Data Sharing Plans

• Code generated for this study can be found at https://
github.com/izabelcavassim/Popgen_bacteria.

• The data that support the findings of this study are avail-
able in the INSDC databases under Study/BioProject ID
PRJNA510726 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA510726/).

• Accessions numbers are from SAMN10617942 to
SAMN10618137 consecutively.

• Orthologous gene alignments and SNP matrices are avail-
able on FigShare (file Data.zip): https://doi.org/10.6084/
m9.figshare.11568894.v5

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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