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A B S T R A C T

The expression of a gene is commonly estimated by quantitative PCR (qPCR) using RNA isolated from a large
number of pooled cells. Such pooled samples often have subpopulations of cells with different levels of expression
of the target gene. Estimation of gene expression from an ensemble of cells obscures the pattern of expression in
different subpopulations. Physical separation of various subpopulations is a demanding task. We have developed a
computational tool, Deconvolution of Ensemble through Bayes-approach (DEBay), to estimate cell type-specific
gene expression from qPCR data of a mixed population. DEBay estimates Normalized Gene Expression Coeffi-
cient (NGEC), which is a relative measure of the expression of the target gene in each cell type in a population.
NGEC has a direct algebraic correspondence with the normalized fold change in gene expression measured by
qPCR. DEBay can deconvolute both time-dependent and -independent gene expression profiles. It uses the
Bayesian method of model selection and parameter estimation. We have evaluated DEBay using synthetic and real
experimental data. DEBay is implemented in Python. A GUI of DEBay and its source code are available for
download at SourceForge (https://sourceforge.net/projects/debay).
1. Introduction

A population of cells often contain several subpopulations with
distinct gene expression pattern. However, gene expression experiments
using pooled cells, like quantitative PCR (qPCR), expression microarray,
obscure the information on subpopulation- or cell-type-specific gene
expression. Take the example of gene expression analysis in an in vitro
experiment on epithelial-to-mesenchymal transition. Epithelial and
mesenchymal cells are two different cell types with distinct gene
expression signatures. Epithelial cells will have a higher expression of E-
cadherin, whereas expression of Vimentin would be more in mesen-
chymal cells (Zeisberg and Neilson, 2009). To perform a qPCR experi-
ment, one would take a population of cells cultured at a particular
experimental condition. That sample of cells could be a mixture of
epithelial andmesenchymal cells. A qPCR experiment wouldmeasure the
expression of the target gene as a whole in the population. However, we
will not be able to know the relative expression of the target gene in the
two subpopulations, epithelial and mesenchymal cells, in that sample.

A similar problem is faced in the analysis of gene expression in biopsy
samples of solid tumors. A tumor sample is usually heterogeneous with
different subpopulations (Hinohara and Polyak, 2019; Marusyk and
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Polyak, 2010). However, qPCR experiments using bulk tumor samples
would provide us the average gene expression of all these cells. Further,
tumor samples often contain tumor-infiltrating lymphocytes and endo-
thelial cells (Hida et al., 2018; Pages et al., 2010). These infiltrating cells
confound the gene expression analysis of cancer cells when the bulk
tumor is used as a sample (de Ridder et al., 2005; Kuhn et al., 2011).

This problem can be alleviated if we physically segregate different
subpopulations and investigate the gene expression in each of them. For
example, using flow cytometry, different subpopulations of cells can be
sorted based on the differential expression of cell-type-specific markers.
A qPCR experiment using RNA isolated from those sorted cells would
provide cell-type- or subpopulation-specific gene expression data. How-
ever, physical separation techniques have limitations like poor yield and
quality of RNA (Debey et al., 2004; Zhong et al., 2013). Separation of
different subpopulations is difficult when subpopulations are defined in
terms of the physical properties of cells like-morphology, motility, or
functions (Devaraj and Bose, 2019; Kimmel et al., 2018). Computational
algorithms to deconvolute population-level gene expression data into
subpopulation-specific gene expression help in these circumstances.

A gene expression deconvolution algorithm requires two inputs: a)
population-level gene expression data, and b) the proportions or relative
020
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size of each subpopulation in the sample. Note that in certain experi-
ments, the relative size of each subpopulation in a mixture of cells can be
estimated even without the physical segregation of these cells (Devaraj
and Bose, 2019; Kimmel et al., 2018; Mandal et al., 2016). With this
information, a deconvolution algorithm estimates relative gene expres-
sion in each subpopulation in a heterogeneous sample.

Several authors have used the deconvolution approach to estimate the
cell type-specific gene expression patterns from microarray data (Dimi-
trakopoulou et al., 2018; Erkkila et al., 2010; Lahdesmaki et al., 2005;
Zhong et al., 2013). These algorithms involve two-step parameter esti-
mation. First, the relative proportion of different subpopulations is esti-
mated using the expression data of a set of cell type-specific reference
genes, and then the estimated proportions are used to calculate the cell
type-specific expression of other genes. These algorithms rely heavily on
the fidelity of the genes chosen as cell type-specific reference genes. To
circumvent this issue, Kang et al. (2019) developed a deconvolution
method for the simultaneous estimation of cell-type proportions and cell
type-specific gene expression from RNA-Seq data without using any
reference gene information.

All these algorithms have been customized to analyze data of high-
throughput experiments, like microarray and RNA-Seq. Though these
high-throughput experiments are now accessible to most researchers,
small to medium scale gene expression studies are still predominant
where expressions of a handful of genes are measured by qPCR. Apart
from having low experimental noise and ease of data analysis, qPCR for a
handful of genes is easier to scale up for a large number of samples.

Gene expression is a dynamic process, and it changes with time and
experimental conditions. Existing deconvolution methods do not
consider such dynamics in gene expression while deconvoluting the data.
Therefore, these algorithms are not suitable for the analysis of time-
dependent experiments.

Keeping these limitations in mind, we have developed a computa-
tional tool DEBay that estimates cell type-specific gene expression pro-
files from qPCR data, given the proportions of different cell types in the
population. DEBay can deconvolute both time-dependent and -indepen-
dent gene expression data.

In contrast to existing regression-based deconvolution algorithms
(Lahdesmaki et al., 2005; Shen-Orr et al., 2010), DEBay uses a Bayesian
approach for model selection and parameter estimation. DEBay not only
reports the expected relative gene expression in different cell types but
also reports the probability distribution of these estimated parameters.
This helps in understanding the uncertainty and quality of model selec-
tion and parameter estimation.

We have created an easy-to-use GUI for DEBay. It is implemented in
Python and supported on MS Windows. DEBay would be useful in ex-
periments where physical separation of pure cell-type is cumbersome,
but proportions of different cell types in a sample are estimated through
experimental techniques like quantitative image analysis, flow cytom-
etry, Coulter counter.

2. Methods

2.1. Deconvolution algorithm

Let us consider a population of cells having multiple cell types or
subpopulations. Experiments are performed using this heterogeneous cell
population, and the expression of the target gene is measured in different
samples by qPCR. Here, we consider two cases.

Case-1. The expression of the target gene in each cell type remains
constant, but the population distribution of these cells varies among
samples.

Case-2. We have time-dependent samples. Both the population distri-
bution of cell types and the expression of the target gene in these cell
types change with time.

Below, we discuss the mathematical formulations for both cases.
2

2.1.1. Case-1
Consider a population of cells with n different cell types. Let's assume

that we have mþ1 samples with varying proportions of these cell types.
Let on an average each cell of the kth type expresses xk number of the
target mRNA. The total number of the target mRNA in the population in
sample i is,

XT ;i ¼
Xn

k¼1

xk � Nk;i (1)

here, i ¼ 0;1;2;…m represent different samples, and the number of cells
of kth type in the ith sample is Nk;i. Total number of cells in the ith sample,
Ni ¼

Pn
k¼1Nk;i. The sample i ¼ 0 is the control sample (e.g., untreated

cells) to be used for the fold-change estimation. Note that xk is constant
across all samples, but the population size of each cell type, Nk,i changes.

The ΔΔCt-method is used to measure normalized fold change in ex-
pressions of the target gene from quantitative PCR data (Kubista et al.,
2006; Livak and Schmittgen, 2001). Initially, fold change is calculated
with respect to the control sample, followed by normalization with the
reference/housekeeping gene. Here, we derive the relation between
normalized fold change in expression of the target gene in the population
and the expression of the target gene in each cell type.

The fold change in expression of the target gene in sample i is,

bXT ;i ¼ XT ;i

XT ;0

Here, XT,0 is the total number of mRNA of the target gene in the
control sample.

Similarly, fold change in expression of the reference gene in sample i
is,

bXR;i ¼ XR;i

XR;0

here, XR,i is the total number of reference mRNA in sample i and XR,0 is
the total number of reference mRNA in the control sample.

Normalized fold change in expression of the target gene in sample i is
given by,

Yi ¼
bXT ;ibXR;i

¼ 1bXR;i

� XT ;i

XT;0
(2)

The ΔΔCt method estimates this fold change, Yi, from qPCR data.
From Eqs. (1) and (2), we can write

Yi ¼ 1bXR;i

�
�Pn

k¼1xk � fk;i
��Pn

k¼1xk � fk;0
� (3)

here, fk;i ¼ Nk;i
Ni

is the fractional population size of cell type k in sample i.
Similarly, fk;0 is the fractional population size of kth type cell in the
control sample. The fractional population sizes of each cell type (fk,i) can
be estimated from experiments like flow cytometry, quantitative image
analysis.

Let's define bgk, the Normalized Gene Expression Coefficient (NGEC)
of cell type k as,

bgk ¼
xk�Pn

k¼1xk � fk;0
�� 1bXR;i

(4)

Now, Eq. (3) can be written as,

Yi ¼
Xn

k¼1

bgk � fk;i (5)

NGEC is a normalized measure of the level of expression of the target
gene in the kth cell type. In NGEC, the expression of the gene is
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normalized to the average expression of the gene across all cell types, and
the fold change in expression of the reference gene.

Eq. (5) should satisfy the constraint, bgk � 0. The values of Yi and fk;i
for all i, are obtained from experiments. bgk is the unknown parameter to
be estimated from the data.

2.1.2. Case 2
Here, we consider that we have samples collected for different time

points (i ¼ 0, t1, t2, …, tm), and the expression of the target gene in each
cell type changes with time.

For a time-dependent system Eq. (5) becomes,

Yi ¼
Xn

k¼1

bgkðiÞ � fk;i (6)

Here, bgkðiÞ is the time-dependent NGEC of the target gene in kth type
cell.

Commonly, the expression of a gene either increases or decreases or
remains constant with time. Though complicated gene expression pat-
terns, like oscillation, may be observed in some instances, we have
considered that the time-dependent gene expression pattern in each cell-
type follows one of the three predefined linear functions. We have used
three predefined functions to reduce the complexity of the problem.
These three functions are:

1 Linear time-dependent increase in gene expression:

bgkðiÞ¼ θk þ ωk � i (7)

Here, θk and ωk are constants and. θk;ωk � 0:

2 Linear time-dependent decrease in gene expression:

bgkðiÞ¼ θk � ωk � i (8)

here θk and ωk are constants, θk;ωk � 0 and θk � ωk � tm:

3 Constant gene expression:

bgkðiÞ¼ θk (9)

here, θk is a constant and θk � 0.
Here, we have considered time-varying gene expression. However,

the same mathematical formulation (Eqs. (6), (7), (8), and (9)) can be
used where gene expression in each cell type changes with the experi-
mental condition, say the dose of a drug. In that case, i represents the
dose of the drug, and i ¼ 0 represent untreated cells. The mathematical
formulation for NGEC and the algorithm used for its estimation remains
the same as for the time-dependent problem.

2.2. Estimation of NGECs through Bayesian approach

We estimate the unknown NGEC of each cell-type through the
Bayesian approach. Here, we consider the unknown parameters as a
random variable and estimate the posterior probability distribution of
the parameters given the experimental data. Using Bayes theorem
(Kruschke, 2014) for our problem, we get

P
�bg1; bg2;…bgn; σ

2jY1; Y2;…Ym

�
∝P

�
Y1; Y2;…Ymjbg1; bg2;…bgn; σ

2
�

� P
�bg1; bg2;…bgn; σ

2
�

P
�
θ
��μhyper� � N

�
μhyper ; σ

2
0 ¼

σ2

n0

�
;

	
bound from 0 to þ∞ if bgðiÞ ¼ θ þ ω� i; bgð
bound from ω� tm toþ∞ if bgðiÞ ¼ θ � ω�

3

The term on the left-hand side is the posterior distribution of un-
known parameters of our model. The first term on the right-hand side is
the data likelihood, and the second term is the prior distribution of the
parameters. bg1; bg2;…bgn are the NGECs of each cell-type that we want to
estimate. Y1;Y2;…Ym are the normalized fold change in the expression
of the target gene at various experimental conditions, estimated by
qPCR. σ2 is the variance of the fold change in expression of the target
gene. We assume that the variance is constant across all experimental
conditions.

Using vector notation, the above equation can be written as,

P
� bg;σ2jY�∝PðYjbg; σ2

�� P
� bg;σ2� (10)

here, bg ¼ ðbg1; bg2;…bgnÞ; Y ¼ ðY1;Y2;…YmÞ. Pðbg;σ2��YÞ is the posterior
distribution of the unknown parameters. PðY��bg; σ2Þ is the data likelihood.
Pðbg; σ2Þ is the prior distribution of the unknown parameters.

In this formulation, both bg and σ2 are unknown parameters. We as-
sume that the experimental observations (Y) are Normally distributed
around the true mean with some unknown variance (σ2) (Kruschke,
2014; Raue et al., 2011, 2013). Formþ1 different samples and n different
cell types, the data likelihood is,

P
�
Y
��bg; σ2�¼ Ym

i¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� π � σ2

p � e
�

�bY i�ðPn

k¼1
bgk�fk;iÞÞ2

2�σ2 (11)

The NGECs cannot be negative. Therefore, for parameter estimation,
we have used a truncated normal prior distribution (0 to þ∞) for bg and
an inverse gamma prior distribution for the variance (Gelman et al.,
2013). We have employed a hierarchical Bayesian approach where the
prior distributions of the NGECs are sampled from a hyperprior
(Kruschke, 2014). We made use of conjugate-prior to the Normal data
likelihood, as described by Murphy (2007) and Clyde et al., (2020). The
priors are defined as,

P
� bg;σ2�¼P

�bg��μhyper��P
�
μhyper

�� P
�
σ2
�

P
�
μhyper

� � N
�
μ0; σ

2
0 ¼

σ2

n0

�
; bound from 0 to þ∞

P
�
σ2
� � Γ�1ðα; βÞ

P
�bg��μhyper� � N

�
μhyper ; σ

2
0 ¼

σ2

n0

�
; bound from 0 to þ∞P

�
μhyper

�

is the distribution of the hyperprior from which the prior distributions
of bg are sampled. α and β are the parameters that control the height and
width of the inverse gamma distribution, respectively. n0 is the scale
parameter that controls the variance in the prior (σ20) relative to the
variance in the data (σ2). In the GUI of DEBay, the user can define α, β,
μ0, and n0.

The posterior distribution is estimated by Markov Chain Monte Carlo
(MCMC) using the NUTS sampler (Betancourt, 2017; Hoffman and Gel-
man, 2014). Complete estimation steps were implemented in Python
through the PyMC3 package (Salvatier et al., 2016).

For the time-dependent system discussed in section 2.1.2, we have
defined the gene expression coefficient as a function of time, in terms of
unknown parameters (θ;ω). The priors are defined as,
iÞ ¼ θ
i
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P bg;σ2 ¼P θ�μhyper �Pðωjμhyper �P μhyper � P σ2� �

� � � � � � � � � �
PðμhyperÞ � N μ0;σ

2
0 ¼ σ2

n0
, bound from 0 to þ∞

P
�
σ2
� � Γ�1ðα; βÞ

Pðω��μhyperÞ � N
�
μhyper ;σ

2
0 ¼ σ2

n0

�
, bound from 0 to þ ∞.

For the time-dependent system, the data likelihood is evaluated at the
observed time points. Form discrete time points and n different cell types,
the data likelihood is,

P
�
Y
��bg; σ2

�¼ Ym
i¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� π � σ2

p � e
�½bY i�ðPn

k¼1
bgk ðiÞ�fk;iÞ�2

2�σ2 (12)

Here, bgkðiÞ is evaluated as a function of time (i) at the observed time
points. bgkðiÞ can follow any of the three predefined functions (Eqs. (7),
(8), and (9)). In general, for n cell types and three different predefined
functions, we have 3n possible combinations. Each function combination
is a possible model, and we estimate the posterior distribution for all
models given the experimental data. The optimal model is selected based
on the Bayes Information Criterion (BIC) (Lorah and Womack, 2019;
Vrieze, 2012),

BIC ¼ �2� logP
�
Y
���bg; σ2

�
mean

�
þ ½a� log b� (13)

here, logP
�
Y
���bg; σ2�mean

�
is the log-likelihood evaluated at the mean of

each parameter distribution; a is the number of unknown parameters,
including the variance and the hyperprior; b is the number of observed
data points. The model with minimum BIC is considered as the optimal
model.

From the optimal model, we get the distribution of each parameter in
the predefined functions (Eqs. (7), (8), and (9)). By using random
numbers from these parameter distributions in bgkðiÞ, we get the distri-
bution of the NGEC of each cell-type for each discrete time point.
Figure 1. a) Workflow of the algorithm. b) Snapshots of th

4

2.3. Real-time PCR

We have evaluated DEBay with both synthetic and experimental data.
Experimental data was generated by real-time PCR. Total RNA was iso-
lated using TRI reagent (Sigma, St. Louis, MO, USA). Genomic DNA
contamination was removed by DNAse treatment. cDNAs were prepared
from an equal amount of total RNA from all samples using Verso cDNA
synthesis kit (Thermo Fisher Scientific, Waltham, MA, USA). Real-time
PCR was performed using PowerUp SYBR Green (Thermo Fisher Scien-
tific, Waltham, MA, USA) in Rotor-Gene Q real-time PCR cycler (QIA-
GEN, Hilden, Germany). Cyclophilin A was used as the reference gene,
and the experiments were performed in triplicates. Data analysis was
done using LinRegPCR (Ramakers et al., 2003).

3. Results

3.1. Deconvolution of qPCR data to estimate cell type-specific gene
expression

DEBay takes two data - a) fold change in expression of a target gene in
samples, and b) proportion of each cell-type in these samples. Using these
data, DEBay estimates the relative expression of the gene in each cell
type. The expression of a gene can be time-dependent or independent.
DEBay handles both cases.

DEBay estimates the relative expression of a gene in a particular cell
type as Normalized Gene Expression Coefficient (NGEC), using the
Bayesian method of parameter estimation. The definition of NGEC, it's
mathematical formulations, details of the algorithm, and the estimation
strategy are given in the Methods section. Figure 1a outlines the work-
flow of the estimation strategy.

DEBay takes the following inputs from the user- a) whether to use
time-dependent or -independent model, b) data in an MS Excel file, c)
parameter values for MCMC, d) parameter values specifying the prior
distributions. The estimated average values of NGECs are saved as a tab-
delimited text file along with the statistics. The probability distributions
of the NGECs are saved in a graphical format.
e GUI (i) and outputs (ii and iii) generated by DEBay.
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DEBay is implemented in Python. We have created a GUI for DEBay.
Glimpses of the GUI and data output are shown in Figure 1b. A stand-
alone windows installer for DEBay and a user manual is available at
SourceForge (https://sourceforge.net/projects/debay). The python
packages used in DEBay uses C libraries for faster computation. There-
fore, a GCC would help to improve the performance of DEBay but it is not
mandatory. MinGW, a complete run time environment for GCC for
Windows is available at SourceForge (https://sourceforge.net/proje
cts/mingw-w64/).

3.2. Evaluation of the algorithm

We have used both synthetic data and experimental data to evaluate
DEBay. Detailed information about the generation of the synthetic data is
given in the Supplementary Text.
Figure 2. Deconvolution of synthetic data using DEBay. This data set has five sample
cell type varies among samples (a). (b) shows the fold change in expression of the targ
are shown in (c). The actual values of the NGECs are shown in (d). e) Distribution o

5

3.2.1. Case 1
The assumption here is that the expression of the target gene in a cell

type does not vary among the sample, but the population size of each cell-
type varies. We generated 1000 different sets of synthetic data for a
population of cells having four types of cells. These data sets were
generated by varying the population size and the mean number of
mRNAs for each cell type. The detailed information about the synthetic
data generation is given in the Supplementary Text.

Figure 2 shows the analysis of a representative synthetic data set
using DEBay. There were five samples (S1 to S5) with different popula-
tion distribution for four cell-types (Figure 2a). Figure 2b shows the gene
expression data for each sample. Data of Figures 2a and 2b were used as
inputs for DEBay to estimate NGECs for each cell type. As shown in
Figure 2c, the estimated mean NGECs for all the cell types (Figure 2c) are
close to the respective actual values (Figure 2d) calculated algebraically
s, and each sample is composed of four types of cells. The population size of each
et gene in different samples. The estimated average NGECs for different cell types
f the estimated NGECs of four cell types.

https://sourceforge.net/projects/debay
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
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using Eq. (4). Figure 2e shows the distribution of the estimated cell-type-
specific NGECs.

Supplementary Figure S2a shows the deviation of the estimated
NGECs from the actual ones, relative to the standard deviation of the
estimated NGECs, for all the thousand synthetic data sets. In all cell-
types, the distribution of the deviation showed a tight cluster around
zero. Most of the actual NGECs were within one standard deviation of the
estimated NGECs (Supplementary Figure S2a). The actual and estimated
NGECs showed a strong positive correlation with r2 ¼ 0.99 (Supple-
mentary Figure 2b).

We generated real data by a qPCR experiment to evaluate DEBay. We
used three different human breast cancer cell lines, MCF-7, MDA-MB-
231, and MDA-MB-468. These cell line expresses different amounts of
EGFR1 (MDA-MB-468>MDA-MB-231>MCF-7) (Davidson et al., 1987).
We have measured the expression of EGFR1 in all three cells. The Ct
values of EGFR1 expression were normalized to the reference gene
(Cyclophilin A). The normalized Ct values of MDA-MB-468,
MDA-MB-231, and MCF-7 were 0.9, 1.1, and 1.4, respectively. Higher
the Ct value, lower is the expression level.

We mixed these three cell lines in various proportions to prepare
three samples S1, S2, and S3 (Figure 3a). Through qPCR, we measured
the fold change in EGFR1 expression in samples S2 and S3 with respect to
S1 (Figure 3b). Subsequently, this fold change data were deconvoluted
using DEBay.

Figure 3c shows the estimated distribution of NGECs for EGFR1 in
three pure cell-lines. NGECs for EGFR1 expression in these cell lines have
the same pattern, MDA-MB-468 > MDA-MB-231 > MCF-7, as observed
by qPCR. Figure 3d shows the correspondence between experimentally
determined Ct values and the estimated NGECs.
Figure 3. Deconvolution of real qPCR data using DEBay. (a) Three samples were prep
cells. (b) shows normalized fold change in expression of EGFR1 in different samples a
three cell types. d) shows the correspondence between the experimentally measured
estimated by DEBay from three mixed samples. Ct values of EGFR1 were normalize
expression level and is inversely related to the level of expression of a gene. Negativ

6

3.2.2. Case 2
Here we have considered that both the population distribution and

the expression of the target gene in each cell-type change with time. We
have used three sets of synthetic data to evaluate the algorithm. The
detailed information about the synthetic data generation is given in the
Supplementary Text.

As a representative data, the results of synthetic data of set-1 are
shown in Figure 4, and the rest are available in supplementary text
(Supplementary Figure S3 and S4). Here, we have samples for five-time
points, t ¼ 0 to 48. Each sample is a mixture of four cell types. Fig-
ure 4a shows the changing proportions of these cell types with time. The
fold change in expression of the target gene with time is shown in
Figure 4b. This fold change data were deconvoluted using DEBay.

For the time-dependent case, DEBay considers three linear models for
each cell type (discussed in Section 2.1.2) and reports the best combi-
nation of models. Figure 4c shows the estimated average time-dependent
NGECs for four cell types for this data set. As per this deconvolution, with
time, expression of the gene increases in cell type A and B and decreases
in cell type D (Figure 4c). Expression of the gene remains constant in cell
type C. Similar behavior is observed when NGECs were calculated alge-
braically from the synthetic data (Figure 4d). Figure 4e shows the dis-
tribution of the estimated NGECs as a function of time.

Supplementary Figure S5a shows the deviation between the actual
and the estimated NGECs for all three synthetic data sets. In most of the
cases, the actual NGECs lies within 1.5 standard deviations of the esti-
mated NGECs. The estimated NGECs showed a strong positive correlation
to the actual NGECs with r2 ¼ 0.97 (Supplementary Figure S5b).

Subsequently, we analyzed an experimental data set using DEBay. We
had earlier investigated the dynamics of EGF-induced Epithelial to
ared by mixing different proportions of MCF-7, MDA-MB-468, and MDA-MB-231
s measured by qPCR. c) Distribution of estimated NGECs of EGFR1 expression in
level of expression of EGFR1 in three pure cell lines and NGECs of these cells
d with the Ct values of cyclophilin A. Normalized Ct value is a proxy of gene
e log2 transformation has been used for better visualization of the data.



Figure 4. Deconvolution of synthetic data for time-dependent gene expression using DEBay. This data set has five samples corresponding to five time-points. Each
sample is composed of different proportions of four types of cells. (a) shows the change in the proportions of cell types with time. (b) Fold change in expression of the
target gene in the whole population with time. Deconvolution was performed using the time-dependent model of DEBay. The estimated average NGECs and the actual
NGECs for different cell types are shown in (c) and (d), respectively. e) Distribution of the estimated time-dependent NGECs. Time points are represented by increasing
order of color intensities. The lowest intensity denotes the initial time point, and the highest intensity denotes the end time point.
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Mesenchymal Transition (EMT) of MDA-MB-468 cells (Devaraj and Bose,
2019). We had observed that a population of MDA-MB-468 cells had
three subpopulations having different morphologies-cobble, spindle, and
circular. It was observed that the cobble cells were non-migratory and
epithelial-like, whereas spindle and circular cells were migratory and
mesenchymal-like (Devaraj and Bose, 2019). Treatment with EGF
induced EMT in MDA-MB-468 cells, and the proportions of three cell
types changed, both with time and dose of EGF (Devaraj and Bose, 2019).

For a time-dependent experiment, we measured the population dis-
tribution of three cell-types in EGF-treatedMDA-MB-468 cells at different
time points using quantitative image analysis (Devaraj and Bose, 2019).
Fold change in expression of Vimentin and Snail1, two markers of EMT,
was estimated by qPCR. Figures 5a and b show the data from this
experiment.

The qPCR data were deconvoluted using DEBay to estimate the time-
dependent changes in NGECs of Vimentin and Snail1 for three cell types
(Figure 5c). The NGECs of Vimentin and Snail1 for cobble cells are
extremely low and do not change with time. On the other hand, NGECs of
7

these two genes for the spindle and circular cells are either very high or
increased with time (Figure 5c). It is known that the expression of
Vimentin and Snail1 is low in epithelial cells and high in mesenchymal
cells (Lamouille et al., 2014; Zeisberg and Neilson, 2009). Therefore,
from the NGEC values, we can say that the spindle and circular cells are
possibly mesenchymal cells, and cobble cells are epithelial. This obser-
vation matches the migration behavior of these cell types.

4. Discussion

In this work, we have presented DEBay, a tool for computational
deconvolution of quantitative PCR data to estimate time-dependent and
-independent expression of a target gene in different subpopulations in
an ensemble of cells. The time-dependent model of DEBay can also be
used to deconvolute data where gene expression in subpopulations
changes with the experimental condition like the dose of a drug.

DEBay estimates the relative level of expression of a gene in a sub-
population as the Normalized Gene Expression Coefficient (NGEC).



Figure 5. Deconvolution of a time-dependent gene expression data using DEBay. MDA-MB-468 cells were treated with EGF for different durations, and the pro-
portions of three cell types were measured by quantitative image analysis (a). qPCR was used to estimate the time-dependent changes in the expression of two markers
of EMT, Vimentin, and Snail1(b). These data were deconvoluted using the time-dependent model of DEBay. c) Time-dependent distribution of NGEC of Vimentin and
Snail1, in three cell types. Time points are represented by increasing order of color intensities. The lowest intensity denotes the initial time point, and the highest
intensity denotes the end time point.
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NGEC is mathematically derived from the fold change in gene expression
measured by qPCR. In essence, NGEC is a proxy of the normalized gene
expression level in each cell type in the sample.

The existing deconvolution algorithms consider that the gene
expression of a cell type in a population remains constant with time or
across experimental conditions. DEBay addresses this problem by
considering three different models of time-dependent gene expression –

linear increase, linear decrease, and constant. One could envisage various
types of nonlinear gene expression patterns, and the algorithm of DEBay
can be easily altered to accommodate such dynamics. However, an in-
crease in the number of alternative models increases the complexity of
8

the problem and computation time. Further, nonlinear models suffer
from the problem of overfitting when the number of data points is low.
Therefore, for the current version of DEBay, we have used three linear
models that are most commonly observed in experiments.

Most of the deconvolution algorithms use the frequentist approach to
estimate the unknown parameter. These methods converge to a point
estimate of the unknown parameter and usually report the P-value or
confidence interval of the estimated parameter. This approach does not
address the probability distribution of the estimated parameters. In our
method, we have used the Bayesian method of parameter estimation. In
this approach, the parameters are considered as random variables, and
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we estimate the posterior distribution of the parameters based on the
observed data. Through this approach, we can estimate the credible in-
terval of the estimated parameters.

In our method, we have used a hierarchical model structure. The prior
distributions of cell-type-specific gene expression coefficients are defined
based on hyperprior. Through this model structure, each cell-type-
specific coefficient is indirectly constrained by all the observed data
through hyperprior. The credible intervals of cell-type-specific co-
efficients are pulled towards the mode of the hyperprior, thereby
increasing the efficiency of the sampling (Kruschke, 2014).

We have evaluated DEBay with real biological data and synthetic data
sets. Our algorithm performed reasonably well in all cases. DEBay has
been developed, keeping in mind the needs of low-throughput but widely
used qPCR experiments. The GUI of DEBay is intuitive and straightfor-
ward. One can use the fold change data obtained from qPCR experiments
without any correction or transformation. The output files created by
DEBay are also self-explanatory.
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