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Lateral inhibition provides the basis for a self-organizing patterning system in which distinct
cell states emerge from an otherwise uniform field of cells. The development of the micro-
chaete bristle pattern on the notum of the fruitfly, Drosophila melanogaster, has long
served as a popular model of this process. We recently showed that this bristle pattern
depends upon a population of dynamic, basal actin-based filopodia, which span multiple
cell diameters. These protrusions establish transient signalling contacts between non-neigh-
bouring cells, generating a type of structured noise that helps to yield a well-ordered and
spaced pattern of bristles. Here, we develop a general model of protrusion-based patterning
to analyse the role of noise in this process. Using a simple asynchronous cellular automata
rule-based model we show that this type of structured noise drives the gradual refinement
of lateral inhibition-mediated patterning, as the system moves towards a stable configuration
in which cells expressing the inhibitory signal are near-optimally packed. By analysing the
effects of introducing thresholds required for signal detection in this model of lateral inhi-
bition, our study shows how filopodia-mediated cell–cell communication can generate
complex patterns of spots and stripes, which, in the presence of signalling noise, align
themselves across a patterning field. Thus, intermittent protrusion-based signalling has the
potential to yield robust self-organizing tissue-wide patterns without the need to invoke
diffusion-mediated signalling.
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1. INTRODUCTION

Tissue patterning and morphogenesis must be coordi-
nated during development if groups of cells are to
establish self-organizing patterns of gene expression as
they divide, change shape and swap neighbours [1].
Few of the mechanisms enabling interacting groups of
cells to pattern developing tissues are understood. We
recently identified a role for dynamic protrusions in lat-
eral inhibition-mediated patterning of the developing
Drosophila notum [2]. To gain an insight into the gen-
eral features of this type of contact-mediated
patterning, we present here a computational model of
protrusion-based signalling in which we have systemati-
cally explored the roles of signalling noise and
thresholds. Having previously described a specific role
for these protrusions in bristle patterning the develop-
ing notum, here, we develop a logical framework in
which to analyse the role of noise in pattern formation
in general. Using this approach, we have also been
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able to look at the potential of protrusion-mediated
lateral inhibition signalling to generate diverse self-
organizing patterns, such as those usually attributed
to the action of diffusible morphogens [3] or more com-
plex cell–cell signalling models [4].

Lateral inhibition provides the basis for a self-
organizing patterning system in which differentiated
cell states emerge from an otherwise uniform field of
cells in a diverse range of organisms [5–19].

The basic principle is that identical cells within a
two-dimensional epithelial sheet compete to change
state. Moreover, cells undergoing a switch in state inhi-
bit their neighbouring cells from doing so. The result of
this competition between cells within an emerging pat-
terned field is, over time, the development of a pattern
of spaced differentiated cells within the tissue [20,21].
The organization of the mechanosensory organ precur-
sor cells on the notum of the Drosophila fly is a good
example of a pattern generated in this way [22–25].
During this process, membrane-tethered Delta activates
Notch signalling in neighbouring cells, inhibiting their
ability to express Delta to yield a spaced pattern of
mechanosensory (microchaete) bristles [21,22,24,26]
This journal is q 2010 The Royal Society
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Figure 1. Sensory organ patterning is driven by signalling between dynamic cellular protrusions. (a) A section of the notum of an
adult Drosophila melanogaster fruitfly displays the evenly spaced, grid-like pattern of microchaete bristles that act as mechano-
sensory organs. Between each bristle are ordinary epithelial cells, each of which expresses a small hair. (b) The development of the
pattern of mechanosensory organ precursor cells can be observed in fly pupae. The image shows the apical section of epithelial
cells in an area of the notum close to the fly midline, at 14 h after pupae formation. Cells destined to become sensory organs
(microchaete bristles) express Neuralized-Gal4, UAS-Moesin-GFP (Neu-GFP). Ubiquitously expressed E-Cadherin-GFP is
used to visualize apical cell–cell junctions. (c) Confocal sections reveal the dynamic protrusions (filopodia and lamelopodia)
in the basal section of a typical epithelial cell. The cell in this example is imaged through its expression of Neu-GFP. The
image shows the position of filopodia at three 100 s intervals, which extend over multiple cell diameters. The arrows highlight
the ends of two filopodia that can be observed extending and retracting (mean filopodia lifetime approx. 500 s—data not
shown). Scale bars, 10 mm, (c) (i) 0 s, (ii) 100 s, (iii) 200 s.
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(figure 1a,b). The need for cell–cell contact in this type
of signalling is a key feature of the lateral inhibition pro-
cess [22,27,28]. Although lateral inhibition signalling
systems have been extensively modelled [21,29–32], by
quantitatively comparing the results of simulations
and experiments, we recently showed that conventional
models of Notch–Delta signalling cannot account for
bristle spacing on the Drosophila notum or the gradual
refinement of the pattern of bristle precursor cells,
which is observed using live imaging over a period of
approximately 8 h in the developing fruitfly notum [2].
In fact, the developing bristle pattern is dependent
upon Delta–Notch signalling mediated by dynamic,
basal actin-based filopodia that induce intermittent
cell–cell signalling contacts between non-neighbouring
cells (figure 1c). Significantly, these filopodial dynamics
generate a type of structured noise that contributes to
patterning [2]. We use the terminology structured
noise, in this context, to distinguish the intermittent
signalling arising from a physical process under the con-
trol of individual cells, from more stochastic forms of
signal noise, such as that which occurs as a result of
variations in interactions between proteins in a signal
transduction pathway.
J. R. Soc. Interface (2011)
The role of noise in creating order in nonlinear dyna-
mical systems is well documented and has been shown
to be applicable to understanding chaotic dynamics
[33], synchronization [34] and stochastic resonance
[35,36]. Living systems are inherently noisy. Moreover,
stochastic fluctuations in biochemical processes have
been suggested to perform important functions in
single cells [37], and within tissues, as subpopulations
of identical cells are driven into new cell states as the
result of noise inherent in the system [38,39].

To explore the role of signalling noise in patterning,
in this paper we have set out to capture the essential
elements of protrusion-mediated lateral inhibition pat-
terning using a simple asynchronous cellular automata
(CA) model, which lends itself to the analysis of
switches between discrete cellular states. A systematic
analysis of the effects of signalling noise and thresholds
of activation in this model reveals that it is possible to
generate a diverse range of patterns incorporating
spots and stripes using this type of patterning mechan-
ism. Furthermore, using this general model of pattern
formation, we show that, in the presence of signal
noise (in the form of oscillations in signal generation
or transient breaks in cell–cell communication), stripes
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Figure 2. Simulating lateral inhibition patterning. (a) A schematic of the lateral inhibition patterning. Initially homogeneous cells
(light grey) compete to express an inhibitory signal. Eventually a single cell becomes active (dark grey) and strongly inhibits the
expression of the signal in its contacting neighbours. (b) The outcome of lateral inhibition signalling expressed as a probabilistic
rule set. The signalling probability determines whether a single cell in a field will express an inhibitory signal based on the total
number of its active signalling neighbours (n). (c) An asynchronous cellular automata simulation of lateral inhibition. Cells in the
8 � 8 hexagonally packed array are sequentially selected at random and updated according to the rule table in (b). The outcome
is a notably disordered packing of active cells (dark grey) expressing the inhibitory signal.
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align to give well-ordered patterns like those previously
attributed to diffusion-based systems [3,40].
2. RESULTS

2.1. Modelling lateral inhibition using
asynchronous cellular automata

Lateral inhibition patterns arise as a homogeneous group
of cells compete to express an inhibitory signal. The end
result of this signalling process is cells that either express
an inhibitory signal or are inhibited from doing so by sig-
nalling cells with which they are in contact (figure 2a).
In this way, an array of cells can be described as a two-
state system, in which cells are either active (expressing
inhibitory signals) or inactive (inhibited). This binary
state system lends itself to analysis as a two-state CA.
Within this formalism, the transition probabilities for
lateral inhibition can be easily captured using a simple
rule-based logic: a cell with an active neighbour has
zero probability of being active, while a cell with no
active neighbours has a probability of being active of 1.
This is represented in figure 2b,c, and constitutes a
discrete version of the continuum models of lateral inhi-
bition, which rely on threshold concentrations of Notch
and Delta determined through coupled differential
equations to determine cell state [2,21].

We applied this simple general model of lateral inhi-
bition to a two-dimensional array of hexagonally packed
cells to analyse the lateral inhibition process (similar
results were generated using other types of packing—
see the electronic supplementary material). In this
scheme, a cell can be in one of two states: dark grey
or white, where a dark-grey cell represents one that
actively expresses an inhibitory signal. To simulate
the patterning process beginning with a uniform field
of white cells, cells in the array were selected at
random and updated according to the rule-set described
in figure 2b. The rules simply state that if a cell has no
J. R. Soc. Interface (2011)
active signalling neighbours it may actively express an
inhibitory signal; if it has one or more active neighbours
it may not. A stable pattern quickly emerges using these
simple rules to yield a pattern of active (dark grey) cells
separated by intervening inactive (white) cells, as
shown in figure 2c.

2.2. Without signal noise, emergent patterns
remain fixed and irregular

The emergent lateral inhibition patterns, such as that
shown in figure 2c, quickly stabilize, at which point
no further changes in cell state take place. As a result,
the final arrangement of active cells is set according to
the order in which they were first randomly selected
and may be quite irregular (quantified using the coef-
ficient of variation (CV) of pattern spacing, as defined
in figure 4c) as long as it fulfils the requirement that
no two signalling cells are in direct contact with one
another. Although this particular model is highly sim-
plified compared with previous models of lateral
inhibition [21,29–31] (which include dynamical descrip-
tions of protein synthesis or gene network interactions),
it shares a common feature, in that it generates a pat-
tern of cell states that remains fixed once established.
However, as we recently showed by imaging the lateral
inhibition in the developing Drosophila notum, in vivo,
the process is accompanied by a gradual process of
pattern refinement [2].

2.3. Signal noise can be simulated by adapting
cell update probabilities

Having previously suggested that signalling noise could
be involved in this process of refinement, we next used
the CA model of lateral inhibition to consider the
effect of signalling noise on the long-term development
of patterns by introducing non-binary cell update pro-
babilities into the model. These generalized rules are
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Figure 3. An enhanced model of lateral inhibition incorporating signalling noise and different inhibitory thresholds. (a) The rule
table determines the probability that a selected cell in an asynchronous cellular automaton will actively express an inhibitory
signal. The threshold (T ) is the minimum number of active signalling cells (n) required to inhibit an inactive cell. Temporal
noise (Nt) is the probability that a cell will stop signalling even without an inhibitory signal at the required threshold. Spatial
noise(Ns) is the probability that an inactive cell will signal even when it is in contact with the threshold number of active signal-
ling cells. This probability reduces as the number of active neighbours increases over the threshold. (b) A schematic of pattern
shifting owing to temporal signalling noise. A cell’s inhibitory signal (dark grey) oscillates over time. Its signal effectively ceases
such that at subsequent time steps neighbouring cells that were previously inhibited may become active. (c) A schematic of pat-
tern shifting owing to spatial signalling noise. A signal ‘connection’ is broken and an inactive cell (white) no longer receives an
inhibitory signal and becomes active. At subsequent time steps when the connection is re-established, the cells compete and a
stable configuration is re-established. (d) A representation of spatial noise in which a minimum threshold of two active cells is
required to inhibit a third cell. As in (c) the pattern may shift as a result of the signal noise.
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defined in figure 3a. Two types of ‘structured’ noise
were considered in turn, as follows.
2.3.1. Spatial noise. Spatial noise (Ns) arises as a result
of a spatial variance in the strength of cell–cell signals
(figure 3c), and serves as a simple model of the transient
signalling contacts identified in Cohen et al. [2] where
intermittent cell–cell signalling occurred via dynamic
protrusions. This type of noise was implemented in the
model by the inclusion of a probability term that defines
the likelihood that a selected cell will escape the
J. R. Soc. Interface (2011)
inhibition of its actively signalling neighbours. It reflects
a situation in which the strength of the perceived inhibi-
tory signals are weak enough to allow an inhibited cell to
switch state and signal, and therefore scales with the
number of signalling neighbours: the more signalling
neighbours the lower the chance that sufficient connec-
tions are broken to lead to a loss of signal.

In order to fully explore the potential for patterning
in this type of signalling system, we generalized the
model to account for inhibitory signal thresholds that
may occur when a cell has multiple neighbours. There-
fore, in the model, a cell is only able to be inhibited from
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Figure 4. (Caption overleaf.)
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expressing a signal if it is in contact with a set number
of actively signalling cells (denoted by a threshold value T,
figure 3d).
2.3.2. Temporal noise. Temporal noise (Nt) arises as a
result of fluctuating inhibitory signals generated within
J. R. Soc. Interface (2011)
each signal-sending cell (figure 3b). These fluctuations
may emerge in a structured way from oscillations
inherent in the signalling protein expression [41–43].
Alternatively it is possible that the signalling pathway
is set up in such a way that stochastic variation in the
concentration of signalling proteins frequently tips the
inhibitory signal above and below the signalling



Figure 4. (Overleaf.) Signal noise leads to pattern optimization. (a,b) Simulations of inhibitory signalling with spatial noise, Ns ¼

0.1, T ¼ 1, (a) executed in an 8 � 8 hexagonally packed array of cells and (b) a 100 � 100 array of cells with toroidal boundaries.
Each image shows the pattern at a particular ‘step’ in the simulation advancing from left to right. A single step represents a number
of cell updates equal to the total number of cells in the array. The number shown in brackets represents the total proportion of cells
that have switched state (total events). The state of cells is defined by the colour key in (g): dark-grey cells actively express the
inhibitory signal and all inactive cells are coloured according to their total number of active neighbours. As the patterns move
towards a state of optimized packing this corresponds to a reduction in the number of blue (one active neighbour) and red (two
active neighbours) cells and an increase in the number of light-grey cells (three active neighbours). Note that with spatial noise
adjacent cells sometimes signal (see steps 5 and 50 in (a)), which causes the shift in the pattern towards the optimized state (com-
pare with optimization under temporal noise in the electronic supplementary material, figure S1). In a large field (b) this leads to the
development of relatively stable optimized ‘zones’ with unstable active boundaries, which expand over time. See also the electronic
supplementary material, movie 1. (c,d) The change over time in the proportion of each cell type represented as a cumulative per-
centage (plotted on the left-hand y-axis). Data are averaged over 10 simulations. In (c) the conditions are as described in (b). The
results of identical simulations with temporal noise, Nt ¼ 0.01 are shown in (d). In addition, the purple triangles show the number of
events occurring at each step. The black circles show the coefficient of variation (CV) in the pattern spacing that was measured by
recording the distance between each active cell and its six nearest neighbours and taking the ratio of the standard deviation to the
mean. The CV and events are plotted on the right-hand y-axis. (e,f ) A comparison of the final pattern state achieved after 10 000
steps with different amounts of spatial noise (e) and temporal noise ( f ). The figures show the mean values from 10 simulations.
Optimized patterns are achieved with noise levels in the ranges 0.001 , Ns , 0.1 and 0.001 , Nt , 0.01. At higher levels of
noise, the patterns become unstable, as represented by the significant increase in the number of events. NB: Standard errors
(95% confidence intervals) in the mean data displayed in (c–f ) were less than 1% (left-hand y-axis) and less than 0.01 (right-
hand y-axis) and so were not visible on this scale.
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threshold, without the need for controlled oscillations.
This type of noise was implemented in the model by
the inclusion of a probability term that defines the likeli-
hood that a selected cell will fail to signal to its
neighbours even when able to do so. It is equivalent to
a situation in which the inhibitory signal put out by a
cell drops below some required threshold for long
enough that its neighbours may escape the inhibition
and change state.

Crucially, both types of signal noise in this model
may enable the reconfiguration of a pattern by allowing
previously inhibited cells to signal (figure 3).
2.4. With signal noise, pattern order increases

Next, we tested the impact of signal noise in the CA.
Figure 4a shows the result of one such simulation
with a spatial noise term of Ns ¼ 0.1 and a threshold
T ¼ 1. The figure shows the progression of the pattern
development from step 1 to 100. (A single step is
defined as a number of random selections equal to the
number of cells in the array.) An initial pattern of
active (dark grey) cells was formed by step 1. At this
stage, the pattern is equivalent to that obtained without
any noise (as in figure 2c). Approximately one in five
cells has switched state from inactive to active, as is
reflected in the total proportion of cells that have
switched state equalling 0.2 (shown in brackets in
figure 4). To better study the development of the pattern
we labelled inactive cells with different colours represent-
ing their number of active neighbours (figure 4g). Thus,
in the simulation, inactive cells with T þ 2 active neigh-
bours are coloured light grey, inactive cells with T þ 1
active neighbours are coloured red and inactive cells
with T active neighbours are coloured blue.

As the simulation progresses the pattern changes under
the influence of spatial noise (as can be observed at time
steps 5 and 50). As a result, the pattern of active cells
increases in density, and packing order, eventually filling
the array in a nearly perfectly optimized arrangement
J. R. Soc. Interface (2011)
(after 100 steps, an average of 7.2 state changes for
every cell in the array). This is accompanied by a corre-
sponding reduction in inactive cells with one (T ) or two
(T þ 1) active neighbours and an increase in those with
three (T þ 2) active neighbours. These changes reflect
the fact that the probability a cell will fail to receive an
inhibitory signal becomes steadily reduced as the density
of active neighbouring cells increases. We find that,
under the influence of signalling noise, there is an inherent
tendency for the pattern of signalling cells to become more
densely and regularly packed over time.

A similar process of pattern optimization was also
observed when we used temporal noise (electronic sup-
plementary material, figure S1). However, in contrast
to the spatial noise model, during the patterning pro-
cess, signalling cells are not observed in adjacent
locations. With temporal noise, active cells switch off
their signal, thus allowing neighbouring inactive cells
to switch state and signal in locations where they
were previously inhibited from doing so. With this
type of noise, gaps temporarily appear in the pattern.
Importantly, although the outcome of both types of
noise is almost identical, the dynamics that lead to pat-
tern optimization are distinct.

To test for size effects, we repeated the simulations in
a larger field of 100 � 100 cells with toroidal boundary
conditions (figures 4b; electronic supplementary
material, figure S1b and movie M1) where the same pro-
cess of pattern optimization was observed. In this case,
zones of perfectly packed active cells emerged sur-
rounded by boundaries of less well-ordered packing
(indicated by red and blue cells) where cells continually
updated owing to the signal noise. Over time, the per-
fectly packed zones expanded until the whole field of
cells was optimally packed (after approx. 10 000 steps).

To visualize the dynamics of patterning, we plotted
the average data recorded from 10 simulations in
figure 4c (reducing standard errors to less than 1%).
This cumulative plot shows the relative proportion of
active and inactive cells with different neighbourhoods.
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It reveals a gradual increase over time in the density of
active cells, which is accompanied by a decrease in inac-
tive cells with one or two neighbours and an increase in
those with three neighbours. Correspondingly, there is a
decrease in the CV of the pattern spacing, which
reflects the increased order in the patterning. Finally,
figure 4c shows that the number of changes in cell
states per time step (events) decreases over time. This
reflects the fact that the pattern becomes more stable
as it becomes more densely packed. Early in the devel-
opment many cells shift position. Later, the probability
of seeing a cell change state is dramatically reduced;
generally only occurring in regions that are less well
packed.

Figure 4d demonstrates that a very similar pattern-
ing dynamic can be achieved with temporal noise in
place of spatial noise. However, with temporal noise
comparably fewer events occur in the early phase of
the optimization process and more occur at later
steps. This reflects the different event probabilities in
each case. Similar dynamics were also observed when
both types of noise were implemented at the same
time (data not shown).

The same pattern refinement was observed in
hexagonally packed arrays with fixed boundaries of
odd- and even-sided rectangular dimensions (data not
shown), confirming that this phenomenon was not
dependent on the particular grid sizes used. We also
tested the effect of noise on lateral inhibition carried
out in a Voronoi lattice (mimicking a tissue with
highly irregular cells; electronic supplementary material,
figure S2) and a square lattice of cells (electronic sup-
plementary material, figure S3). In both cases, there
was a significant increase in pattern order owing to
noise, revealing that this effect is not linked to a specific
type of CA lattice. It was also found that, in general, the
initial conditions of cells (active or inactive) that were
implemented in simulations had little effect on the final
pattern. The lateral inhibition patterning rules operate
in such a way that a stable configuration will be restored
over time.

To test the effect of varying the amount of noisewe com-
pared the developed patterns after 10 000 simulation steps
with both spatial and temporal noise (figure 4e,f ). For
both schemes, a wide range of noise levels gave rise to pat-
terns with increased order compared with the zero noise
case. At very low noise levels there was a moderate effect.
At intermediate values, the patterns were notably better
optimized, as indicated by a higher density of active cells
and inactive cells with many active neighbours. The
values that gave the most ordered patterns were Ns¼ 0.1
and Nt¼ 0.01. At higher values of Nt or Ns, the system
became disordered, and failed to form a stable pattern
(as reflected in the significantly higher number of events
and presence of inactive cells with zero (T 2 1) neigh-
bours). This result emphasizes that for signal noise to be
correctly tuned to aid patterning it must be sufficiently
high to enable some cells to reverse their signalling state,
particularly in low-density regions of a pattern, but must
be sufficiently low that the likelihood of this occurring
becomes negligible once a pattern becomes dense and reg-
ularly packed. Between these limits noise increases
pattern order.
J. R. Soc. Interface (2011)
2.5. Patterns of spots and stripes can be obtained
through signalling with noise at different
ranges and thresholds

We recently demonstrated that cell–cell signalling can
occur at multiple cell ranges as a result of dynamic filo-
podial protrusions [2]. Thus, we used our model
to investigate the effect of signalling at these
ranges of intercellular communication with different
inhibition thresholds (T ). We simulated the effect of
communication via protrusions by incorporating larger
neighbour shells (figure 5) into the model. In particular,
we investigated the influence of communication
between cells separated by one, two or three cells.
Figure 5 shows some typical examples of the types of
pattern that were seen with and without the influence
of signalling noise. For the nearest-neighbour communi-
cation model (figure 5a), the emergent patterning is
either isolated spots, which optimize their packing
under signal noise, or alternatively rings of signalling
cells. However, once the signal range extends to two
or three cells, a diverse range of spots, clusters, stripes
and rings is obtainable (figure 5b,c). As can be
observed, the thickness of the emergent clusters or
stripes is dependent on the signal threshold; however,
as for the fine-grained patterns of spots, their average
separation is fixed according to the signalling range.
Notably, when noise is implemented, the stripes tend
to align themselves with the cell boundaries.

To further investigate the dynamics of this process, we
carried out simulations at different lattice sizes and bound-
ary types. Figure 6 shows the results of when noisy
signalling was implemented with second neighbour shell
communication and an inhibition threshold of nine signal-
ling cells (see also electronic supplementary material,
movie M2). In the smaller array with fixed boundaries
(figure 6a), the stripes align themselves to the cell bound-
aries (at which there was no signal). In a large array with
toroidal boundaries (figure 6b), regions of alignment
emerge. This demonstrates that the tendency for stripes
to locally align is an inherent property of the system that
is not boundary dependent. However, in the smaller
array, the fixed boundaries bias the orientation of this
local effect. Note that when simulations were implemented
in a large array with fixed boundaries (data not shown)
stripes close to boundaries aligned with them; however,
stripes in the central field aligned themselves in arbitrary
directions within distinct regions (as in figure 6b). We
think it probable that, based upon the scale of most
biological patterns [3,40], boundary effects will be signifi-
cant in most developmental systems (as in figure 6a).

The analysis of the patterning dynamics in figure 6c
reveals that, as with the optimization process observed
in figure 4, stripe alignment is concurrent with a signifi-
cant change in the proportion of inactive cells. During
pattern development, there is a steady reduction in the
number of cells with T or T þ 1 neighbours and an
increase in cells with T þ 2 neighbours. However, there
is no great increase in the active cell density, as was
observed for the T ¼ 1 system (figure 4c). In this case,
the active cells reposition themselves in such a way
that inactive cells have a greater number of active neigh-
bours. They are, therefore, less likely to experience a lack
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Figure 5. At different signal ranges and inhibitory thresholds, a broad scope of patterns can be achieved. (a–c) Each panel shows
typical results after 1000 steps for simulations of inhibitory signalling carried out in a 20 � 20 hexagonally packed array of cells.
Different signal ranges were implemented, as illustrated by the size of the hexagonal shells positioned on the left ((a) one cell,
(b) two cells and (c) three cells). For each signal range, a selection of inhibitory thresholds is shown with and without temporal
noise, Nt ¼ 0.01. The active signalling cells and the neighbourhood of inactive cells are identified according to the key in (d). It is
clear from this illustrative set of examples that different patterns are achievable ranging from spots through to stripes that may be
in some cases realigned by the input of signal noise (e.g. (b), T ¼ 10).
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of inhibitory signalling owing to noise and as a result are
less likely to begin signalling and cause the pattern to
reposition. Thus, the alignment of stripes represents
the most stable pattern configuration in a noisy signal-
ling environment. Figure 6d reveals that the range of
signal noise for which a stable optimized pattern is
achieved is similar to the T ¼ 1 case in figure 4d. Identi-
cal results (not shown) were also achievable with spatial
noise. Furthermore, refinement of stripe patterns was
J. R. Soc. Interface (2011)
also achievable in a square-packed array (electronic
supplementary material, figure S3).
3. DISCUSSION

The pattern of sensory organs in the notum
of Drosophila is spaced by a process of inhibitory
cell–cell signalling mediated by highly dynamic



step = 1 (0.6) step = 10 (1.25) step = 100 (3.8) step = 200 (6.1) step = 300 (8.3)

step = 1 (0.2) step = 10 (0.5) step = 100 (1.9) step = 100 (13.9) step = 1000 (125)

 1
 (0.6)

0

Nt = 0.01

0.1

0.2

0.3

0.4

0.5
C

V
, e

ve
nt

s

10
(1.0)

100
(2.3)

step (total events)

singnalling n = T – 1 n = T + 1 n = T + 2 n = T + 3 CV eventsn = T

1000
(14.2)

10 000
(120)

0.1

0

0.2

0.3

0.4

0.5

10

0

20

30

40

cu
m

ul
at

iv
e 

pr
op

or
tio

n 
of

 c
el

ls
 (

%
)

C
V

, e
ve

nt
s

50

60

70

80

90

100

(a)

(b)

(d)

10

0

20

30

40

cu
m

ul
at

iv
e 

pr
op

or
tio

n 
of

 c
el

ls
 (

%
)

50

60

70

80

90

100(c)

(e)

noise level (Nt)

0
0.

00
1

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

02
0

0.
04

0
0.

06
0

0.
08

0
0.

10
0

0.
20

0
0.

40
0

0.
60

0

Figure 6. Patterns of stripes align owing to signal noise. (a,b) Simulations of inhibitory signalling with a signalling range of two
cells, an inhibitory threshold, T ¼ 9, and temporal signalling noise, Nt ¼ 0.01. The active signalling cells and the neighbourhood
of inactive cells are labelled according to the colour key in (e). The number of simulations steps and total events (in brackets) is
shown progressing from left to right. In (a), where a small array of 20 � 20 cells was used, the initial pattern of randomly orien-
tated stripes can be seen to align, over time, with the array boundaries where there is no signal. In (b), where a larger array of
100 � 100 cells (with toroidal boundaries) was used, distinct zones of aligned stripes are formed as a result of the signalling noise.
See also the electronic supplementary material, movie 2. (c) Graphical visualization of the patterning process. The figure shows
the cumulative proportion of each cell type (as defined in the colour key in (e)) obtained from data averaged over 10 simulations
with the conditions specified in (b). The process of stripe alignment correlates with a transition from n ¼ T and n ¼ T þ 1 cells to
n ¼ T þ 2 cells. Also plotted are the number of events per time step and the CV in the pattern spacing. With stripe alignment
there is no change in the CV of the pattern spacing. (d) A comparison of the final pattern state achieved after 10 000 steps with
different amounts of signal noise. The figures show the mean values obtained after 10 simulations at a signal range of two cells
and a threshold, T ¼ 9. Optimized patterns are achieved with noise levels in the range 0.001 , Nt ,0.01. Similar results (data not
shown) were obtained when spatial noise was used instead of (or in addition to) temporal noise. NB: Standard errors (95% con-
fidence intervals) in the mean values plotted in (c,d) were less than 1% (left-hand y-axis) and less than 0.01 (right-hand y-axis)
and so were not visible on this scale.
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filopodia [2]. This type of intermittent signalling can be
regarded as a type of structured signal noise, for which
we have developed a discrete cellular model that is gen-
eral enough to be applied to many other experimental
cellular patterning systems. In this model of lateral inhi-
bition, signal noise was imposed by the inclusion of a
probability term that allowed cells to change their
state during the patterning process. This was shown
to lead to increased order and pattern optimization
because, as active signalling cells rearranged themselves
J. R. Soc. Interface (2011)
into more optimal configurations (dense, ordered fine-
grained spots for the T ¼ 1 model and aligned stripes
for the T . 1 models), the probability of a state
change occurring was reduced.

The correlation of protrusion length and the separ-
ation of spots has been observed in the organization
of microchaete bristles on the notum of the adult
Drosophila fly through the investigation of mutants.
Cohen et al. [2] have shown that when filopodia
length is reduced in the Rac and Scar mutants, the
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separation of Delta-expressing cells is correspondingly
reduced. Here, we have shown a similar effect of
changing the cell–cell communication length through
changes in the CA nearest neighbour shell.

This study also reveals how striped patterns can be
achieved using a discrete model of cell–cell signalling.
By allowing signalling to occur at different distances,
mediated via filopodial contacts, a diverse range of pat-
terns could be achieved by changing the inhibitory
signal threshold. Previous theoretical studies have
demonstrated the formation of ‘Turing patterns’ in a
discrete cellular system in which the diffusion of two sig-
nalling molecules occurs between cells [44,45]. This
study identifies a simple mechanism for communication
via filopodia that occurs at multiple cell ranges without
the need to invoke diffusible morphogens.

The results of our CA lateral inhibition model in the
absence of noise are identical to those obtained in pre-
vious continuum models of lateral inhibition based on
coupled diffusion equations [21,29–31]. Furthermore,
with this signalling regime in place, the intermittent
signalling presents a simple mechanism by which pat-
terns of stripes are able to align through structured
signal noise. This type of stripe alignment is a pheno-
menon observed in fishes that has previously been
modelled as a reaction–diffusion system [46,47] but
could be attributable to a cell–cell communication
system of the type identified here.

While we have related spatial noise to the filopodial
signalling model, we have also shown that temporal
noise can lead to pattern optimization in a nearly
identical way. Therefore, these results may also have
important implications for the understanding of
oscillating lateral inhibition-type signals that have
been observed in developmental systems [41–43].

Although there have been many exaggerated claims
for the beneficial effect of noise in biological systems,
particularly in the context of stochastic resonance
[35], the effect we have identified here has a very
straightforward physical origin that is analogous to
the phenomenon of annealing in crystals. Ordered
systems, such as crystals, are rarely perfect, and so con-
tain defects (vacancies, dislocations, etc.) [48]. When
these defects are allowed to move and find ‘sinks’
(which can be internal crystal boundaries or external
crystal surfaces), the perfection of the crystal is
increased [49]. The mobility of these defects is depen-
dent on temperature, and so the phenomenon of
annealing requires high temperatures (an increase in
vibrational noise of the atoms) to reduce defect den-
sities and increase system order. Thus, the solid-state
phenomena of grain growth [50] and recrystallization
[49], which involve the growth of ‘perfect’ domains of
order in a less ordered crystal, can be said to rely on
an increase in system noise. We have used the language
of defects to graphically illustrate the dynamics of pat-
tern optimization in our system by colouring cells
depending on their neighbour states. This gives
images of the evolution of our system that show the
movement of disorder boundaries (figure 6b) that are
strikingly similar to grain boundaries in grain growth
and recrystallization [49,50]. The concept of simulated
annealing [33] in applied mathematics, which involves
J. R. Soc. Interface (2011)
the simulation of the effects of temperature to find
low-energy (ordered) states, is another similar model.
These examples show that the phenomenon of noise-
induced refinement of patterns is a well-established prin-
ciple. We propose that our biological model described
here is another example of this principle, which because
of its generality is likely to have applicability for a wide
range of patterning processes in biological tissues.
4. METHODS

The CA were implemented in Cþþ . The algorithms
used represent a direct implementation of the rule
tables defined in figures 2b and 3a. Cells in the
asynchronous automata were picked sequentially at
random by implementing a time-seeded random
number generator. The state of cells was updated
according the rule set, which was based on their
number of signalling neighbours and the particular
signal threshold being implemented. The number of sig-
nalling neighbours was calculated by a summation of
active cells in a cell’s neighbourhood, whose range was
dependent on the particular shell size implemented
(1, 2 or 3 cells in the hexagonal array; figure 5). The
probabilistic update rules were simulated by generating
a random float between 0 and 1: if this was less than the
signalling probability (figure 3a) then a cell would
become active; otherwise it would become inactive.

Simulations executed in the large arrays (100 � 100)
were run for a total of 10 000 steps (equivalent to
100 000 000 individual cell selections) with a total run
time of approximately 20 min. The graphical output was
generated using OpenGL. For the realistic cell topology
model (electronic supplementary material, figure S2),
cells were generated using the Voronin function in
Matlab to generate cell boundaries around a randomly
scattered set of points.
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