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Abstract

Motivation: The computational search for promoters in prokaryotes remains an attractive problem

in bioinformatics. Despite the attention it has received for many years, the problem has not been

addressed satisfactorily. In any bacterial genome, the transcription start site is chosen mostly by

the sigma (r) factor proteins, which control the gene activation. The majority of published bacterial

promoter prediction tools target r70 promoters in Escherichia coli. Moreover, no r-specific classifi-

cation of promoters is available for prokaryotes other than for E. coli.

Results: Here, we introduce bTSSfinder, a novel tool that predicts putative promoters for five classes

of r factors in Cyanobacteria (rA, rC, rH, rG and rF) and for five classes of sigma factors in E. coli

(r70, r38, r32, r28 and r24). Comparing to currently available tools, bTSSfinder achieves higher accur-

acy (MCC¼ 0.86, F1-score¼ 0.93) compared to the next best tool with MCC¼0.59, F1-score¼0.79)

and covers multiple classes of promoters.

Availability and Implementation: bTSSfinder is available standalone and online at http://www.

cbrc.kaust.edu.sa/btssfinder.

Contacts: ilham.shahmuradov@kaust.edu.sa or vladimir.bajic@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The promoter is a chromosome region that determines where and af-

fects how the transcription of a particular transcript is initiated.

Promoter recognition is important in defining the transcription units

responsible for specific pathways and gene regulation. Initiation of

transcription is a dynamic partnership between RNA polymerase

(RNAP) and promoter. In contrast to archaea and eukarya, bacteria

have a single form of the RNAP core enzyme (E) (Schneider and

Hasekorn, 1988). However, RNAP alone is not able to recognize

and bind to promoters to initialize transcription. Different regula-

tory proteins called r-factors are required that temporarily bind the

RNAP core enzyme forming a holoenzyme (Er). The holoenzyme

determines the RNAP-promoter binding specificity and transcrip-

tion initiation site (TSS), depending on nutritional or environmental

conditions or developmental stage (for reviews see: (Campagne

et al., 2014; de Avila et al., 2011; Feklistov, 2013; Gruber and

Gross, 2003; Imamura and Asayama, 2009; Ruff et al., 2015)).

Bacterial r factors are classified into two families with distinct

structure and function, termed as r70 and r54 in Escherichia coli.

While most bacteria possess multiple members of the r70 family,

they contain a single representative of the r54 family, which

is involved in nitrogen metabolism. Surprisingly, cyanobacteria

lack any r54-like factors despite the majority of them having ni-

trogen fixation system. The number of r70 family members can

vary significantly between different species (from 1 to over 60).

E. coli, for example, has seven r factors (Gruber and Gross, 2003;

Imamura and Asayama, 2009; Studholme and Buck, 2000; Wosten,

1998). In this study we focus on E. coli and three species of

Cyanobacteria.
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The most detailed promoter information for the E. coli genome

is available in RegulonDB (Salgado et al., 2013) and EcoCyc data-

base (Karp et al., 2002). RegulonDB holds 10 293 mapped TSSs

(Release 8.8, 2015). For Cyanobacteria, the genome-wide promoter

map for 3 species was identified: 12 797 for Nostoc 7120 (Mitschke

et al., 2011a,b), 1471 for Synechococcus elongatus (Vijayan et al.,

2011) and 351 for Synechocystis (Mitschke et al., 2011a,b).

Interestingly, most of the TSSs in cyanobacteria are mapped to the

non-coding RNA transcription units, rather than to protein-coding

genes.

Lagging behind the explosion in genome/gene sequences and due

to experimental costs, promoters and TSSs are mostly predicted

computationally. In the last two decades, several computational

tools were developed to identify bacterial promoters. The first at-

tempt to predict bacterial promoters was by position weight matri-

ces (PWM), which relied on the conservation of the -35 and the -10

elements for r70, combined with the distribution of the distance be-

tween them (Hertz and Stormo, 1996; Huerta and Collado-Vides,

2003; Stormo, 2000). Tools developed using this approach have

relatively low accuracy. Applying machine-learning approaches,

e.g. support vector machines (SVM) and artificial neural networks

(ANNs), increased accuracy. A method based on Sequence

Alignment Kernel that achieved 17% average error rate on true and

false promoter data was developed in (Gordon et al., 2003). In

Gordon et al. (2006), a method was reported that employs an en-

semble of SVMs with a variant of the mismatch string kernel in com-

bination with a PWM and a model of the distribution of distances

from TSS to gene start. The authors reported an average error rate

of 11.6%, which they claim is � 5% lower than the method re-

ported in Gordon et al. (2003).

More complex algorithms were developed that incorporate series

of ANNs (Knudsen, 1999) and interactive optimization of nodes

(Jihoon et al., 1999). Ma et al. (2001) applied a procedure of pre-

processing promoter sequences during training to extract features.

Using a time-delay neural network, Reese (2001) developed

NNPP2.2, a tool with high sensitivity, but poor specificity. Later,

the distance between the TSS and the translation start site (TLS) was

used as an additional feature for promoter recognition (TLS–NNPP)

(Burden et al., 2005). This tool, although reduced the false positive

rate, is only applicable to protein coding genes. Using some con-

served hexamer motifs as promoter recognition features, Li and Lin

(2006) developed a tool with the overall prediction sensitivity and

specificity of 91% and 81%, respectively. Mann et al. (2007) re-

ported that a combination of ANNs and hidden Markov models

(HMMs) significantly increases the bacterial promoter prediction

accuracy. Later, Rani and Bapi (2009) developed a tool where

k-mers (k¼2,3,4,5) are used as discriminative features. This tool

was reported to have much higher prediction accuracy. The

PromPredict tool, based on the relative stability of DNA as a generic

criterion for promoter prediction, was reported to achieve 58% pre-

cision in E. coli (Rangannan and Bansal, 2009). de Avila et al.

(2011) published BacPP, which is designed to predict promoters of

different r classes from E. coli (more on this in the discussion sec-

tion). Solovyev and Salamov (2011) developed BPROM for the rec-

ognition of E. coli r70 promoters. This tool, based on the linear

discriminant function (LDF) combines characteristics describing

functional motifs and oligonucleotide composition and shows about

80% prediction accuracy. Song (2012) reported a variable-window

Z-curve method based on the distribution of purine/pyrimidine, the

distribution of amino/keto and the distribution of strong/weak

hydrogen bonds. Depending on the false promoter sets for learning

and testing, the accuracy of the method was reported to vary around

90–96% and 95–99% for E. coli and Bacillus subtilis, respectively.

Despite these efforts, all these tools tend to produce many false

positives or show poor sensitivity, particularly when they are

applied to long sequences or whole genomes. Therefore, most of the

tools were only tested on short promoter segments of 50–70 bp sur-

rounding known TSSs. Such tests are insufficient to adequately

evaluate their prediction accuracy. Another significant restriction of

these tools is that they are limited to the prediction of r70 promoters

in the model organism E. coli, and very rarely can extend to other

bacterial species. Therefore, novel, more accurate and efficient tools

are required for the computational recognition of different classes of

promoters in a broader taxonomical scope.

In this study, we present a novel method for predicting TSSs in

E. coli and three cyanobacterial species. We characterized promoters

of E. coli for r70, r38, r32, r28 and r24 factors, and Cyanobacteria

for rA, rC, rH, rG and rF factors, and we developed promoter pre-

diction models using this characterization. The prediction models

are implemented in a tool, bTSSfinder, which is available as a stand-

alone program as well as a web application.

Rationale
The main goal of this study was to develop a tool that predicts pro-

moters for the different sigma classes in Cyanobacteria and E. coli.

Success of any promoter prediction tool depends mainly on: (i) the

features used to distinguish promoters from non-promoters, (ii) the

size and diversity of the positive and negative datasets used for

learning and (iii) the quality of both the positive and the negative

datasets. Unfortunately, most studied characteristic features are not

consistent within the same promoter class. Therefore, different stud-

ies have applied various combinations of features to improve the rec-

ognition of promoters. Furthermore, most of the reported tools were

trained and tested on relatively small datasets, due to the lack of

genome-wide TSSs maps with experimental validation. As for the

quality of the datasets, here we face two problems: (i) the accuracy

of experimental data on real TSSs varies significantly depending on

the experimental method applied; (ii) the choice of the negative set

(non-promoters) could have significant ramifications on the predict-

ive power of the model, as it is a great challenge to define DNA re-

gions that never serve as promoters.

To address these challenges: (i) we analyzed as many promoter

sequences with experimentally validated TSS as available; (ii) from

the whole pool of initially extracted negative samples (see below),

we use different subsets of randomly chosen negative samples in

both training and testing procedures and (iii) we checked different

features that may allow a DNA region to serve as a potential pro-

moter. We compare bTSSfinder with other available methods.

A note
Boundaries of promoter regions remain unclearly defined. The

minimum promoter region that can initiate basal transcription

spans�60 toþ40 bp relative to the transcription start site (TSS,þ1)

is called the core promoter, whereas proximal promoters extend fur-

ther upstream (Roy and Singer, 2015; Shahmuradov et al., 2003).

In this study we consider a promoter region relative to the TSS loca-

tion as a region spanning [-200,þ51], whereþ1 position corres-

ponds to the location of the TSS. When we predict such a promoter,

we also predict the corresponding TSS at positionþ1, which makes

prediction of TSSs and promoters in our case equivalent. We also

considered wider promoters spanning regions [-1000,þ101] relative

to TSS located at positionþ1.
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2 Methods

2.1 Materials
2.1.1 Collecting data

RegulonDB, version v8.0 contains 3597 experimentally validated

TSSs for E. coli K12 MG1655 (accession NC_000913.2). Of them,

2979 TSSs were classified into seven r classes: 1787 as r70, 85 as

r54, 152 as r38, 298 as r32, 141 as r28, 515 as r24 and one as r19.

Due to their limited counts, r54 and r19 were excluded from further

analysis.

For the non-marine cyanobacterium Nostoc sp. PCC 7120 (ac-

cession BA000019, referred to as Nostoc hereforth), Mitschke

et al. (2011a,b) experimentally mapped 12 797 TSSs. The authors

classified these promoters into four classes: 3955 gene TSSs (gTSS),

3854 antisense TSSs (aTSS), 3722 intergenic TSSs (iTSS) and 1266

non-coding DNA TSSs (nTSS). As for the freshwater cyano-

bacterium Synechocystis sp. PCC 6803 (accession NC_000911.1,

referred to as Synechocystis hereforth), data for 351 TSSs were ex-

tracted from the Supplementary material of the respective article

(Mitschke et al., 2011a,b). The data contain 172 gTSSs, 56 nTSSs

and 123 aTSSs. For the freshwater cyanobacterium S. elongatus

PCC 6301 (accession CP000100), we collected 1471 TSSs (Vijayan

et al., 2011).

2.1.2 Preparing the positive set

Our preliminary assessment of the experimental sets revealed that

some TSSs are located close to each other (a few nucleotides

apart). To remove redundancy, intra-species pairwise comparison

of all TSS positions was performed. For every TSS, starting from

the 50 end, we identified and discarded neighboring TSSs that were

within 35 bp. The distance of 35 bp was chosen under the assump-

tion that most signals involved in determining transcription start

points are located in the short region between the -35 and the -10

boxes. After redundancy removal, the final TSS count was as fol-

lows: (i) E. coli: 1544 for r70, 140 for r38, 237 for r32, 135 for r28,

412 for r24; (ii) Nostoc: 11 386, (iii) S. elongatus: 1471 and

(iv) Synechocystis: 343.

Using the publicly available genomes (accessions above) and the

above TSS annotation, we created two types of promoter sets:

251 bp promoters (200 bp upstream of TSS and 51 bp downstream)

and 1101 bp promoters (1000 bp upstream and 101 bp down-

stream). Promoter sequences that do not satisfy the upstream length

requirement for either set are excluded.

2.1.3 Preparing the negative set

To train and test the promoter prediction models, we generated two

negative datasets with sequences of length 251 bp: one based on E.

coli and another based on the three cyanobacterial species. The

protocol for the generation of negative sets is described in the

Supplementary material. The final counts for the negative sets were

8346 and 32 418 for E. coli and the three combined Cyanobacteria

species, respectively.

2.1.4 Transcription factor binding sites (TFBSs)

Data on TFBSs were obtained from three sources: 2953 sites for

E. coli from RegulonDB, 30 cyanobacterial sites from CollecTF

(Kilic et al., 2014) and 63 sites from the literature. Due to the lim-

ited number of TFBSs for Cyanobacteria, we used both cyanobacter-

ial and E. coli sets to compute the TFBS density in promoter regions.

2.2 Methodology
2.2.1 Computing PWMs

To build our PWMs for E. coli, we extracted initial PWMs from

the literature for the -10, -35 elements for r70, r24, r28, r32 pro-

moters and -15 and the AT-rich upstream elements (UP elements)

for the r70 promoters (Barnett et al., 2012; Dartigalongue et al.,

2001; Djordjevic, 2011; Estrem et al., 1998; Huerta and Collado-

Vides, 2003; Song et al., 2007). To create the PWMs for the -15

and the UP elements for r24, r28 and r32 factors, we used the same

initial PWMs of r70. To the best of our knowledge, no r38-

promoter-specific PWM is available in published literature.

However, it has been shown that most r38 promoters are recog-

nized by r70 and vice versa (de Avila et al., 2011). Hence, we used

the same initial PWMs as for r70. Furthermore, by profiling the

neighboring regions to known r70 TSSs [TSS-6bp, TSSþ6bp], we

discovered a new motif with the consensus AYYTNA (we named it

TSS-motif). We propose that this new motif is another descriptive

element for the recognition of promoters (see Supplementary mater

ial for PWMs and coverage).

As for the cyanobacterial species, there are no published

PWMs to use as initial matrices. To overcome this limitation, we

determined the orthology between the r factors in E. coli and the

r factors in three cyanobacterial species using the BLAST software

(Altschul et al., 1997). Where significant alignments are found,

the initial PWMs from the respective r factor in E. coli are used

for the orthologous counterpart in the cyanobacterial species. The

final PWMs, for all promoter elements for all r factors in the

four species, were computed using the Expectation Maximization

(EM) algorithm (Cardon and Stormo, 1992) (see Supplementary

material).

2.2.2 Classifying cyanobacterial promoters

EM was also used to classify the cyanobacterial promoters into dif-

ferent classes. Using the PWM for the r70 -10 box in E. coli, we

applied EM to the final set of cyanobacterial promoters (13 200 se-

quences, see the Materials section) with experimentally validated

TSSs to obtain a subset that we denote as rA promoters. Following

the same approach, we used PWMs for E. coli’s r24, r28, r32 and r38

to assign the unassigned cyanobacterial promoters to rG, rF, rH and

rC classes, respectively. It should be noted that each round of

classification is applied only to the sequences unassigned in the

previous step.

2.2.3 Compiling and selecting features

Oligomer frequencies (triplets, tetramers, pentamers and hexamers)

were used to calculate scores as described in Rani and Bapi (2009).

We also used four physico-chemical properties of DNA: free energy,

base stacking, melting temperature and entropy, as additional fea-

tures to describe true and false promoter regions (see Supplementary

material). We evaluated the predictive power of these features as

well as the aforementioned promoter elements using Mahalanobis

distance (D2), which we calculated based on the approach described

by Afifi and Azen (2014). Based on these distances we selected the

final set of features for use in the predictive model, as described in

Section 3.2.

2.2.4 Building and testing the models

To obtain the model parameters in order to accomplish the best

separation of promoter from non-promoter sequences, we applied

Neural Network techniques using the VISAN tool (http://www.soft

berry.com/berry.phtml?topic¼fdp.htm&no_menu¼on). We estimated
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the performance of the predictive models using: sensitivity (Sn), speci-

ficity (Sp), Precision (the positive predictive value, P1), Accuracy

(a measure of statistical bias, Ac), Negative predictive value (P2), the

F1-score (the harmonic mean of Precision and Accuracy, F1) and the

Mathew correlation coefficient (MCC). These statistical measures are

briefly described in the Supplementary material.

2.2.5 bTSSfinder algorithm and tool

The algorithm of bTSSfinder is depicted in Figure 1. bTSSfinder

scans the DNA sequence (251 bp at a time) and predicts position

201 as a potential TSS using the appropriate NN classifier. More de-

tails about the algorithm are given in the Results section (Section

3.3). The algorithm is implemented in the bTSSfinder tool.

3 Results

3.1 Classification of cyanobacterial promoters
The largest collection of experimentally validated promoters of

E. coli in RegulonDB was classified into seven different sigma classes

(r70, r54, r38, r32, r28, r24 and r19). Unfortunately, no such classifi-

cation exists for cyanobacterial promoters. We aim to classify these

promoters into different sigma classes based on the -10 box, which

is thought to be the most intrinsic characteristic in any given r pro-

moter class in bacteria. So far, the -10 and -35 boxes have been iden-

tified or predicted in a handful of promoters. Our preliminary

comparison of E. coli and cyanobacterial promoters indicate that

there is a level of conservation, based on which we used E. coli

PWMs for the classification of cyanobacterial promoters.

Based on the inter-phyla orthology as revealed by the BLAST

comparison (Supplementary Table S1), we propose the classification

for cyanobacterial promoters into five classes: rA (analogous to r70),

rC (analogous to r38), rF (analogous to r28), rG (analogous to r24)

and rH (analogous to r32).

Combining E. coli’s -10 box PWMs for the different r factors

with the EM algorithm (see Methods), we classified the 13 200 ex-

perimentally validated cyanobacterial promoters into 9895 rA pro-

moters, 928 rG promoters, 686 rF promoters, 220 rH promoters,

355 rC promoters and 1116 unclassified (Supplementary Table S2).

These significantly larger datasets than in previous studies (Imamura

and Asayama, 2009) enabled us to update the models of the -35 and

the -10 promoter elements of rF, rG, rH and rC in cyanobacteria.

The training and the test sets for each r factor promoter class were

generated accordingly (Supplementary Table S2, see Supplementary

material for consensuses and PWMs).

3.2 Features used for the prediction of promoters
We identified over 30 prospective features that may exert specificity

for the different promoter classes. To cull the feature space to those

with the highest predictive power, we calculated Mahalanobis dis-

tances for each feature and reduced the number to 19–21 features

depending on the promoter class (Supplementary Table S3). To the

best our knowledge, this is the first time a wide feature base was

used for this type of problem. We group these selected features into

the following:

1. Promoter elements: -10, -35, -15 and AT-rich UP elements, as

well as the new TSSmotif proposed by us (see: Materials and

Methods). UP-elements (length of 17 bp) are searched for up-

stream of the -35 box up to a distance of 130 bp.

2. Distances (d) between promoter elements: d(-10/-35) and d(-10/

TSS) were used in other methods. In this study, we introduce a

novel feature d(-15/-10). For all promoter classes, it is thought

that the distance between the -10 box and the TSS varies from 3

to 12 bp; while the distance between the -15 and the -10 boxes

varies between 0 and 10 bp. However, the variation in the

distance between the -10 and the -35 boxes depends on pro-

moter class (r70: 15–22 bp, r24: 12–19 bp, r28: 10–12 bp, r32:

13–15 bp).

3. Oligomer scores: Seven features were formulated based on

the calculated scores for 3-mers, 4-mers, 5-mers and 6-mers in

different segments of the promoter sequences (see Methods):

(i) 3-mers in region [-20:þ21], (ii) 4-mers/1 in [-100:þ21],

(iii) 4-mers/2 in [-100:þ21], (iv) 5-mers/1 in [-100:þ21],

(v) 5-mers/2 in [-100:þ21], (vi) 6-mers/1 in [-200:-1] and

(vii) 6-mers/2 in [-100:þ21].

4. Density of TFBSs: This group contains two features. TFBS den-

sity1, which is on the sense strand only, is calculated within the

interval [-200:þ51]; and TFBS density2 which is calculated

within the interval [-200:-1] on both strands.

5. Physico-chemical properties of the promoter sequences: four fea-

tures were chosen in the feature selection process: free energy,

base stacking, entropy and melting temperature. All of which

were computed in the region [-200:þ20].

3.3 bTSSfinder: the bacterial promoter prediction tool
Using a combination of features for each promoter class (as outlined

in Supplementary Table S3), we built 10 NN classifiers, one for each

promoter class in E. coli and in cyanobacteria. Then, we imple-

mented these models into the bTSSfinder program. bTSSfinder

workflow is outlined in Figure 1. The program slides a window of

Fig. 1. Flow-chart of the algorithm implemented in the bTSSfinder program.

T-10 is the threshold for the prediction of the -10 box (specific for every sigma

class). Ttotal – the NN threshold for the selection of TSSs
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251 bp over the query sequence, one nucleotide at a time. For each

window, position 201 is classified as TSS or non-TSS using the ap-

propriate NN classifier based on a threshold that was predetermined

during the training. Predictions that pass the qualifying threshold

are labeled as putative TSSs. bTSSfinder performs additional filter-

ing by discarding all but the highest-scoring TSS in intervals of a

user-adjustable length (default 300 bp). Depending on user prefer-

ence, bTSSfinder can report for a chosen phylum: (i) all predicted

TSSs for all promoter classes, (ii) a user-selected promoter class and

(iii) or the highest scoring TSS.

3.4 Evaluating bTSSfinder performance
We tested bTSSfinder on positive and negative sets for every pro-

moter class in E. coli and cyanobacteria (Table 1). We observed

good performance for all promoter classes in E. coli (251 bp, a single

search window size). In the case of cyanobacteria, we observed the

highest accuracy in rA promoters (F1-score: 0.94). The F1-score for

the remaining cyanobacterial promoter classes ranged from 0.81 to

0.87. Although these results are considered high, they are somewhat

less than what was achieved for rA promoters. This difference in

performance may be due to the following: (i) rA (or orthologs in

other species) and its promoter elements are highly conserved where

for other classes they are not as conserved; (ii) the training set for rA

promoter class is much larger if compared to other classes.

3.5 Comparing bTSSfinder to other tools
We could only evaluate bTSSfinder against previously published pro-

moter prediction tools for r70 promoter class in E. coli. For fairness,

we assessed all tools on a single testing dataset. The following

promoter prediction tools were available for comparison: BPROM

(Solovyev and Salamov, 2011), NNPP2 (Reese, 2001) and

PromPredict (Rangannan and Bansal, 2009). All other promoter pre-

diction tools that we checked were no longer available. A major draw-

back for these tools is that they were designed specifically for r70

promoters. BPROM and NNPP2 were optimized for E. coli, while

PromPredict was optimized for both E. coli and B. subtilis. We also

tried to test BacPP, which is the first tool that attempted to predict the

complete range of sigma promoters in E. coli (de Avila et al., 2011).

The authors reported high prediction accuracy for BacPP, but these

results were obtained from a small training and testing sets.

Furthermore, this tool calculates the probabilities that a sigma factor

might bind to every 80 bp window of the query and does not confer

any predictions on the TSS. Given that we would have to make an

educated guess as to where the TSS locations are as well as the shear

number of promoters it predicts, we excluded this tool from our com-

parison. Results of the comparison for short (251 bp) sequences are

presented in Table 2. Our comparison clearly indicates that

bTSSfinder has significantly higher prediction accuracy.

Using short sequences to predict TSSs is not sufficient in evaluat-

ing the accuracy and efficiency (especially the real false positive rate)

of a prediction tool. It should also be tested on longer sequences.

In fact, an ideal test should be genome-wide. Nonetheless, genome-

wide TSS maps are scarce which renders the task of assessing such

predictions unfeasible. First, we run the four programs on longer

DNA sequences to search for putative r70 TSSs in 200 test sequences

of 1101 bp from E. coli (Table 3).

Our results highlight the scale of the problem that researchers en-

counter when they analyze long sequences. Specifically, the exist-

ence of multiple experimentally mapped TSSs (TSSmap), which are

often in close proximity to each other, makes predicting the TSS

(TSSpr) difficult. In previous studies, a TSSpr is considered a true

positive if it was detected 500 bp or less away from a TSSmap. For

example, the authors of PromPredict, a recent tool, considered a

TSSpr as a true positive if it was within a distance of 6500 bp from

a TSSmap. In this comparative analysis, a true positive is defined as

a TSSpr that is within 50 bp away from a TSSmap (upstream or

downstream). As presented in Table 3, bTSSfinder produced the

best performance (Sn ’ 72%, F1 ’ 52%), followed by BPROM

(Sn¼65%, F1 ’ 34%) and NNPP2 (Sn ’ 54%, F1 ’ 33%).

Surprisingly, PromPredict failed to produce a single true positive

prediction (Se¼0, F1¼0).

We also investigate if models optimized for E. coli can be used

for Cyanobacteria and vice versa in bTSSfinder. We used a positive

test set of 251 bp sequences from E. coli and searched for TSSs using

the corresponding model for the cyanobacteria for a given r class,

and vice versa. Results of these cross-phylum experiment are

Table 1. Testing results for five sigma classes of E. coli and

cyanobacteria1

r class TP FN TN FP Sn, % Sp, % P1, % P2, % F1, %

r70 180 20 377 23 90.0 93.3 94.0 90.4 92

r38 37 3 75 5 92.5 93.8 93.7 92.6 93.1

r32 46 4 95 5 92.0 95.0 94.9 92.2 93.4

r28 31 4 69 1 88.6 98.6 98.4 89.6 93.2

r24 86 14 193 7 86.0 96.5 96.1 87.3 90.7

rA 921 79 1921 79 92.1 96.1 95.9 92.4 94

rC 36 14 96 4 72 96 94.7 75.0 81.8

rF 80 20 193 7 80.0 96.5 95.8 82.8 87.2

rG 72 28 188 12 72.0 94.0 92.3 77.1 80.9

rH 38 12 92 8 76 92 90.5 74.2 82.6

1Test experiments for every sigma class were repeated 10 times for ran-

domly selected negative sets and the means were taken.

Table 2. Comparison of available promoter prediction programs

tested on E. coli’s experimentally validated r70 promoter se-

quences and a negative dataset of 251 bp sequences.

Promoter

prediction

tool

Genes

with �1

TSSpr

Total

number of

TSSpr

TP1 FP FN Sn, % P1,% F1,%

bTTSSfinder 197 355 143 212 57 71.5 40.3 51.5

BPROM 200 569 130 439 70 65.0 22.9 33.8

NNPP2 175 460 109 351 91 54.5 23.7 33.0

PromPredict 74 149 0 149 200 0.0 0.0 0.0

1Prediction is true, if distance between annotated and predicted TSSs is 50

bp or less.TSSpr: predicted TSS.

Table 3. Comparison of available promoter prediction programs

assessed on the 1100 bp upstream region of 200 E. coli r70 pro-

moters with experimentally validated TSSs.

Promoter prediction tool Tp Fn Tn Fp Sn % Sp % F1-score MCC

bTTSSfinder1 183 17 189 11 91.5 94.5 0.93 0.86

BPROM2 152 48 166 34 76.0 83.0 0.79 0.59

NNPP22 109 91 176 24 54.5 88.0 0.66 0.45

PromPredict2 0 200 200 0 0.0 100.0 n.d. n.d.

1Prediction is true, if the annotated TSS is exactly predicted.
2Prediction is true, if distance between annotated and predicted TSSs is 50

bp or less.

n.d. not determined.
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presented in Table 4. For the cyanobacterial rA and rC test sets,

applying E. coli’s r70 and r38 models reduced sensitivity but not sig-

nificantly (92.3% using rA model versus 87.5% using r70 model,

72% using rC model versus 68% using r38 model). However, the

opposite scenario had a significant impact on sensitivity (Table 4).

Cross assessment of the models for the other sigma factors failed to

reproduce the sensitivity achieved for their intended species. This

perhaps can be explained by: (i) significant structural differences

between promoters in E. coli (gammaproteobacteria) and the

studied cyanobacterial species; (ii) biological differences in how

transcription initiation points are detected in different bacterial

phyla. In fact, we tested bTSSfinder and the other three tools on ten

other bacterial species belonging to five different phyla: three

Firmicutes, four Proteobacteria, one Spirochetes, Chlamydias and

one CFB group. bTSSfinder consistently outperformed the other

tools for each species albeit with sensitivity values averaging 59%

(BPROM was next best with a sensitivity average of 49%). For

details of this comparison consult the supplementary material

(Supplementary Table S4).

We observed that some experimentally verified promoters did

not pass the prediction thresholds. It has been reported that compu-

tational prediction tools have succeeded in predicting no more than

20% of known promoters (Hertz and Stormo, 1996). A later study

that analyzed 599 r70 promoters from E. coli showed that in over

50% of the cases, the true promoters do not produce the highest

score, especially since true promoters are commonly found in TSS-

dense regions (Huerta and Collado-Vides, 2003). To investigate this

phenomenon, we analyzed the region 6300bp around experimental

TSSs. For every base the NN score is calculated (using bTSSfinder)

and those that satisfy the species and r class-specific threshold were

assessed against the experimentally mapped TSSs. In 90% of the test

cases (425 in E. coli and 1300 in the cyanobacterial species), the

TSSmap had higher score than threshold but only 10% passed filter-

ing criteria to make it to the final predicted set due to the presence

of a neighboring TSSpr that had higher NN score (Fig. 2; Fig S1).

This may warrant an alternative approach to search for transcrip-

tion start regions (TSRs) rather than points.

3.6 Concluding remarks
The promoter prediction problem in prokaryotes is an old problem

that has yet to achieve an adequate solution. Available tools tend to

produce many false positives or have poor sensitivity, especially

when applied to long sequences or whole genomes. These limitations

are probably due to the following challenges:

1. Some in-vitro-strong promoters that are predicted computation-

ally with high score are in fact not used in vivo at all, perhaps

due to unknown repression mechanisms (Hertz and Stormo,

1996; Huerta and Collado-Vides, 2003).

2. Real TSSs tend to fall in promoter dense regions (Panyukov and

Ozoline, 2013) with neighboring predicted TSSs that may pro-

duce higher prediction scores.

3. Some predicted TSSs may be evaluated as false positives due to

the lack of experimentally-verified, comprehensive and precise

TSS maps.

4. Scarcity of experimental data also means that training models

using features extracted from the limited available data would

naturally restrict their predictive power.

5. All methods, as far as we know, depend on promoter architec-

ture and other physico-chemical properties in their model build-

ing. Yet, there are likely other ‘players’ that contribute to the

transcription initiation process.

6. The choice of a negative dataset can be detrimental for the

trained model since one cannot be certain about the total ab-

sence of TSSs in the negative dataset.

We believe that bTSSfinder is the first tool that can recognize

promoters of different sigma classes from two bacterial phyla

(Proteobacteria’s E. coli and Cyanobacteria). Nonetheless, promoter

prediction, especially at the whole genome level, remains unresolved

and this warrants further investigations in this field.
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Table 4. Result of cross-phylum application of bTSSfinder on the

positive dataset. Bold refers to sensitivity of the models applied to

their intended species.

Test sets Sensitivity1

bTSSfinder models

for E. coli1
bTSSfinder models

for cyanobacteria1

r70 89.5% 66%

rA 87.5% 92.3%

r38 90% 35%

rC 68% 72%

r32 92% 54%

rH 58% 74%

r28 88.6% 42.6%

rF 37% 81%

r24 86% 31%

rG 15.8% 72.0%

1Sensitivity values obtained with the species-specific bTSSfinder parameters

are given in bold.

Fig. 2. The scoring landscape of experimentally validated TSSs in E. coli. Top

line: the distribution of NN scores that are higher than the threshold for every

300 bp upstream and downstream of a TSSmap. Bottom line: cases where

the TSSpred is the TSSmap
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