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ABSTRACT: Underground resources, particularly hydrocarbons, are critical assets that promote economic development on a global
scale. Drilling activities are necessary for the extraction and recovery of subsurface energy resources, and the rate of penetration
(ROP) is one of the most important drilling parameters. This study forecasts the ROP using drilling data from three Iranian wells
and hybrid LSSVM-GA/PSO algorithms. These algorithms were chosen due to their ability to reduce noise and increase accuracy
despite the high level of noise present in the data. The study results revealed that the LSSVM-PSO method has an accuracy of
roughly 97% and is more precise than the LSSVM-GA technique. The LSSVM-PSO algorithm also demonstrated improved accuracy
in test data, with RMSE = 1.92 and R2 = 0.9516. Furthermore, it was observed that the accuracy of the LSSVM-PSO model improves
and degrades after the 50th iteration, whereas the accuracy of the LSSVM-GA algorithm remains constant after the 10th iteration.
Notably, these algorithms are advantageous in decreasing data noise for drilling data.

1. INTRODUCTION
The only method to access underground hydrocarbon
resources is through drilling wells and penetrating hydrocarbon
strata, and a lot of costs are allocated to this issue.1−4 It is
critical to evaluate the drilling performance in order to
maximize operational effectiveness and reduce drilling
expenses. To do so, field data must be carefully collected
and analyzed using information analysis tools based on
geological parameters.5−11

A better understanding of the drilling operations can be
obtained using the performance prediction models and the
analysis results from the field observations.12−17 Better and
more efficient results can be achieved by changing and
modifying the effective drilling parameters.18 Optimizing
drilling operations involves considering a number of variables,
including cost, safety, and well completion, but penetration
rate (ROP) is one of the key variables.19,20 The prediction of
ROP is a key factor in the success of drilling projects and is
affected by various factors [e.g.; weight on bit (WOB), type of
drill, mud circulation rate (flow rate), amount of fluid flow

pressure, mud weight (MW), well deviation (WD), rotation
speed (RPM), and hydraulics]. The aforementioned factors
depend on the drill conditions, geological factors, the drilling
depth, and the type of drill, etc.21−23 The cost of drilling a hole
with a single drill drive is another crucial aspect of assessing
drilling performance.24,25 The drilling cost can be minimized if
the drilling parameters are selected correctly.26 It should be
noted that choosing the most expensive or even the cheapest
drilling is not always the best option. Rather, selecting the
suitable drilling technique for drilling a particular formation
while using the optimum parameters can be the best
option.27,29
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The study by Graham and Muench (1959) was one of the
first initiatives aimed at drilling optimization.30 They presented
an empirical mathematical relationship to determine the life of
the drill and the ROP by analytically combining the WOB and
RPM.30

Maurer (1962) created a mathematical equation to calculate
ROP based on WOB and RPM. One of the important
assumptions in this equation is the effective cleaning of the
well from the drilling logs (shown in eq 1).31
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Galle and Woods (1963), among the first researchers to
investigate the effect of WOB and RPM on the ROP with the
aim of reducing drilling costs. They also considered the effect
of the wear rate of the drill teeth and the type of formation in
their proposed relationship (shown in eq 2).32
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Bourgoyne and Young’s 1974 study on ROP estimation is
one of the most important and early studies on this subject.27

They published a comprehensive drilling model that included
eight functions and eight coefficients for estimating ROP via a
multiple regression method. Li and Walker et al.28 showed that
the decrease in ROP in deep drilling is caused by low hole
pressures, which increase rock resistance and reduce effective
well cleaning. They concluded that the rock’s properties have
an impact on the ROP as well, and that the estimating process
should account for this. Due to the complicated nature of the
interactions between the variables impacting the ROP, it is
required to execute this with more precision and performance.
This issue has drawn the attention of numerous researchers to
the use of various methods of computational intelligence as a
powerful tool for estimating ROP.33

Many researchers have been able to use artificial intelligence
to predict key parameters for various fields, including oil, gas,
environment, reservoir engineering, exploitation, drilling,
etc.34,35 Bataee and Mohseni (2011) developed an artificial
neural network (ANN) to detect the complex relationship
between drilling variables. Their goal was to estimate and
optimize the drilling penetration rate to reduce the cost of
drilling future wells using the developed model.36 Jahanbakh-
shi, Keshavarzi, (2012) developed an ANN model to
investigate and predict the penetration rate in one of Iran’s
oil fields. They took into account the following factors when
developing the model: formation type, mechanical rock
properties, drilling hydraulics, drill type, weight on the drill,
and rotation speed. The presented results proved the optimal
performance of the ANN model, and it was concluded that this
model could be used in planning the drilling process and
exploitation of future oil and gas wells in the relevant field.37

Elkatatny (2019) used a new ANN model combined with the
self-adaptive differential evaluation method to estimate the
penetration rate. The presented model had a structure with five
inputs and 30 neurons in the hidden layer. The study used the
mechanical data of the drilling process and the mud
characteristics of a drilled well.38 Zhao et al. (2019) estimate
the penetration rate of drilling using the ANN model
combined with three training functions: Lönberg-Marquardt9
(LM), conjugate gradient10 (SCG), and single-step Vetri

method11 (OSS). After obtaining the model, 12 honey bee
colonies (ABC) were combined using the algorithm to
estimate the ideal value for each drilling parameter to achieve
the highest penetration rate.39

This article uses one of the most widely used algorithms to
determine the ROP using other drilling parameters. Previous
articles have not yet discussed these algorithms for determining
ROP in the same depth as this one. This study aims to assess
the validity of the LSSVM-PSO/GA hybrid algorithms for
predicting ROP during drilling operations. To predict ROP,
this article uses 2026 data points related to three wells located
in one of the southern Iranian fields. As powerful features of
the algorithms used in this article, we can mention less time
processing, high accuracy, and noise reduction in drilling data.

2. METHODOLOGY
2.1. Flow Diagram. The process flow chart for calculating

and forecasting ROP from one oil field in southwest Iran is
shown schematically in Figure 1. This diagram illustrates how

the data are initially observed from three wells. The data were
collected, normalized using eq 1, and then split into two
groups: the training set (80%) and the test set (20%). The
LSSVM-PSO/GA hybrid algorithms were then built using the
segregated data for the train data, and the test data were used
to test the algorithms using empirical equations. In this paper,
the k-fold cross validation was employed to prevent overfitting.
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2.2. Least Squares Support Vector Machine. This
method can solve non-linear problems by taking them into
multi-dimensional space and solving them through kernel
functions.40,41 Additionally, due to the SVM’s high perform-
ance in function estimation, the use of this technique can be a
substantial improvement in the field of modeling hydrocarbon
reservoirs.42−44 The simplified relationship used in the support
vector machine is expressed as eq 442

Figure 1. Flow chart schematic for the prediction of ROP based on
LSSVM-PSO/GA.
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y x W x b( ) ( )T= + (4)

whereas a non-linear function [(x)] converts the input
variables through a multidimensional space, reducing complex-
ity, and accelerating the solution of problems. W is the weight
vector, while b is the bias value. It has the same dimension as
the defined space dimension.45 Equation 5 represents the
parameters that are determined using linear regression45
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where ei is the model error and is the systematic parameter.
Equation 5 was introduced by Suykens et al. (2002), and it has
been debated in related scientific domains.46,47 After including
Mercer’s theory, eq 6 represents the least squares support
vector machine (LSSVM) equation (from eq 4)46,47
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(x,xi) is called kernel function (kernel), and it has different
types, for example, linear, polynomial, radial function, and
multilayers.46,48,49 Table 1 shows the most common kernel
functions and their mathematical expressions.46,48,49

2.3. Particle Swarm Optimization Algorithm. This
strategy, which belongs to the category of random optimization
techniques, is based on the behavioral model of a group of
particular species of animals, especially birds and fish.50

Previous work shows that this method works at an acceptable
speed, unlike other optimization methods.51 Another reason
for using particle swarm optimization (PSO) is that it requires
fewer parameters to adjust. Also, its formula is simple and easy

to implement.52 The formula for this method is expressed as
eqs 7 and 852

V WV c r x c r x(pbest ) (gbest )i i i i i i1 1 1 2 2= + ++ (7)

X tVXi i i1 1= ++ + (8)

where V velocity of particles, r1 and r2, are two random
numbers created in the interval [0,1].

1c (self-confidence) and 2c (crowd confidence) are,
respectively, gbest and pbest intensities of attraction; Δt is
the time parameter, which is the step of particle progress; and
W is the inertial factor that manages the speed effect. The value
1 is used for w in this work.53

Collections of generated arbitrary solutions, called “par-
ticles” fly in the large space of the problem. According to the
alternative equations, the position of each particle changes
according to its experience (gbest) and its neighbors (pbest).

2.4. Genetic Algorithm. The genetic algorithm (GA) is an
effective domain-independent search technique that was
motivated by Darwin’s idea.54 Because the GA is population-
based, a different answer is produced in each iteration.55 The
main concept of this natural selection algorithm is that
stronger people survive and pass on their strong characteristics
to their children.56 This algorithm has two genetic operators:
integration and mutation.57 One mechanism for kids to inherit
their parents’ traits is through the genetic operator known as
integration.58 The mutation of an operator is based on
probabilities that happen to some people in society. The
mutation introduces new characteristics to the population that
they did not inherit from their parents.

2.5. Hybrid LSSVM-PSO/GA. In order to reduce the
simulation process and increase its performance, the initial
model was replaced by a proxy model based on LSSVM.59 It
took several iterations of the proxy to produce a useable model.
The model was examined using GA and PSO techniques to
identify the best solution. Despite the fact that the core
concepts of these algorithms are fundamentally different, it was
selected to apply the same requirements to both approaches.
Moreover, it is required to specify an objective function to
discover a suitable matching solution. In other words, after
running the simulator model, the oil production rate and two
pressure parameters are the outputs of the simulator model
used to generate the objective function. Usually, the objective

Table 1. Common Mathematical Functions Related to
LSSVM

core method mathematical statement

linear K(x,xi) = xiTxi + c

radial (RBF) K x x
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Figure 2. Workflow for performing “automatic history matching” with the optimized alternative model of the simulator.
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functions can be defined in different ways depending on the
modeling conditions (Figure 2).

Three important parts are considered to define the objective
function in this study, which is based on the error function.

The first stage: considering the amount of error resulting
from the change of parameters on the response variables in
different time intervals in each studied well, which is
normalized, the difference between the response data values
calculated from the proxy model and the observed (real)
response data is shown as eq 9 (AResp).

60 The outcome of each
well’s error is taken into consideration in the second phase, as
shown in eq 10 (Bwell), and the field’s overall error is then
calculated by dividing the weight of each well by one, as shown
in eq 11 (Ctotal).

61 Finally, the objective function is briefly
given as eq 12.61

A
Y Y

Y
Er

SDt

P

Resp
1

H C

H

2

= =
×=

i
k
jjjjj

y
{
zzzzz (9)

B W AEr
R

N

R Rwell = =
(10)

C W BEr
R

N

w WT 1 1= =
(11)

Y W W W
Y

YSTDW

M

W
R

M

R
R

N

R
t

P

o 1
1

H

H
=

×=

i
k
jjjjj

y
{
zzzzz (12)

The main parameters of this study, including response
variables, number of wells, time intervals, and the difference
between the response data calculated from the proxy model
and the real model, as well as the deviation from the standard,
are defined in the objective function (eq 12). In other words,
the objective function value is the average percentage.
Additionally, there is no zero-observation data when employ-
ing this objective function. Based on this objective function,
the proxy model and optimization procedure were built.

2.6. Determining the Parameters of the Optimizer
Algorithm. For the validation of the proxy model, five criteria
were considered: mean square error (MSE), organizing
parameter (γ), kernel width parameter (σ2), mean absolute
error, and R2.62 These parameters are taken into account when
comparing the calculated values to the actual values.63 If the
proxy’s quality is determined to be appropriate, it can be made
ready for usage after validation. The procedure will then be
carried out once more to improve the proxy’s quality in such a
situation. The constructed proxy model’s parameters and
errors are displayed in Table 2.

Based on the calculated error, they are compared with each
other, and the parameters corresponding to the minimum error
are introduced as adjustment parameters.64 The parameter
checks and selection of the best parameter based on the
estimated error are carried out indefinitely through change
tests.65 The results of this investigation showed that the PSO

algorithm performed best when the two key parameters were
1.5 and 2, respectively. The values of 0.8 and 0.2 were used for
optimization, and Table 3 shows the characteristics and
parameters used in both algorithms (using the trial-and-error
method).

Based on the result, higher values of γ mean better
performance. In other words, the parameter γ determines the
trade-off between minimizing the training error and minimiz-
ing the complexity of the model. The σ2 parameter is the
bandwidth and defines the non-linear mapping from the input
space to a high-dimensional feature space. A high value of σ2

can make the model more economical, and a low value can
make the result unfavorable.

3. DATA GATHERING
This article uses information about an oil well drilled into
carbonate formations located in one of the southwestern
regions of Iran. To predict the amount of ROP related to this
field, information from 2026 drilling data was used. The
drilling information includes RPM, rotation of the axis, WOB,
force on the bit, torque, twisting force of the expression of drill,
standpipe pressure, and loss of the total pressure (the statistical
parameter shown in Table 4). These data contain a lot of
noise, but by using the methods described in this article, it was
possible to improve the accuracy of the performance
significantly.

Figure 3 displays details about the parameters that were used
as inputs and outputs for the data analysis applied in this
research. As shown in Figure 3, only a small portion of the data
is in the range of WOB > 25, and the majority of the data
related to this parameter is in the range of 10−15. For the
maximum RPM parameter, the data are divided into two
sections: 100−125 and 125−150. For SPP data, most data are
in the range of 600−800. For data related to 1, most data are
between 3 and 5.

Table 2. Proxy Model’s Parameter Based on the Train and
Test Errors

Data γ σ2 RMSE R2

train data 0.95 × 105 0.99 × 107 0.025 0.9
test data 0.026 0.88

Table 3. GA and PSO’s Control Parameters

PSO GA

parameters value parameters value

population 300 population 300
number of parameters 44 number of

parameters
44

C1 (personal education
coefficient)

1.7 mutation factor 0.2

C2 (global education coefficient) 2.3 crossover factor 0.8
W (coefficient of inertia) 0.4
V (maximum speed value) 2.2

Table 4. Data Analysis for One of the Wells Located in the
Southwest of Iran

parameters RPM WOB τ SPP ROP
unit rpm klb klbf ft psi m/h
mean 112.4 6.3 4.0 721.7 5.7
std. deviation 21.7 3.5 3.1 232.5 2.9
variance 524.4 22.0 10.9 52,293.8 5.4
minimum 35.09 0.12 0.01 14.32 1.5
maximum 157.2 16.6 9.5 1101.7 32.8
skewness −0.4 0.6 0.1 −1.6 3.2
kurtosis −0.5 0.3 −1.3 1.3 18.8
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4. RESULTS AND DISCUSSION
The entire data set used in this article includes 2026 drilling
data. To build artificial intelligence hybrid hearts, 80% of this
data has been used for training, and the other 20% of data
points have been used for testing. Hybrid artificial intelligence
models have been compared with two empirical equations. To
avoid overfitting, cross validation is used. To compare these
common methods for determining ROP as well as artificial
intelligence models, common statistical parameters have been
used in the articles. Among these parameters, we can mention
RMSE and R2, which are suitable for comparison (shown in
eqs 13 and 14). Table 5 presents information and reports
comparing artificial intelligence algorithms and empirical
equations.

x y
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( )i
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The present study employed a training data set comprising
80% of the total data, while the other 20% was allocated for the
purpose of testing. Based on the information reported in Table
5 (the most relevant information, test, and total data), a correct
comparison can be made between empirical and hybrid
models. As can be observed from the findings, the outcomes
for the LSSVM-PSO hybrid model are RMSE = 1.05, R2 =
0.9845; RMSE = 1.92, R2 = 0.9516; and RMSE = 1.485, R2 =
0.9681 for the most, test, and total data. Therefore, it can be

concluded that the performance accuracy of the LSSVM-PSO
algorithm is better than other algorithms and empirical models.

Figures 4 and 5, respectively, show the cross-plot shape for
calculating the predicted and measured values of the best
LSSVM-PSO algorithm, as well as the calculation of the RMSE
and R2 error values. Figure 4 indicates that it has a high level of
performance accuracy, and Figure 5 shows that the RMSE and
R2 for the LSSVM-PSO algorithm have a greater level of
performance accuracy.

The value of R2 increases with an increase in RMSE, which is
one of the conclusions that can be drawn from this graph and
is one of the greatest metrics for comparing models.

Figure 3. Illustration of data analyses for input variables based on the depth and output variable.

Table 5. Results of the Most Relevant Test and Total Data
That Were Utilized to Predict ROP Using Statistical
Correctness Criteria

split data models RMSE R2

train data set Maurer 17.43 0.6678
Galle and Woods 20.68 0.5832
LSSVM 6.19 0.8662
LSSVM-GA 3.55 0.9018
LSSVM-PSO 1.05 0.9845

test data set Maurer 18.29 0.6321
Galle and Woods 22.46 0.5509
LSSVM 7.21 0.8034
LSSVM-GA 4.70 0.8997
LSSVM-PSO 1.92 0.9516

total data set Maurer 17.86 0.6500
Galle and Woods 21.57 0.5671
LSSVM 6.70 0.8348
LSSVM-GA 4.125 0.9008
LSSVM-PSO 1.485 0.9681
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According to the results presented in Figure 5, the following
can be concluded:

RMSE: Galle and Woods > Maurer > LSSVM-GA >
LSSVM-PSO.
R2: Galle and Woods < Maurer < LSSVM-GA < LSSVM-

PSO.
Upon analysis of the findings presented in Figure 6, which

pertain to each iteration of both hybrid models, namely,
LSSVM-PSO/GA, it is evident that the LSSVM-PSO algorithm
exhibits convergence for both the input and predicted data and
outperforms the LSSVM-GA algorithm. As can be seen, for the
LSSVM-PSO algorithm, in the beginning, in iterations between
1 and 50, this algorithm initially has a lower performance
accuracy. Still, this convergence in iteration 50 is much higher
than LSSVM-GA. The findings of this study suggest that the
algorithm presented herein can be utilized by researchers to

forecast not only the aforementioned issue but also other
significant parameters related to all petro-science.

5. LIMITATIONS
The lack of total continuity in well logs is one of the factors
that makes predicting well logs difficult; nevertheless, in this
study, drilling logs had continuing logs. However, there are
certain limits to this article, such as the fact that the data
occasionally contains outliers. We were able to investigate this
issue and eliminate the outlier data by using the outlier
identification approach.

6. CONCLUSIONS AND RECOMMENDATION
In this article, rotation speed, rotation of the axis, WOB, force
on the bit, torque, twisting force of the expression of drill,
standpipe pressure, and loss of the total pressure have been
used to predict ROP. In this article, 2026 drilling data points
from one of the southwestern Iran wells were used. This article
used two combined methods, LSSVM-PSO and LSSVM-GA,
and empirical equations to predict the ROP. Using PSO and

Figure 4. Illustration of cross-plot chart for predicted ROP and measured ROP for comparison of LSSVM and LSSVM-PSO algorithms.

Figure 5. Determination of the RMSE and R2 values based on the
statistical metric.

Figure 6. Determination of Iteration for two hybrid models and
comparing them.
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GA optimizers improves performance accuracy and correctly
determines control parameters. Upon analysis of the findings, it
is evident that the LSSVM-PSO algorithm exhibits superior
performance accuracy compared to the other algorithms and
equations. For test data of the LSSVM-PSO algorithm with
high accuracy, RMSE = 1.92 and R2 = 0.9516. For the
prevention of overfitting the data, we used the cross-validation
method.

The accuracy of the LSSVM-PSO model also improves and
degrades after the 50th iteration according to our analysis of
the two algorithms. Even so, following the 10th iteration of the
LSSVM-GA algorithm, these modifications are still consistent.
One of the advantages of these two algorithms is that they
decrease the data noise for drilling data. One of the LSSVM
algorithm’s features is its high accuracy and high-performance
time. Based on the results, it is revealed that researchers can
use this algorithm to predict this issue or even other key
parameters for reservoirs, production, drilling, and geophysics.

■ AUTHOR INFORMATION
Corresponding Author
Hamzeh Ghorbani − Young Researchers and Elite Club,
Ahvaz Branch, Islamic Azad University, Ahvaz 1477893855,
Iran; Doctoral School of Materials Science and Technologies,
Obuda University, Budapest 1034, Hungary; orcid.org/
0000-0003-4657-8249; Email: hamzehghorbani68@
yahoo.com

Authors
Seyed Vahid Alavi Nezhad Khalil Abad − Department of
Civil Engineering, Birjand University of Technology, Birjand
97198 66981, Iran

Omid Hazbeh − Faculty of Earth Sciences, Shahid Chamran
University, Ahwaz 6135743136, Iran

Meysam Rajabi − Department of Mining Engineering, Birjand
University of Technology, Birjand 97198 66981, Iran

Somayeh Tabasi − Faculty of Industry and Mining (Khash),
University of Sistan and Baluchestan, Zahedan 1489684511,
Iran

Sahar Lajmorak − Department of Earth Sciences, Institute for
Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-
66731, Iran

Ahmed E. Radwan − Faculty of Geography and Geology,
Institute of Geological Sciences, Jagiellonian University,
Kraków 30-387, Poland

Mohammad Mudabbir − Doctoral School of Materials Science
and Technologies, Obuda University, Budapest 1034,
Hungary

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.3c02364

Author Contributions
Conceptualization, S.V.A.N.K.A., O.H., H.G., A.E.R., and
M.M.; writing�original draft, M.R., S.T., S.L., and H.G.;
methodology, S.L., H.G., S.T., M.M., M.R., and A.E.R;
resources, H.G. and A.E.R; visualization, M.M., H.G., and
M.R; writing�review and editing, S.T., H.G., S.L., and M.R;
and funding acquisition, O.H., H.G., and M.R. All authors have
read and agreed to the published version of the manuscript.
Notes
The authors declare no competing financial interest.
The corresponding authors can make data available upon
reasonable requests for academic purposes.

■ NOMENCLATURE
b bias value
db drill bit diameter
K proportionality constant
M number of wells R
N number of response variables
P number of time steps
R2 R-square
RMSE root mean square error
ROP rate of penetration
RPM rotation speed
S rock strength
STD standard deviation
W weight
WOB weight on bit
Wt threshold bit
Yo objective function defined for time

intervals
V velocity of particles
Wwell−i and Wresponses weighting factors for wells and responses
Yhis observational response data (real)
Ycalc response data calculated from the proxy

model
(x,) Kernel function
Δt time parameter
γ systematic parameter
δil normalize variable
δmax maximum variable
δmin minimum variable
ei error
(x) non-linear function
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