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Abstract Recent studies have challenged the prevailing dogma that transcription is repressed

during mitosis. Transcription was also proposed to sustain a robust spindle assembly checkpoint

(SAC) response. Here, we used live-cell imaging of human cells, RNA-seq and qPCR to investigate

the requirement for de novo transcription during mitosis. Under conditions of persistently

unattached kinetochores, transcription inhibition with actinomycin D, or treatment with other DNA-

intercalating drugs, delocalized the chromosomal passenger complex (CPC) protein Aurora B from

centromeres, compromising SAC signaling and cell fate. However, we were unable to detect

significant changes in mitotic transcript levels. Moreover, inhibition of transcription independently

of DNA intercalation had no effect on Aurora B centromeric localization, SAC response, mitotic

progression, exit or death. Mechanistically, we show that DNA intercalating agents reduce the

interaction of the CPC with nucleosomes. Thus, mitotic progression, arrest, exit or death is

determined by centromere structural integrity, rather than de novo transcription.

DOI: https://doi.org/10.7554/eLife.36898.001

Introduction
When cells commit to mitosis the nuclear envelope disassembles and chromatin organizes into highly

condensed chromosomes. This causes the displacement of several transcription factors from DNA

and the inactivation of the transcription machinery in a cell-cycle-dependent manner

(Gottesfeld and Forbes, 1997; Kim et al., 1997; Konrad, 1963; Martı́nez-Balbás et al., 1995;

Murphy and Attardi, 1973; Parsons and Spencer, 1997; Prescott and Bender, 1962;

Rizkallah and Hurt, 2009; Segil et al., 1996; Shermoen and O’Farrell, 1991; Spencer et al., 2000;

Taylor, 1960). Because the half-life of most transcripts exceeds the normal duration of mitosis

(typically ~30 min in human cells), the prevailing dogma was that transcription is largely repressed

and dispensable during mitosis in higher eukaryotes (Gottesfeld and Forbes, 1997; Konrad, 1963;

Martı́nez-Balbás et al., 1995; Murphy and Attardi, 1973; Prescott and Bender, 1962;

Rizkallah and Hurt, 2009; Spencer et al., 2000; Taylor, 1960).

Several recent studies have challenged this notion and provided evidence that the level of chro-

matin compaction on mitotic chromosomes is highly heterogeneous (Nishino et al., 2012), allowing
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accessibility of some transcription factors and chromatin-modifying enzymes (Burke et al., 2005;

Chen et al., 2005; Dey et al., 2009; Egli et al., 2008; Gauthier-Rouvière et al., 1991;

Michelotti et al., 1997; Segil et al., 1996; Yan et al., 2006). Noteworthy, a post-translationally

modified form of RNA Polymerase II that is normally associated with transcription elongation was

found to bind mitotic chromosomes at their centromeres (Chan et al., 2012; Dirks and Snaar,

1999; Liu et al., 2015; Molina et al., 2016), suggesting that some transcription is still taking place

during mitosis.

Transcription might also play an instrumental role during a prolonged mitosis due to incapacity to

satisfy the spindle assembly checkpoint (SAC), a signaling mechanism that can delay mitosis up to

several hours in the presence of unattached kinetochores (Musacchio, 2015b). In line with this

hypothesis, the master mitotic regulator Cyclin B1 was proposed to be actively transcribed during

mitosis and to be required to sustain a robust SAC response (Mena et al., 2010; Sciortino et al.,

2001).

Centromere assembly, which underlies the catalytic mechanism behind the SAC, has also been

recently proposed to depend on transcription of centromeric a-satellite DNA and to be regulated

by non-coding RNAs (Blower, 2016; Carone et al., 2009; Chan et al., 2012; Du et al., 2010;

Grenfell et al., 2016; Li et al., 2008; Liu et al., 2015; Nakano et al., 2003; Pezer and Ugarković,

2008; Rošić et al., 2014; Topp et al., 2004; Wong et al., 2007; Zhang et al., 2005). In particular,

the centromeric localization and activation of Aurora B, the catalytic subunit of the chromosomal

passenger complex (CPC) required for SAC response and error correction during mitosis

(Carmena et al., 2012; Santaguida et al., 2011) was shown to be dependent on centromeric tran-

scription (Blower, 2016; Grenfell et al., 2016). However, whether centromeric transcription persists

during mitosis remains debatable.

Finally, a recent study using pulse-labeling of nascent transcripts and RNA-seq of mitotic-enriched

cell populations reported that over 8000 transcripts are expressed de novo during mitosis and

mitotic exit to prepare cells for the subsequent interphase (Palozola et al., 2017).

Although some level of transcription might still take place during mitosis, the experiments sup-

porting this conclusion were based on the analysis of synchronized, yet impure, mitotic cell popula-

tions, fixed material and a diverse range of transcription inhibitors with imprecise temporal control

of transcriptional repression. Moreover, it remains unclear whether transcription is required for nor-

mal mitotic progression and exit. For these reasons, we sought to investigate the requirement of de

novo transcription during mitosis using direct live-cell imaging and a wide range of transcription

inhibitors. We found that the capacity of human cells to progress, sustain, exit or die in mitosis is

independent of de novo transcription. In agreement, quantitative RNA-seq and qPCR analysis failed

to unveil potential transcripts produced de novo during mitosis. Finally, we uncovered that DNA-

intercalating agents, which include well-established transcription inhibitors, such as actinomycin D,

reduce the interaction of the CPC with nucleosomes and significantly compromise centromere struc-

tural integrity and function in a transcription-independent manner. Our findings raise awareness

about the use of some transcription inhibitors in living cells and shed light on a long-lasting

controversy.

Results

Actinomycin D compromises spindle assembly checkpoint robustness in
a transcription-independent manner
We reasoned that if de novo transcription takes place during a normal mitosis, its role would be

exacerbated during a prolonged mitosis. To test this, we used live-cell imaging to quantify the dura-

tion of mitosis in human HeLa cells treated with the microtubule depolymerizing drug nocodazole,

which generates persistently unattached kinetochores that prevent SAC satisfaction. After 3 hr in

nocodazole, we directly monitored cells that became committed to mitosis, as determined by typical

cell rounding, and inhibited transcription with the well-established DNA-intercalating drug actinomy-

cin D (Figure 1A). Consistent with previous observations in fixed cells (Becker et al., 2010), we

found that live cells treated with nocodazole remained in mitosis for 19.2 ± 7.0 hr (median ± SD,

n = 386 cells), whereas cells treated with nocodazole followed by actinomycin D persisted in mitosis

for only 16.1 ± 5.6 hr (n = 301 cells, p<0.0001, Mann-Whitney Rank Sum Test, Figure 1B,C and
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Figure 1. Actinomycin D compromises SAC response. (A) Schematic representation of the experimental protocol used to study the effect of

actinomycin D (ActD) on mitotic cells by live cell imaging. (B) Selected time frames from phase contrast microscopy of HeLa cells treated with

nocodazole and either DMSO (NOC), ActD (NOC + ActD) or ActD with MG132 (NOC + ActD + MG132). Images were acquired every 15 min. Arrows

highlight examples of control (NOC) and ActD with MG132 (NOC + ActD + MG132) cells entering and dying in mitosis after a prolonged arrest. In cells

Figure 1 continued on next page
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Video 1). Interestingly, approximately 90% of nocodazole-treated cells died after a prolonged

mitotic delay, whereas 54% of the cells treated with nocodazole and actinomycin D underwent

mitotic slippage (Rieder and Maiato, 2004) (Figure 1B,D and Video 1). Thus, treatment with actino-

mycin D compromises the capacity of cells to sustain a prolonged mitotic delay and interferes with

their fate.

The relationship between the capacity to sustain a robust SAC response and the subsequent cell

fate after a mitotic delay has been shown to depend on the kinetics of anaphase-promoting complex

(APC)-mediated Cyclin B1 degradation, with slower degradation promoting mitotic cell death, and

faster degradation promoting mitotic slippage (Brito and Rieder, 2006; Gascoigne and Taylor,

2008). We therefore tested whether inhibition of Cyclin B1 proteolysis with the proteasome inhibitor

MG132 could rescue the faster exit and different fate of cells treated with nocodazole and actinomy-

cin D. As controls, we modulated mitotic duration either by inhibition of the SAC kinase Mps1 (to

accelerate mitotic exit), or inhibition of the proteasome with MG132 (to delay mitotic exit) after

nocodazole treatment. Accordingly, cells treated with nocodazole and MG132 increased the mitotic

delay relative to cells treated only with nocodazole (from 19.2 ± 7.0 hr to 30.1 ± 14.7 hr, p<0.0001,

Mann-Whitney Rank Sum Test, Figure 1C and Video 1), and caused cell death in mitosis in 100% of

the cases (Figure 1D and Video 1). Conversely, acute SAC inactivation through Mps1 inhibition after

nocodazole treatment significantly decreased the mitotic delay relative to nocodazole-treated cells

(from 19.2 ± 7.0 hr to 5.4 ± 2.6 hr, p<0.0001, Mann-Whitney Rank Sum Test, Figure 1C and Video 1),

and caused almost immediate mitotic slippage in 100% of the cells (Figure 1D and Video 1). Protea-

some inhibition with MG132 reverted the Mps1

inhibition phenotype, increasing mitotic duration

and switching cell fate from mitotic slippage to

death (p<0.0001, Mann-Whitney Rank Sum Test,

Figure 1C,D and Video 1). Most important, the

ability of actinomycin D to reduce the mitotic

delay and induce slippage in cells treated with

nocodazole was rescued after inhibition of pro-

teasome activity with MG132 (p�0.01, Mann-

Whitney Rank Sum Test, Figure 1C,D and

Video 1). Overall, these experiments suggest

that actinomycin D compromises SAC response

and the capacity to sustain a prolonged mitotic

delay, in a proteasome-dependent manner.

The conclusions above are at odds with mod-

els in which SAC response depends on de novo

transcription of Cyclin B1 during mitosis

(Mena et al., 2010; Sciortino et al., 2001). To

clarify this issue, we used quantitative time-lapse

Figure 1 continued

treated with ActD (NOC + ActD), arrow highlights an example of a cell entering mitosis and then exiting mitosis through mitotic slippage. Scale

bar = 10 mm. Time = hr:min. (C) Scattered plot showing the duration of the mitotic arrest of HeLa cells treated with nocodazole and either Mps1

inhibitor (NOC + Mps1 i) or ActD (NOC + ActD) with or without MG132. The red line represents the mean and the error bars represent the standard

deviation from a pool of at least three independent experiments (NOC, 19.2 ± 7.0 hr, n = 386; NOC + MG132, 30.1 ± 14.7 hr, n = 108; NOC + Mps1 i,

5.4 ± 2.6 hr, n = 154; NOC + Mps1 i+MG132, 30.9 ± 18.1 hr, n = 150; NOC + ActD, 16.1 ± 5.6 hr, n = 301; NOC + ActD + MG132, 20.3 ± 9.4 hr, n = 65;

median ±SD; **p�0.01, ****p�0.0001, Mann-Whitney Rank Sum Test). (D) Cell fate of mitotic HeLa cells treated with the same drugs as in 1C. (E)

Selected time frames from phase contrast and fluorescence microscopy of Cyclin B1-Venus HeLa cells treated with DMSO or ActD in the presence of

nocodazole. Images were acquired every 15 min. For ActD-treated cells (NOC + ActD) arrows highlight a mitotic cell showing reduction of Cyclin B1

over time. Scale bar = 10 mm. Time = hr:min. (F) Cyclin B1 degradation curves for control and ActD-treated Cyclin B1-Venus HeLa cells after nocodazole

treatment with or without MG132. Fluorescence intensities were normalized to the level at time = 0. The curves depict mean Cyclin B1-Venus

fluorescent intensity from all analyzed cells per condition (NOC n = 12; NOC + MG132 n = 10; NOC + ActD n = 9; NOC + ActD + MG132 n = 10; from

time = 0 to 26 time frames), and error bars represent the standard deviation (*p�0.05, **p�0.01, ****p�0.0001 relative to control, Analysis of

covariance).

DOI: https://doi.org/10.7554/eLife.36898.002

Video 1. Phase contrast microscopy of HeLa cells

treated with DMSO, Mps1 or ActD after nocodazole

(NOC) treatment with (+) or without (-) MG132. Images

were acquired every 15 min. Time = h:min.

DOI: https://doi.org/10.7554/eLife.36898.003
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fluorescence microscopy to monitor the levels and respective kinetics of degradation of Cyclin B1

tagged at its endogenous genomic locus with Venus (Collin et al., 2013) (Figure 1E). In agreement

with previous reports, Cyclin B1-Venus fluorescence decayed very slowly in the presence of nocoda-

zole, likely due to residual APC activity (Figure 1F) (Brito and Rieder, 2006). Treatment of nocoda-

zole-arrested cells with actinomycin D caused a faster decline in Cyclin B1-Venus (p<0.0001, Analysis

of Covariance (ANCOVA), Figure 1F). Interestingly, Cyclin B1-Venus levels in nocodazole-treated

cells remained constant for several hours after inhibition of the proteasome with MG132, regardless

of the presence of actinomycin D (p�0.05, ANCOVA, Figure 1F). We concluded that actinomycin D

compromises SAC robustness and the capacity to prevent APC-mediated Cyclin B1 degradation,

independently of de novo transcription.

Actinomycin D compromises the localization of Aurora B and Mad1 at
centromeres/kinetochores
To determine how actinomycin D compromises SAC robustness during a prolonged mitosis, we

investigated the localization of the SAC-related proteins Aurora B (at centromeres) and Mad1 (at

unattached kinetochores). Accordingly, we added actinomycin D for 8 hr in cells pre-treated with

nocodazole, which was kept throughout the entire duration of the experiment. To assist in the identi-

fication of mitotic cells, while assessing Aurora B activity on chromosomes, we also investigated the

phosphorylation of Histone H3 at Serine 10 [pH3S10; (Crosio et al., 2002)]. In contrast with nocoda-

zole-treatment in which all mitotic cells showed high levels of pH3S10, addition of actinomycin D

reduced or abolished pH3S10 accumulation in approximately 17% of the nocodazole-treated cells

(Figure 2A,B). Importantly, these cells still showed signs of chromosome condensation (as deter-

mined by DAPI staining of DNA) that were indistinguishable from neighbouring cells with normal lev-

els of pH3S10 (Figure 2A). Moreover, the observed reduction/abolishment of pH3S10 was not

associated with a pre-apoptotic state, as those cells were negative for a cleaved form of caspase 3

(Figure 2A). In line with the observed reduction/abolishment of pH3S10, these cells also showed

abnormally low levels of total Aurora B and its active phosphorylated form on Threonine 232

(Yasui et al., 2004). Noteworthy, even in those nocodazole- and actinomycin D-treated cells that

showed high levels of pH3S10, Aurora B, including its active form, was found displaced along the

chromosome arms (Figure 2A). Similar findings were found in non-transformed RPE1 cells (Fig-

ure 2—figure supplement 1A–B). Thus, actinomycin D compromises normal Aurora B localization

and activity.

In order to get spatiotemporal insight into the effect of actinomycin D on Aurora B localization,

we monitored GFP-Aurora B by quantitative fluorescence live-cell microscopy in nocodazole-treated

cells. Additionally, we further tested whether Aurora B localization was dependent on mitotic transla-

tion and on its own kinase activity by inhibiting protein synthesis with cycloheximide and treating

cells with the Aurora B inhibitor ZM447439, respectively. We found that while Aurora B centromeric

levels remained constant over a 5-hr period in cells treated either with nocodazole alone or nocoda-

zole and cycloheximide, actinomycin D caused the displacement of Aurora B from centromeres onto

chromosome arms 2 hr after addition of actinomycin D, leading to a 30% reduction of centromeric

fluorescence after 4 hr (p<0.0001, ANCOVA, Figure 2—figure supplement 2A,B). Curiously, Aurora

B inhibition led to an enrichment of its own levels at centromeres, without any detectable displace-

ment onto chromosome arms (Figure 2—figure supplement 2A,B). These observations were con-

firmed by immunofluorescence analysis in fixed cells (Figure 2C,D and Figure 2—figure

supplement 3A–C). These data directly demonstrate that actinomycin D displaces Aurora B from

centromeres.

We then tested whether actinomycin D treatment compromised the localization of Mad1 at unat-

tached kinetochores. We found that addition of actinomycin D for 4 hr to nocodazole-treated cells

led to a 45% reduction of Mad1 at the outer kinetochore (Figure 2C,E). Similar findings have previ-

ously been reported for the SAC proteins Bub1 and BubR1 (Becker et al., 2010). Importantly, acti-

nomycin D treatment for 4 hr did not affect the kinetochore localization of active Mps1 (Mps1

pT676; (Jelluma et al., 2008)) (Figure 2—figure supplement 4A,B) or the phosphorylation of his-

tone H3 at threonine 3 (H3T3p), a proxy for Haspin activity previously implicated in Aurora B recruit-

ment to centromeres (Kelly et al., 2010; Wang et al., 2010) (Figure 2—figure supplement 4C,D).

Taken together, these experiments show that actinomycin D compromises the normal localization of
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Figure 2. Actinomycin D compromises the localization of Aurora B and Mad1 at centromeres/kinetochores. (A) Representative immunofluorescence

images of HeLa cells treated with DMSO (NOC) or ActD for 8 hr (NOC + ActD) after nocodazole treatment with the indicated antibodies. In the

NOC + ActD condition orange arrows highlight a mitotic cell with reduced levels of phosphorylated Histone H3 (H3–pS10) and devoid of the active

form of Aurora B (AurB pT232). Yellow arrows highlight a mitotic cell with abolished levels of phospho H3 (H3–pS10) and devoid of total Aurora B. Scale

Figure 2 continued on next page

Novais-Cruz et al. eLife 2018;7:e36898. DOI: https://doi.org/10.7554/eLife.36898 6 of 27

Research article Cell Biology

https://doi.org/10.7554/eLife.36898


Aurora B at centromeres and SAC proteins to unattached kinetochores, independently of an effect

over Mps1 and Haspin kinase activity.

Actinomycin D or Aurora B inhibition disturbs the kinetochore
recruitment of Knl1 and Mad1
Next, we investigated whether the reduction of Mad1 at unattached kinetochores in the presence of

actinomycin D was induced by the perturbation of Aurora B localization and activity at centromeres.

To do so, we started by evaluating the status of known Aurora B substrates within the KMN network

(Welburn et al., 2010) after actinomycin D treatment. Consistent with an attenuation of Aurora B

activity at centromeres, we found that addition of actinomycin D for 4 hr to nocodazole-treated cells

led to a 22% and 43% reduction on the phosphorylation levels of Knl1 and Dsn1 (a member of the

Mis12 complex), respectively (Figure 3A–D). Interestingly, we also found a 29% reduction in total

Knl1 (Figure 3E,F), whereas total Dsn1, Hec1 (a member of the Ndc80 complex) and CENP-A were

unaffected by actinomycin D treatment (Figure 3G,H, Figure 3—figure supplement 1A–D). Thus,

perturbation of Aurora B centromeric localization by actinomycin D translates into a local reduction

of activity and the consequent decrease in phosphorylation of key Aurora B substrates at the kineto-

chore. Moreover, while actinomycin D treatment for 4 hr does not perturb the normal localization of

CENP-A and members of the Ndc80 and Mis12 complex, it compromises the recruitment of Knl1 to

unattached kinetochores.

Because Knl1 is known to recruit several SAC proteins (including Mad1) to kinetochores

(Musacchio, 2015a), we tested whether Knl1 and Mad1 recruitment to kinetochores depends on

Aurora B activity at centromeres. We found that, similar to actinomycin D treatment, Aurora B inhibi-

tion in nocodazole-treated cells caused a 38% and 28% reduction of Mad1 and Knl1 at unattached

kinetochores, respectively (Figure 3—figure supplement 2A–D). Importantly, it has previously been

shown that constitutive targeting of Aurora B to centromeres by expressing a Cenp-B-INCENP

fusion protein was able to rescue SAC response in actinomycin D-treated cells (Becker et al., 2010).

Overall, these data suggest that perturbation of Aurora B localization and consequent decrease in

activity at centromeres is the primary effect of Actinomycin D treatment and this likely accounts for

the weakened SAC response due to a downstream effect over Knl1 and Mad1 recruitment.

Figure 2 continued

bar = 5 mm. (B) Percentage of mitotic phospho H3-negative cells in control (NOC) and 8 hr actinomycin D (NOC + ActD)-treated HeLa cells. The bar

graph represents the mean and the standard deviation from three independent experiments (NOC 0.0 ± 0.0, n = 600; NOC + ActD, 16.1 ± 4.5, n = 600;

**p�0.01 relative to control, t test) (C) Representative immunofluorescence images of Hela cells treated with DMSO (NOC) or ActD for 4 hr

(NOC + ActD) after nocodazole treatment with the indicated antibodies. Scale bar = 5 mm. 10x magnification of a pair of kinetochores are shown in the

right. Dashed circle encompasses a single kinetochore and the arrow indicates the position of centromeric Aurora B. Scale bar = 0.5 mm. (D)

Normalized ratio of pAurora B/ACA fluorescence signal at inner centromere of NOC and NOC + ActD. Each dot represents an individual kinetochore.

The red line represents the mean of all quantified kinetochores and the error bars represent the standard deviation from a pool of at least two

independent experiments. (NOC, 1.00 ± 0.48, n = 474; NOC + ActD, 0.63 ± 0.23, n = 309; ****p�0.0001 relative to control, Mann-Whitney Rank Sum

Test). (E) Normalized ratio of Mad1/ACA fluorescence signal at outer kinetochores of NOC and NOC + ActD cells. Each dot represents an individual

kinetochore. The red line represents the mean of all quantified kinetochores and the error bars represent the standard deviation from a pool of at least

two independent experiments. (NOC, 1.00 ± 0.39, n = 261; NOC + ActD, 0.55 ± 0.39, n = 258; ****p�0.0001 relative to control, Mann-Whitney Rank

Sum Test).

DOI: https://doi.org/10.7554/eLife.36898.004

The following figure supplements are available for figure 2:

Figure supplement 1. Actinomycin D compromise Aurora B localization in RPE1 cells.

DOI: https://doi.org/10.7554/eLife.36898.005

Figure supplement 2. Actinomycin D causes Aurora B displacement from centromeres onto chromosome arms.

DOI: https://doi.org/10.7554/eLife.36898.006

Figure supplement 3. Inhibition of mitotic translation or Aurora B kinase activity during prometaphase does not affect Aurora B localization.

DOI: https://doi.org/10.7554/eLife.36898.007

Figure supplement 4. Actinomycin D does not compromise pMPS1 localization at kinetochores and pH3T3 levels.

DOI: https://doi.org/10.7554/eLife.36898.008
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Figure 3. Actinomycin D affect recruitment of KNL1 and pDSN1 to kinetochores. (A) Representative immunofluorescence images of HeLa cells treated

with DMSO (NOC) or ActD for 4 hr (NOC + ActD) after nocodazole treatment with the indicated antibodies. Scale bar = 5 mm. (B) Normalized ratio of

pKNL1/ACA fluorescence signal at outer kinetochores of NOC and NOC + ActD cells. Each dot represents an individual kinetochore. The red line

represents the mean of all quantified kinetochores and the error bars represent the standard deviation from a pool of two technical replicates (NOC,

Figure 3 continued on next page
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Actinomycin D does not affect total CPC protein levels nor the levels of
mitotic transcripts
Western blot analysis revealed that Aurora B, as well as the total protein levels of the CPC regulatory

subunits Survivin and Borealin remained unchanged relative to controls (including inhibition of trans-

lation during mitosis with cycloheximide or Aurora B inhibition with ZM447439) after 4 hr treatment

with actinomycin D (Figure 4A–C). To test whether Aurora B was regulated by an effect of actinomy-

cin D over mitotic transcription, we performed a comparative genome-wide RNA-seq analysis

between cells treated either with nocodazole alone or nocodazole and actinomycin D. Importantly,

only mitotic cells were analyzed, as they were obtained by shake-off after nocodazole treatment and

subsequently transferred to new culture flasks before addition of actinomycin D (Figure 4A). Our

quantitative transcriptome analysis did not reveal any significant changes either in annotated or

novel assembled transcripts (including all biotypes) upon actinomycin D treatment, ruling out differ-

ential gene expression after transcription inhibition during mitosis. Importantly, we confirmed that

Cyclin B1, as well as all key mitotic regulators, including Aurora B, were not de novo transcribed

even during a prolonged mitosis (Figure 4D; see Materials and methods).

Due to the low mappability of the centromere, RNA-seq reads could not be properly aligned to

these regions. Consequently, the role of centromeric transcription, namely of regulatory non-coding

RNAs, could not be properly assessed in the previous experiment. Nevertheless, we were able to

directly measure by qPCR the expression of centromeric a-satellite RNA relative to a control house-

keeping gene (GAPDH) in cells that had been arrested in mitosis with nocodazole, in the presence

or absence of actinomycin D. We found that actinomycin D treatment did not reduce the level of

centromeric a-satellite RNA (Figure 4E,F). Taken together, our results demonstrate that inhibition of

transcription with actinomycin D during a prolonged mitosis caused by persistently unattached kinet-

ochores does not impair normal transcript levels, including centromeric a-satellite RNA, nor the nor-

mal levels of CPC proteins.

Inhibition of transcription independently of DNA-intercalation does not
affect spindle assembly checkpoint robustness nor the capacity to
trigger mitotic cell death
So far, our results indicated that actinomycin D compromises SAC response and Aurora B centro-

meric localization independently of de novo transcription. Therefore, we reasoned that actinomycin

D could displace Aurora B from centromeres, not by inhibiting mitotic transcription, but through its

Figure 3 continued

1.00 ± 0.40, n = 126; NOC + ActD, 0.79 ± 0.35, n = 126; ****p�0.0001 relative to control, t test). (C) Representative immunofluorescence images of Hela

cells treated with DMSO (NOC) or ActD for 4 hr (NOC + ActD) after nocodazole treatment with the indicated antibodies. Scale bar = 5 mm. (D)

Normalized ratio of pDNS1/ACA fluorescence signal at outer kinetochores of NOC and NOC + ActD cells. Each dot represents an individual

kinetochore. The red line represents the mean of all quantified kinetochores and the error bars represent the standard deviation from a pool of two

technical replicates (NOC, 1.00 ± 0.37, n = 116; NOC + ActD, 0.57 ± 0.29, n = 116; ****p�0.0001 relative to control, Mann-Whitney Rank Sum Test). (E)

Representative immunofluorescence images of HeLa cells treated with DMSO (NOC) or ActD for 4 hr (NOC + ActD) after nocodazole treatment with

the indicated antibodies. Scale bar = 5 mm. (F) Normalized ratio of KNL1/ACA fluorescence signal at outer kinetochores of NOC and NOC + ActD cells.

Each dot represents an individual kinetochore. The red line represents the mean of all quantified kinetochores and the error bars represent the

standard deviation from a pool of two technical replicates (NOC, 1.00 ± 0.34, n = 160; NOC + ActD, 0.71 ± 0.34, n = 160; ****p�0.0001 relative to

control, Mann-Whitney Rank Sum Test). (G) Representative immunofluorescence images of HeLa cells treated with DMSO (NOC) or ActD for 4 hr

(NOC + ActD) after nocodazole treatment with the indicated antibodies. Scale bar = 5 mm. (H) Normalized ratio of DSN1/ACA fluorescence signal at

outer kinetochores of NOC and NOC + ActD cells. Each dot represents an individual kinetochore. The red line represents the mean of all quantified

kinetochores and the error bars represent the standard deviation from a pool of two technical replicates (NOC, 1.00 ± 0.34, n = 110; NOC + ActD,

0.96 ± 0.32, n = 110; n.s. p>0.05 relative to control, t test).

DOI: https://doi.org/10.7554/eLife.36898.009

The following figure supplements are available for figure 3:

Figure supplement 1. Actinomycin D does not affect levels of HEC1 and CENP-A (A) Representative immunofluorescence images of HeLa cells treated

with DMSO (NOC) or ActD for 4 hr (NOC + ActD) after nocodazole treatment with the indicated antibodies.

DOI: https://doi.org/10.7554/eLife.36898.010

Figure supplement 2. Aurora B inhibition affects recruitment of Mad1 and KNL1 to kinetochores.

DOI: https://doi.org/10.7554/eLife.36898.011
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Figure 4. Actinomycin D treatment does not affect the levels of Aurora B or mitotic transcripts. (A) Schematic representation of the experimental

protocol used to study the effect of ActD in NOC induced mitotic arrested cells by western blot, RNA-seq and qPCR. (B) Western blot analysis of

asynchronous (I), G2, and mitotic HeLa cell extracts (Mitosis) with the indicated antibodies. Mitotic extracts were derived from isolated mitotic cells

treated cells with DMSO (control), ActD (ActD), cycloheximide (CHX) or Aurora B inhibitor (AurBi). a-tubulin was used as loading control. Approximate

molecular weights are shown on the left. (C) Quantification of western blot is depicted in B. The bar represents the mean and the standard deviation

from three independent experiments. (D) Normalized expression after RNA-seq of the indicated genes in control or ActD-treated mitotic cells. Error

Figure 4 continued on next page

Novais-Cruz et al. eLife 2018;7:e36898. DOI: https://doi.org/10.7554/eLife.36898 10 of 27

Research article Cell Biology

https://doi.org/10.7554/eLife.36898


ability to intercalate with DNA. In line with this hypothesis, it was previously shown that actinomycin

D, but not a-amanitin [a potent and selective inhibitor of RNA polymerase II that triggers the degra-

dation of the largest RNA polymerase II subunit (Nguyen et al., 1996), interferes with the normal

centromeric localization of Aurora B (Becker et al., 2010). However, a-amanitin is a slow-uptake

drug and inhibition of transcription was not confirmed in these studies. For this reason, we first com-

pared the effect of a-amanitin with that of actinomycin D or triptolide, a fast and irreversible tran-

scription inhibitor that prevents the formation of the ‘transcription bubble’ without intercalating with

DNA (Titov et al., 2011; Vispé et al., 2009). To determine the extent of transcription inhibition by

these drugs, we used qPCR to amplify Mcl1, a short half-life transcript isolated from asynchronous

cells after 4 hr treatment either with a-amanitin, actinomycin D or triptolide. As suspected, we could

not detect any significant effect of a-amanitin over Mcl1 transcript levels relative to controls

(Figure 5A). In sharp contrast, treatment with either actinomycin D or triptolide resulted in a 5-fold

decrease in Mcl1 transcript levels (Figure 5A) and led interphase cells to death within 4–5 hr in the

presence of either actinomycin D or triptolide (Videos 1 and 2), suggesting an efficient and equiva-

lent inhibition of transcription in both scenarios. Finally, we confirmed that, within the time course of

our experiment, triptolide, but not a-amanitin, caused the degradation of the large subunit of RNA

Polymerase II (Figure 5—figure supplement 1A). Thus, triptolide, but not a-amanitin, efficiently

inhibits transcription in living cells and it does so independently of DNA intercalation.

Next, we investigated whether transcription inhibition with triptolide compromises SAC robust-

ness in cells treated with nocodazole. We found no significant differences in mitotic duration

between nocodazole-treated cells with or without triptolide (19.3 ± 7.1 hr vs 19.5 ± 5.8 hr, respec-

tively, median ±SD, n = 301 cells, p=0.65, Mann-Whitney Rank Sum Test, Figure 5B and Video 2).

Moreover, contrary to what was previously observed in the case of actinomycin D, we did not detect

any effect of triptolide over cell fate after the mitotic delay imposed by nocodazole treatment and

most cells died in mitosis (Figure 5C and Video 2). Triptolide also did not cause the displacement of

Aurora B from centromeres in both fixed and live-cell assays (Figure 5D–G). These results, sup-

ported by our RNA-seq data, indicate that SAC robustness, Aurora B centromeric localization, as

well as the capacity to die in mitosis after a prolonged mitotic delay is independent of de novo

transcription.

DNA intercalation interferes with the interaction between the CPC and
nucleosomes
Our previous results suggest that DNA intercalation, rather than transcriptional inhibition, causes the

displacement of Aurora B from centromeres. To test this, we took advantage from another bona

fide DNA intercalating compound, ethidium bromide, which has not been implicated in transcription

inhibition (Bensaude, 2011). Indeed, we found that interphase cells were able to enter mitosis after

treatment with ethidium bromide (Video 2). Additionally, Mcl1 transcript levels were only slightly

decreased (without statistic significance) after 4 hr of ethidium bromide treatment (Figure 6A). In

agreement, cells treated with nocodazole and ethidium bromide spent slightly less time in mitosis

when compared to cells treated with nocodazole only, but the difference was not statistically rele-

vant (19.2 ± 7.0 hr vs 18.1 ± 5.9 hr, median ±SD, n = 386;151 cells/condition, p=0.13, Mann-Whitney

Rank Sum Test, Figure 6B and Video 2). However, similar to actinomycin D, ethidium bromide

caused a significant effect over cell fate after the mitotic delay imposed by nocodazole, causing

mitotic slippage in approximately 50% of the cells (Figure 6C and Video 2). Ethidium bromide also

displaced Aurora B from centromeres in fixed cells, although to a less extent when compared with

actinomycin D (Figure 6D,E). These data suggest that DNA intercalating drugs interfere with normal

Aurora B localization at centromeres and compromise cell fate after a prolonged mitosis.

Figure 4 continued

bars represent standard deviations from two independent experiments. (E) Normalized expression after qPCR of human alpha satellite gene in control

or ActD-treated mitotic cells (NOC, 1.00 ± 0.01; NOC + ActD, 0.95 ± 0.02, median ±SD from three technical replicates, n.s. p>0.05 relative to control,

Mann-Whitney Rank Sum Test). (F) Agarose gel electrophoresis of the qPCR product after amplification of cDNA, obtained from control or ActD-

treated mitotic cells, with primers specific for the human alpha-satellite and GAPDH.

DOI: https://doi.org/10.7554/eLife.36898.012
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Figure 5. Inhibition of transcription independently of DNA-intercalation does not affect spindle assembly checkpoint robustness nor the capacity to

trigger mitotic cell death. (A) Normalized expression of Mcl1 in asynchronous control HeLa cells or cells treated with ActD, triptolide or a-amanitin

(ActD, 0.23 ± 0.02, Triptolide, 0.14 ± 0.03; a-amanitin, 1.13 ± 0.2, median ±SD from three technical replicates, n.s. p>0.05, ****p�0.0001 relative to

control, t test). (B) Scatter plot showing the duration of the mitotic arrest of control (NOC) and HeLa cells treated with Triptolide (NOC + Triptolide)

Figure 5 continued on next page
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To directly test whether DNA intercalating drugs interfere with the capacity of Aurora B to associ-

ate with centromeric chromatin, we probed the ability of the CPC Centromere Targeting Module

(CPC-CTM), composed by full-length Borealin, full-length Survivin and INCENP 1–58, to bind recom-

binant nucleosome core particles (NCPs) by means of Electrophoretic Mobility Shift Assays (EMSA),

in the presence or absence of actinomycin D, ethidium bromide or triptolide (Figure 6F). Consistent

with our fixed and live-cell data, actinomycin D or ethidium bromide-treated NCPs showed ~50%

reduction in CPC-CTM binding, when compared to DMSO- or Triptolide-treated NCPs (p�0.05, t

test, Figure 6G). Thus, DNA intercalating drugs interfere with centromere integrity.

The capacity to satisfy the spindle assembly checkpoint and resume
mitosis and cytokinesis after a prolonged mitotic delay does not
require de novo transcription
Lastly, we tested whether the capacity to progress and exit mitosis requires de novo mitotic tran-

scription. To assure an efficient transcriptional repression during mitosis, we performed a nocoda-

zole washout experiment. Accordingly, HeLa cells were incubated for 5 hr with nocodazole and the

transcription inhibitors (actinomycin D or triptolide) were added in the last 2 hr of the mitotic block-

age. Nocodazole was subsequently washed out and the cells were allowed to progress through

mitosis only in the presence of the transcription inhibitors (Figure 7A,B and Video 3). Live-cell imag-

ing was used to directly determine the duration of mitosis, while assessing cell fate. We found that

control and triptolide-treated cells took a similar time to exit mitosis after nocodazole washout

(79.1 ± 28.7 min vs 86.2 ± 31.7 min, median ± SD, n = 116;113 cells/condition, p=0.11, Mann-Whit-

ney Rank Sum Test, Figure 7C and Video 3) without any apparent defect (Figure 7D and Video 3).

In contrast, actinomycin D-treated cells showed

a significant delay in mitotic exit (Figure 7C and

Video 3) and underwent mitotic slippage (33%)

or failed cytokinesis (47%) (Figure 7D and

Video 3). Close inspection of actinomycin

D-treated cells after nocodazole washout by

immunofluorescence revealed persistent DNA

bridges at the cleavage furrow (Figure 7—figure

supplement 1A), which might have accounted

for the observed failure in completing cytokine-

sis. Taken together, these experiments indicate

that the capacity of human cells to progress and

Figure 5 continued

after nocodazole treatment. The red line represents the mean and the error bars represent the standard deviation from a pool of at least two

independent experiments. (NOC, 19.2 ± 7.0 hr, n = 386; NOC + Triptolide, 30.1 ± 14.7 hr, n = 301; median ±SD; n.s. p>0.05, Mann-Whitney Rank Sum

Test) (C) Cell fate of mitotic HeLa cells treated with the same drugs as in 4B. (D) Representative immunofluorescence images of HeLa cells treated with

DMSO (NOC) or Triptolide for 4 hr (NOC + Triptolide) after nocodazole treatment with the indicated antibodies. Scale bar = 5 mm. 10x magnification of

a pair of kinetochores are shown in the right. Dashed circle encompasses a single kinetochore and the arrow indicates the position of centromeric

Aurora B. Scale bar = 0.5 mm. (E) Normalized ratio of pAurora B/ACA fluorescence signal at inner centromere of NOC and NOC + Triptolide. Each dot

represents an individual kinetochore. The red line represents the mean of all quantified kinetochores and the error bars represent the standard

deviation from a pool of two independent experiments. (NOC, 1.00 ± 0.48, n = 474; NOC + Triptolide, 1.05 ± 0.00.40, n = 296; n.s. p>0.05 relative to

control, Mann-Whitney Rank Sum Test) (F) Selected time frames from fluorescence microscopy of HeLa LAP-Aurora B cells treated with DMSO or

Triptolide after nocodazole treatment. Images were acquired every 10 min. Scale bar = 5 mm. Time = h:min. (G) Relative fluorescence intensity curves of

centromeric GFP-Aurora B for control and Triptolide-treated HeLa cells after nocodazole treatment. Fluorescence intensities were normalized to the

level at time = 0. The curves depict mean GFP-Aurora B fluorescent intensity from analyzed cells (NOC n = 9; NOC + Triptolide n = 8; from time = 0 to

30 time frames), and error bars represent the standard deviation (n.s. p>0.05 relative to control, Analysis of covariance). Plus symbol on the graph

indicates the time when the drug was added.

DOI: https://doi.org/10.7554/eLife.36898.013

The following figure supplement is available for figure 5:

Figure supplement 1. RNA Pol II is not degraded with 12 hr a-amanitin treatment.

DOI: https://doi.org/10.7554/eLife.36898.014

Video 2. Phase contrast microscopy of HeLa cells

treated with DMSO, Triptolide or ethidium bromide

after nocodazole (NOC) treatment. Images were

acquired every 15 min. Time = h:min.

DOI: https://doi.org/10.7554/eLife.36898.015
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Figure 6. DNA intercalation compromises SAC response by interfering with Aurora B localization. (A) Normalized expression of Mcl1 in asynchronous

control HeLa cells or cells treated with ethidium bromide (EtBr) (EtBr, 0.71 ± 0.06, median ±SD from three technical replicates, n.s. p>0.05, Mann-

Whitney Rank Sum Test). (B) Scattered plot showing the duration of the mitotic arrest of control (NOC) and Hela cells treated with ethidium bromide

(NOC + EtBr) after nocodazole treatment (NOC, 19.2 ± 7.0 hr, n = 386; NOC + EtBr, 18.1 ± 5.9 hr, n = 151; median ±SD; n.s. p>0.05, Mann-Whitney

Figure 6 continued on next page
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exit mitosis, including the completion of cytokinesis, is independent of de novo transcription.

Discussion
Whether transcription is permissive and required during mitosis is a recurrent debate in the field.

The resolution of this long-lasting controversy has been hampered by the difficulty to efficiently and

specifically repress transcription during mitosis, which often takes only ~30 min in human cells. It has,

however, been proposed that the master mitotic regulator Cyclin B1 is actively transcribed during

mitosis (Sciortino et al., 2001) and de novo transcription is required to sustain a mitotic delay under

conditions that prevent SAC satisfaction for several hours (Mena et al., 2010). Centromere/kineto-

chore assembly has also been linked to active transcription (Bobkov et al., 2018; Carone et al.,

2009; Chan et al., 2012; Du et al., 2010; Grenfell et al., 2016; Li et al., 2008; Liu et al., 2015;

Nakano et al., 2003; Pezer and Ugarković, 2008; Rošić et al., 2014; Topp et al., 2004;

Wong et al., 2007; Zhang et al., 2005), including the localization and activity of Aurora B, as shown

in Xenopus egg extracts (Blower, 2016; Grenfell et al., 2016). More recently, an entire transcription

program was proposed to remain constitutively active during mitosis and mitotic exit in human cells

(Palozola et al., 2017; Strzyz, 2017; Timmers and Verrijzer, 2017), but whether this potential pro-

gram is required for mitotic progression and exit was not elucidated.

By combining direct live-cell imaging, while monitoring the efficiency and specificity of transcrip-

tion inhibition at the whole genome level, we show that the capacity of human cells to sustain, prog-

ress, exit or die in mitosis does not require de novo transcription. Moreover, we demonstrate that

commonly used transcription inhibitors, such as actinomycin D and a-amanitin show serious limita-

tions in live-cell experiments that aim to understand mitosis. Actinomycin D and other DNA interca-

lating agents caused partial dissociation of the CPC from nucleosomes, thereby compromising

Aurora B centromeric localization and SAC response. On the other hand, the slow uptake drug a-

amanitin failed to efficiently inhibit transcription even after several hours in mitosis. Most impor-

tantly, efficient inhibition of mitotic transcription independently of DNA intercalation using triptolide

had no discernible effect over Aurora B centromeric localization or SAC response. We concluded

that centromere integrity, rather than mitotic transcription, is required for proper localization and

activity of Aurora B and to mount a robust SAC able to sustain mitosis in human cells for several

hours in the event of unattached kinetochores. These findings are consistent with a role of Aurora B

in the SAC under conditions that prevent microtubule attachment (Santaguida et al., 2011) and our

work offers a possible explanation for such a role. Accordingly, we showed that both Aurora B activ-

ity and its stable association with centromeres are important for normal Knl1 and Mad1 recruitment

to unattached kinetochores. However, at this stage, we cannot formally exclude other effects caused

by a prolonged actinomycin D treatment under conditions that prevent SAC satisfaction.

In light of a recent study reporting the identification of over 900 nascent transcripts from alleg-

edly metaphase cells (Palozola et al., 2017), it was surprising that our genome wide RNA-seq or

qPCR analyses failed to reveal any significant alteration in gene expression, including Cyclin B1 and

other mitotic genes, during a prolonged mitosis after transcription inhibition with actinomycin D.

However, in the previous study, nocodazole-treated cells were only 95% pure and transcripts

Figure 6 continued

Rank Sum Test). The red line represents the mean and the error bars represent the standard deviation from a pool of at least two independent

experiments. (C) Cell fate of mitotic HeLa cells treated with the same drugs as in 5B. (D) Representative immunofluorescence images of HeLa cells

treated with DMSO (NOC) or ethidium bromide for 4 hr (NOC + EtBr) after nocodazole treatment with the indicated antibodies. Scale bar = 5 mm. 10x

magnification of a pair of kinetochores are shown in the right. Dashed circle encompasses a single kinetochore and the arrow indicate the position of

centromeric Aurora B. Scale bar = 0.5 mm. (E) Normalized ratio of pAurora B/ACA fluorescence signal at inner centromere of NOC and NOC + EtBr.

Each dot represents an individual kinetochore. The red line represents the mean of all quantified kinetochores and the error bars represent the

standard deviation. (NOC, 1.00 ± 0.48, n = 474; NOC + EtBr, 0.79 ± 0.23, n = 143; ****p�0.0001 relative to control, Mann-Whitney Rank Sum Test). (F)

Shows the Electrophoretic Mobility Shift Assay (EMSA) experiments carried out to assess the binding chromosomal passenger complex (CPC) ability to

recombinant nucleosome core particles (NCPs) in the presence of DMSO, ActD, Triptolide or EtBr. Different molar concentrations (0, 25 and 50 nM) of

CPC were tested. (G) The bar diagram shows the densitometric profile of the autoradiograph depicted in F. The bar represents the mean ±SD from at

least three independent experiments (n.s. p>0.05, *p�0.05 relative to control, t test).
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isolated 40 min after nocodazole washout might have derived from cells that had already exited

mitosis and reached early G1 stage where transcription is expected to be permissive (Hsiung et al.,

2016). Thus, the use of synchronized, yet impure, cell populations, as opposed to monitoring tran-

scription inhibition only after cells commit to mitosis by direct live-cell imaging, might account for

the differences observed between studies. Nevertheless, it remains possible that, as cells progress

through mitosis and enter anaphase, de novo transcription starts to be permissive, despite its dis-

pensability for the completion of and exit from mitosis.

Consistent with a global shut-down of transcription during prometaphase (the physiological

equivalent of nocodazole-arrested cells), RNA Polymerase II is generally found displaced from
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Figure 7. Mitotic progression and cytokinesis after nocodazole washout does not require de novo transcription. (A) Schematic representation of the

experimental protocol used to study the effect of the transcription inhibitors ActD and triptolide on mitotic progression. (B) Selected time frames from

phase contrast microscopy of HeLa cells treated after the NOC washout with DMSO, ActD or Triptolide. Images were acquired every 20 min. For

control (DMSO) and Triptolide (Triptolide), arrows highlight a normal mitotic progression after nocodazole washout. For ActD-treated cells (ActD),

arrows highlight a cell that fails to divide after release from nocodazole arrest. Scale bar = 10 mm. Time = hr:min. (C) Scattered plot showing the mitotic

duration between nocodazole washout and anaphase onset in control (DMSO), ActD and Triptolide treated HeLa cells (DMSO, 79.1 ± 28.8 min, n = 116;

ActD, 140.5 ± 55.7 hr, n = 79; Triptolide, 86.2 ± 31.9 hr, n = 113, median ±SD from a pool of two technical replicates, n.s. p>0.05, ****p�0.0001, Mann-

Whitney Rank Sum Test). (D) Cell fate of mitotic HeLa cells treated with the same drugs as in 7B.

DOI: https://doi.org/10.7554/eLife.36898.017

The following figure supplement is available for figure 7:

Figure supplement 1. Actinomycin D promotes cytokinesis failure.
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chromatin (Hsiung et al., 2016), with the notori-

ous exception of the centromeric region

(Chan et al., 2012). Because recent studies have

suggested that non-coding RNAs associate with

centromere and kinetochore proteins, including

CENP-A, CENP-C and Aurora B (Blower, 2016;

Carone et al., 2009; Du et al., 2010; Ferri et al.,

2009; Molina et al., 2017, 2016; Rošić et al.,

2014; Wong et al., 2007), it is possible that tran-

scription of non-coding RNAs plays a role in cen-

tromere assembly and function. However,

whether this occurs during mitosis or during G1,

when centromere assembly takes place in mam-

malian cells (Jansen et al., 2007) remains

unclear. Centromeric transcription is involved in nucleosome disassembly during interphase

(Boeger et al., 2003) to facilitate the replacement of histone H3 by CENP-A (McKittrick et al.,

2004; Tagami et al., 2004). Intriguingly, the observation that the elongating form of RNA Polymer-

ase II is present at centromeres during mitosis (Chan et al., 2012) leave open the possibility that

some level of local transcription of non-coding RNAs might still take place. However, it should be

noted that a recent study in S. pombe indicated that RNA Polymerase II stalls at centromeric DNA

and the level of stalling is directly proportional to the level of cnp1p (centromere-specific histone

H3) nucleosome assembly (Catania et al., 2015).

While we were unable to experimentally exclude that non-coding RNAs are being transcribed

from the centromere during a prolonged mitosis, we failed to detect any significant change in the

total levels of a-satellite RNA after transcription inhibition, in agreement with previous reports

(Liu et al., 2015). Indeed, experimental increase of a-satellite RNA levels were shown to reduce the

binding of Sgo1 to nucleosomes (Liu et al., 2015) and led to problems in chromosome segregation

(Chan et al., 2017; Zhu et al., 2011), suggesting that the levels of a-satellite RNA must be tightly

regulated to ensure a faithful mitosis.

Overall, our results demonstrate that, regardless of our capacity to detect residual transcription

that might still take place on specific chromosomal loci during mitosis, this is not required for human

cells to sustain, progress, exit or die in mitosis.

Materials and methods

Key resources table

Reagent type Designation Source or reference Identifiers Additional information

Cell line
(human)

HeLa parental Provided by
Y. Mimori-Kiyosue

Cell line
(human)

GFP-Aurora
B HeLa

Provided by
M. Lampson

Cell line
(human)

Cyclin B1-
Venus HeLa

Provided by
J. Pines

Antibody anti-Aurora B
pT232 (Rabbit
Polyclonal)

Rockland
Immuno
chemicals

Cat#600-401-677 IF: (1:500)

Antibody anti-Aim1
(Mouse Monoclonal)

BD Biosciences Cat#611083 IF: (1:500)
WB: (1:1,000)

Antibody anti-Mad1
(Mouse Monoclonal)

Merck Millipore Cat#MABE867 IF: (1:500)

Antibody anti-phospho-
Histone
H3 Ser10
(Mouse Monoclonal)

Abcam Cat#ab14955 IF: (1:100,000)

Continued on next page

Video 3. Phase contrast microscopy of HeLa cells

treated with DMSO, ActD or Triptolide after NOC

washout. Images were acquired every 20 min. Time =

hr:min.

DOI: https://doi.org/10.7554/eLife.36898.019
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Continued

Reagent type Designation Source or reference Identifiers Additional information

Antibody anti-Cleaved
Caspase-3
(Rabbit Polyclonal)

Cell Signaling
Technology

Cat#9661 IF: (1:1,000)

Antibody anti-Centromere
antibody (Human)

Fitzgerald Cat#90C-CS1058 IF: (1:500)

Antibody anti-phospho-
Mps1
Thr676 (Rabbit
Polyclonal)

a gift from G. Kops IF: (1:2,000)

Antibody anti-phospho-
Histone
H3 Thr3 (Mouse
Monoclonal)

a gift from
J. Higgins

IF: (1:1,000)

Antibody anti-HEC1
(Mouse
Monoclonal)

a gift from
R. Gassmann

IF: (1:2,000)

Antibody anti-KNL1
(Rabbit
Polyclonal)

a gift from
R. Gassmann

IF: (1:500)

Antibody anti-phosho
DSN1
(Rabbit
Polyclonal)

a gift from
I. Cheeseman

IF: (1:1,000)

Antibody anti-phospho
KNL1
(Rabbit
Polyclonal)

a gift from
I. Cheeseman

IF: (1:1,000)

Antibody anti-CENPA
(Mouse
Monoclonal)

a gift from
L. Jansen

IF: (1:200)

Antibody anti-DSN1
(Mouse
Monoclonal)

a gift from
A. Musacchio

IF: (1:200)

Antibody Alexa 488- or
568-or 647
secondaries

Invitrogen IF: (1:1,000)

Antibody anti-Survivin
(Rabbit
Polyclonal)

Novus
Biologicals

Cat#NB500-201 WB: (1:1,000)

Antibody anti-Borealin
(Rabbit
Polyclonal)

a gift from
R. Gassmann

WB: (1:1,000)

Antibody anti-a-tubulin
clone
B-512 (Mouse
Monoclonal)

Sigma-Aldrich Cat#T5168 WB: (1:5,000)

Antibody anti-RNA Pol
II S2
(Rabbit
Polyclonal)

Abcam Cat#ab5095 WB: (1:1,000)

Antibody anti-mouse or
anti-rabbit

Jackson
Immuno
Research

WB: (1:5,000)

Chemical
compound, drug

Nocodazole Sigma-Aldrich Cat#M1404 1 mM

Chemical
compound, drug

MG132 EMD Millipore Cat#133407-82-6 5 mM

Continued on next page
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Continued

Reagent type Designation Source or reference Identifiers Additional information

Chemical
compound, drug

Mps1-IN-1 Provided
by N. Gray

10 mM

Chemical
compound, drug

RO3306 Roche Cat#SML0569 10 mM

Chemical
compound, drug

Actinomycin D Sigma-Aldrich Cat#A9415 8 mM

Chemical
compound, drug

a-amanitin Sigma-Aldrich Cat#A2263 2 mM

Chemical
compound, drug

Triptolide Sigma-Aldrich Cat#T3652 1 mM

Chemical
compound, drug

Cycloheximide Sigma-Aldrich Cat#01810 35.5 mM

Chemical
compound, drug

Ethidium
Bromide

Sigma-Aldrich Cat#E8751 25 mM

Chemical
compound, drug

ZM447439
(Aurora B
inhibitor)

Selleckchem.com Cat#S1103 3.3 mM

Cell culture and reagents
GFP-Aurora B expressing HeLa cells and Cyclin B1-Venus expressing HeLa cells were provided by M.

Lampson and J. Pines, respectively. All cell lines including parental HeLa cells were grown in DMEM

or L15 medium supplemented with 10% FBS (Invitrogen) and penicillin/streptomycin (100 IU/ml and

100 mg/ml) in a 37˚C incubator with 5% CO2. Microtubule depolymerization was induced by nocoda-

zole (Sigma-Aldrich) at 1 mM for 2–16 hr, according to the experiment. To inhibit the proteasome,

induce a metaphase arrest, and prevent exit due to a compromised SAC, cells were treated with 5

mM MG132 (EMD Millipore). For Mps1 inhibition, cells were treated with 10 mM Mps1-IN-1 (provided

by N. Gray). For Aurora B inhibition, cells were treated with 3.3 mM ZM447439 for 4 hr prior to

immunofluorescence. G2-enriched extracts were derived from cells incubated for 16 hr with the

Cdk1 inhibitor RO3306 (Roche) at 10 mM, whereas mitotic extracts were obtained by shake-off upon

nocodazole treatment. For transcription inhibition, actinomycin D, a-amanitin and triptolide (all from

Sigma-Aldrich) were added to final concentration of 8 mM, 2 mM and 1 mM, respectively. To inhibit

translation, cells were treated with 35.5 mM cycloheximide (Sigma-Aldrich). Ethidium bromide

(Sigma-Aldrich) was used at final concentration of 25 mM. The cell lines were routinely tested nega-

tive for mycoplasma contamination.

Live cell imaging
Control and transcriptionally repressed HeLa cells were imaged with phase-contrast microscopy (Axi-

overt 200M; Carl Zeiss; 20 � objective lens; A-Plan Ph1; 0.3 NA) equipped with a CCD camera (Cool-

SNAP HQ2; Photometrics) at 37˚C in DMEM supplemented with 10% FBS. To determine mitotic

timing, images were captured every 15 min for 72 hr using the Micro-Manager 1.3 software (www.

micro-manager.org). In the washout experiment, images were captured every 20 min for 24 hr. HeLa

cells stably expressing GFP-Aurora B (LAP-Aurora B) were imaged with an inverted microscope

(TE2000U; Nikon; 20 � objective lens; LWD; 0.4 NA) equipped with an electron-multiplying charge-

coupled device (CCD) camera (iXonEM+; Andor Technology) at 37˚C in DMEM phenol red free

medium (Invitrogen) supplemented with 10% FBS and 25 mM HEPES. Eleven 1 mm separated

z-planes covering the entire volume of the mitotic spindle were collected every hour for 6 hr using

the NIS-Elements Viewer software (Nikon). Cyclin B1-Venus were imaged every 15 min for 7 hr using

an IN Cell Analyzer 2000 microscope (GE Healthcare) at 37˚C in phenol red DMEM free medium sup-

plemented with 10% FBS. The duration of all drug treatments in live-cell experiments are schemati-

cally illustrated in each respective figure. All images were analyzed with open source image analysis

software ImageJ and cell profiler.
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Immunofluorescence microscopy
HeLa cells were fixed with 4% paraformaldehyde for 10 min and subsequently extracted in 0.3% Tri-

ton X-100 in 1 x PBS for 10 min. After short washes in PBS with 0.1% Triton X-100 and blocking with

10% FBS in PBS with 0.1% Triton X-100, all primary antibodies were incubated at 4˚C overnight.

Then, the cells were washed with PBS containing 0.1% Triton X-100 and incubated with the respec-

tive secondary antibodies for 1 hr at room temperature. DNA was counterstained with DAPI (1 mg/

ml; Sigma-Aldrich) before coverslips were mounted in 90% glycerol +10% Tris, pH 8.5,+0.5% N-pro-

pyl gallate on glass slides. Rabbit anti-Aurora B pT232 (1:500; Rockland Immunochemicals Inc.),

mouse anti-Aim1 (1:500; BD Biosciences), mouse anti-Mad1 (1:500; Merck Millipore), mouse anti-

phospho-Histone H3 Ser10 (1:100,000; Abcam), rabbit anti-Cleaved Caspase-3 (1:1,000; Cell Signal-

ing Technology), human anti-centromere antibody (ACA; 1:500, Fitzgerald Industries International),

rabbit anti-phospho-Mps1 Thr676 (1:2000, a gift from G. Kops), mouse anti-phospho-Histone H3

Thr3 (1:1000, a gift from J. Higgins), mouse anti-HEC1 (1:2000, a gift from R. Gassmann), rabbit anti-

KNL1 (1:500, a gift from R. Gassmann), rabbit anti-phosho-DSN1 and anti-phospho-KNL1 (1:1000, a

gift from I. Cheeseman), mouse anti-CENPA (1:200, a gift from L. Jansen) and mouse DSN1 (1:200, a

gift from A. Musacchio) were used as primary antibodies, and Alexa Fluor 488, 568, and 647 (Invitro-

gen) were used as secondary antibodies (1:1,000). Images were acquired on an AxioImager Z1 (63�,

Plan oil differential interference contrast objective lens, 1.4 NA; all from Carl Zeiss) equipped with a

charge-coupled device (CCD) camera (ORCA-R2; Hamamatsu Photonics) using the Zen software

(Carl Zeiss) and blind deconvolved using Autoquant X (Media Cybernetics). Forty-one 0.2 mm sepa-

rated z-planes covering the entire mitotic cell were collected. Images were analyzed in ImageJ, proc-

essed in Photoshop CS4 (Adobe) and represented with a maximum intensity projection of a

deconvolved z stack.

Fluorescence quantification
For quantitative measurements, all images compared were acquired using identical acquisition set-

tings. Image analysis was performed using ImageJ. Briefly, individual kinetochores were identified by

ACA staining and marked by a region of interest (ROI). The average fluorescence intensity of signals

(pixel gray levels) of pAurora B at the inner centromere and Mad1 at kinetochores were measured

on the focused z plan, and the background fluorescence was measured outside the ROI and sub-

tracted. Fluorescence intensity measurements were normalized to the ACA signals. The results are

reported after normalized to relative fluorescence levels in control samples. Approximately 1,300 KT

pairs from 140 cells were analyzed for pAurora B and for Mad1, approximately 500 KT pairs from 50

cells were analyzed. The mean fluorescence intensity of LAP-Aurora B signals (pixel gray levels) from

the live cell imaging was measured on the sum projection and the background fluorescence was

measured outside the ROI and subtracted. Fluorescence intensities were normalized to the level at

time = 0 and represented as a function of time. Approximately eight cells were analyzed per

condition.

Western blot
HeLa cells were ressuspended and lysed in NP-40 lysis buffer (20 mM HEPES-KOH pH 7.9, 1 mM

EDTA, 1 mM EGTA, 150 mM NaCl, 0.5% (v/v) NP-40, 20% (v/v) Glycerol, 2 mM DTT, 1 mM PMSF)

supplemented with protease and phosphatase inhibitors. The protein concentration was measured

using the Bradford protein assay and 50 mg of proteins were resuspended in Protein Loading Buffer.

Proteins were separated into a 4–20% SDS-PAGE and transferred to a nitrocellulose Hybond-C

membrane using an iBlot Gel Transfer Device (Thermo Scientific). The membranes were blocked

with 5% milk in PBS with 0.1% Tween-20 (PBST) at room temperature during 1 hr, and all primary

antibodies were incubated at 4˚C overnight. After five washes in PBST, the membranes were incu-

bated with the secondary antibodies during 1 hr at room temperature. The membranes were washed

in the same conditions than previously and the detection was performed with Clarity Western ECL

Substrate (Bio-Rad). The following antibodies were used for western blot: rabbit anti-Survivin

(1:1000; Novus Biologicals), mouse anti-Aim1 (1:1000; BD Biosciences), rabbit anti-Borealin (1:1000;

provided by R. Gassmann), mouse anti-a-tubulin (clone B-512, 1:5,000; Sigma-Aldrich) and rabbit

RNA Pol II S2 (1:1000; Abcam) were used as primary antibodies, and anti–rabbit and anti–mouse
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antibodies were used as secondary antibodies (1:5,000; Jackson ImmunoResearch Laboratories,

Inc.).

RNA extraction and transcription analysis by RT-qPCR
Total RNA was isolated from interphase and mitotic HeLa cells (shake-off) using trizol (Life technolo-

gies). Reverse transcriptase reaction was performed with 500 ng of total RNA with iscript (Bio-rad)

using the random primers and oligo(dTs) supplied, following the manufacturer’s instructions. All

primer sequences are in Supplemental Material. For each analysis, gapdh was used for normaliza-

tion. RT-qPCRs were performed in the iCycler iQ5 Real-Time PCR Detection System (Bio-Rad Labo-

ratories). The data obtained were analyzed using the Bio-Rad iQ5 Optical System Software v2.1

(BioRad Laboratories). The amplified products were additionally analyzed on agarose gel

electrophoresis.

RNA library preparation for RNAome sequencing
Quantity and total RNA integrity was checked following isolation using an Agilent Technologies

2100 Bioanalyzer. Sample with RNA Integrity Number (RIN) value greater than eight were selected.

The RNA samples were prepared as described before in (Derks et al., 2015) with the following

modifications. Five micrograms of total RNA were depleted according to the Illumina Ribo-zero

magnetic protocol (www.illumina.com). The Ribo-zero-treated RNA was purified using Agencourt

RNAClean XP Beads. RNA was fragmented on a Covaris S220. One microliter of the sheared rRNA

depleted RNA was loaded on an Agilent Technologies 21000 Bioanalyzer RNA Pico chip to deter-

mine successful ribosomal RNA depletion. The sheared RNA sample was concentrated in a Thermo

scientific SPD100 speedvac to 5 ml and a sequencing library was prepared according to the Illumina

TruSeq Small RNA protocol (www.illumina.com). In short, adapters are subsequently ligated to the

3’end and the 5’end of the RNA. The RNA is reverse transcribed, amplified by PCR and run on SDS-

PAGE gel. RNA fragments between 140 and500 bp are cut out of the gel and purified. One microli-

ter was loaded on an Agilent Technologies 2100 Bioanalyzer using a DNA 1000 assay to determine

the library concentration and quality.

Bridge amplification and sequencing by synthesis
Cluster generation was performed according to the Illumina TruSeq SR Cluster kit v2 (cBot) Reagents

Preparation Guide (www.illumina.com). Briefly, six RNAome libraries were pooled together to get a

stock of 2 nM. Five microliter of the 2 nM stock was denaturated with NaOH, diluted to 11 pM and

hybridized onto the flowcell. The hybridized products were sequentially amplified, linearized and

end-blocked according to the Illumina Single Read Multiplex Sequencing user guide. After hybridiza-

tion of the sequencing primer, sequencing-by-synthesis was performed using the HiSeq 2000 with a

36-cycle protocol. The sequenced fragments were denaturated with NaOH using the HiSeq 2000

and the index-primer was hybridized onto the fragments. The index was sequenced with a six-cycle

protocol.

Bioinformatics analysis
Raw FASTQ files were aligned to the human genome (NCBI/build37.1) and annotated using Gen-

code version 25. De novo transcriptome assembly was performed using Gencode annotation and

the StringTie assembler (Pertea et al., 2015). Mapping of sequence reads was performed using

STAR aligner and transcript detection and quantification was performed using Cufflinks. Gene/tran-

script levels were compared between control and actinomycin D-treated samples using the ballgown

program (Frazee et al., 2014).

Data deposition
Processed RNA-seq have been deposited and can be consulted at ArrayExpress under accession

number E-MTAB-6661 (http://www.ebi.ac.uk/fg/annotare/).

CPC-CTM expression and purification
Full length (f.l.) Survivin was cloned as a 3C-cleavable His-GFP tagged protein in a pRSET vector

(Thermo Fisher Scientific), f.l. Borealin was cloned as a TEV-cleavable His-tagged protein in a pETM
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vector (gift from C. Romier, IGBMC, Strasbourg), and INCENP1-58 was cloned as an untagged pro-

tein in a pMCNcs vector. The complex of f.l. Survivin, f.l. Borealin and INCENP1-58 was prepared by

co-expressing the subunits in E. Coli strain BL21 pLysS with an overnight induction at 18˚C. Cells
were lysed in lysis buffer containing 25 mM Hepes pH 7.5, 500 mM NaCl, 25 mM Imidazole, 2 mM

b-mercaptoethanol (Bme). The complex was purified by affinity chromatography using a HisTrap HP

column (GE Healthcare). The protein-bound column was washed with lysis buffer, followed by 25

mM Hepes pH 7.5, 1 M NaCl, 50 mM KCl, 10 mM MgCl, 25 mM Imidazole, 2 mM ATP, 2 mM Bme

and proteins were eluted using 25 mM Hepes pH 7.5, 500 mM NaCl, 500 mM Imidazole, 2 mM

Bme. Tags were cleaved during an overnight incubation with 3C and TEV while dialysing against 25

mM Hepes pH 7.5, 150 mM NaCl, 4 mM dithiothreitol (DTT) at 4˚C. The complex was further puri-

fied by a cation exchange chromatography (HiTrap SP, GE Healthcare) followed by gel filtration

using a Superdex 200 increase 10/300 column (GE Healthcare) equilibrated with 25 mM Hepes pH 8,

200 mM NaCl, 4 mM DTT.

Expression and purification of recombinant histones and refolding of
histone octamers
Human H2A and H2B and Xenopus laevis H3 and H4 were purified as described before

(Luger et al., 1999, Methods Mol Biol) with minor changes. LB media was used instead of 2X TY-AC

media for expression of H2A, H2B and H3 in E. coli BL21 (DE3) pLysS cells and H4 in E. coli BL21

cells. The preparation of inclusion bodies was performed using a Dounce glass/glass homogenizer.

After solubilisation of the inclusion bodies and the three-step dialysis against Urea dialysis buffer (7

M Urea, 100 mM NaCl, 10 mM Tris pH 8, 1 mM EDTA, 5 mM Bme), the sample was applied to a

HiTrap Q anion exchange column and then to a HiTrap SP cation exchange column (GE Healthcare).

The histones were eluted from the HiTrap SP column using a linear gradient from 100 mM to 1 M

NaCl in 7 M Urea, 10 mM Tris pH 8, 1 mM EDTA and 1 mM DTT. After the ion exchange step, puri-

fied recombinant histones were dialyzed against water with 5 mM Bme, lyophilized and stored at

�80˚C. Refolding of histone octamers was performed as previously described (Luger et al., 1999,

Methods Mol Biol). Briefly, lyophilized core histones were resuspended in unfolding buffer (7M Gua-

nidine HCl, 20 mM Tris pH 7.5, 10 mM DTT) and mixed to equimolar ratios. The histone mix was

then dialyzed against three changes of 500 ml refolding buffer (10 mM Tris pH 8, 2M NaCl, 1 mM

EDTA, 5 mM Bme) and the octamers were purified by size exclusion chromatography using a Super-

dex 200 increase 10/300 column (GE Healthcare) equilibrated with refolding buffer. Pooled fractions

with equimolar ratios of histones were stored at �80˚C.

Nucleosome core particle reconstitution and drug treatment
The 147 bp 601 Widom positioning sequence was amplified from a pBS-601Widom vector with 5’

IR700 labelled primers. Mononucleosome reconstitution was carried out using the salt gradient dialy-

sis method (Luger et al., 1999, Methods Mol Biol). Histone octamers were added to DNA to a 0.9

molar ratio of octamer to DNA after adjusting the salt concentration to 2 M NaCl. The mixture was

then dialysed against TE buffer (10 mM Tris pH 8, 1 mM EDTA, 50 mM NaCl) by gradually decreas-

ing the ionic strength from 2 M to 50 mM NaCl over a period of 20 hr using a peristaltic pump.

Reconstituted NCPs were treated with DMSO, 80 mm Actinomycin D, 10 mm Triptolide or 25 mm

Ethidium Bromide for 1 hr at 4˚C before incubating them with the CPC-CTM recombinant protein.

Electrophoretic mobility shift assay
Electrophoretic mobility assay (EMSA) was used to detect specific interaction between CPC and the

nucleosome core particles (NCPs). 25 and 50 nM recombinant CPC-CTM was added to 5 nM IR700-

labelled NCPs in reaction buffer (25 mM Hepes pH 7.5, 100 mM NaCl, 1 mM DTT, 10% Glycerol).

Reactions were incubated 30 min at 4˚C and resolved in a 0.5% agarose gel in 1X Tris-CAPS buffer

(60 mM Tris, 40 mM CAPS pH 9.3). The fluorescent bound and unbound NCPs were detected with

Odyssey CLx Infrared Imaging System (LI-COR Biosciences). The ratio of CPC-bound NCPs to free

NCPs was quantified using the Image Studio software (LI-COR Biosciences). Signal at the 0 nM CPC

lane was subtracted from all values to account for any effect on NCPs destabilization upon drug

treatment (EtBr-treated nucleosomes showed a faint smear above the unbound-NCP band indicating

a slight NCP destabilization upon EtBr treatment).
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Statistical analysis
For statistical analysis, we first performed a proportion test or unpaired Student’s t-test to confirm

using p values that we have sampled a sufficient number of cells or kinetochores for concluding on

the reported differences. Second, we measured standard error of the mean (SEM) across experimen-

tal repeats or across cells and confirmed that the reported differences were not only based on differ-

ences in mean values, but also the spread of the mean values between experiments, cells or

kinetochores. SD values were obtained across experiments or cells as indicated in the figure legend.

Statistical analysis was performed using Graphpad Prism version 5. p-Values were calculated with a

Student’s t test. For data that did not follow a normal distribution, statistical analysis was performed

using a Mann-Whitney Rank Sum test.
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