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Abstract: The recovery of antioxidant polyphenols from light, dark and mix brewer’s spent
grain (BSG) using conventional maceration, microwave and ultrasound assisted extraction was
investigated. Total polyphenols were measured in the crude (60% acetone), liquor extracts (saponified
with 0.75% NaOH) and in their acidified ethyl acetate (EtOAc) partitioned fractions both by
spectrophotometry involving Folin–Ciocalteu reagent and liquid-chromatography-tandem mass
spectrometry (LC-MS/MS) methods. Irrespective of the extraction methods used, saponification of
BSG yielded higher polyphenols than in the crude extracts. The EtOAc fractionations yielded the
highest total phenolic content (TPC) ranging from 3.01 ± 0.19 to 4.71 ± 0.28 mg gallic acid equivalent
per g of BSG dry weight. The corresponding total polyphenols quantified by LC-MS/MS ranged from
549.9 ± 41.5 to 2741.1 ± 5.2 µg/g of BSG dry weight. Microwave and ultrasound with the parameters
and equipment used did not improve the total polyphenol yield when compared to the conventional
maceration method. Furthermore, the spectrophotometric quantification of the liquors overestimated
the TPC, while the LC-MS/MS quantification gave a closer representation of the total polyphenols in
all the extracts. The total polyphenols were in the following order in the EtOAc fractions: BSG light
> BSG Mix > BSG dark, and thus suggested BSG light as a sustainable, low cost source of natural
antioxidants that may be tapped for applications in food and phytopharmaceutical industries.

Keywords: brewer’s spent grain; polyphenols; microwave assisted extraction; ultrasound assisted
extraction; liquid chromatography-mass spectrometry

1. Introduction

Brewers’ spent grain (BSG) is generated in millions of tonnes every year as the major by-product
of the brewing industry, with an annual global production estimated to be 39 million tonnes, of which
EU generates ~8 million tonnes [1,2]. BSG is used as a low-value animal feed with a market value of
~35 Euro/tonne and thus making it an ideal substrate from which to recover high value compounds [3].
In addition to cellulose, hemicellulose, lignin, protein and lipids as the main components, BSG also
contains low molecular weight phenolic compounds that have been associated with a wide array of
health-benefiting properties [4,5].

A number of extraction methods, optimized and applied towards the recovery of polyphenols
from BSG, have been comprehensively reviewed by several authors [3,6,7]. Depending on the types
of BSG produced as a result of different cooking temperatures (70–250 ◦C), the polyphenol contents
also differ between the lightly roasted malt producing light or pale BSG and the deeply roasted malts
producing dark or black BSG. A common practice in breweries is to mix the light and dark malts in the
ratio ~9:1 w/w in order to obtain the desired caramel colour and aroma of the beverage. Since BSG
predominantly contains bound phenolics, chemical or enzymatic hydrolysis protocols are routinely
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used to release the phytochemicals bound to the cellular-wall components [8–10]. Solvent extraction
or chemical hydrolysis combined with ultrasound (UAE) or microwave assisted extraction (MAE) or
other physical cell-disruption techniques have been shown to increase the extraction yield of targeted
compounds from BSG and similar biomass [7,11–13]. For example, in the recovery of BSG polyphenols,
an optimised MAE method has been reported to result in a five-fold higher ferulic acid yield than the
conventional solid–liquid extraction techniques [14]. In contrast, the same MAE parameters were also
applied by Stefanello et al. [15] on BSG and corn silage, but the MAE yielded significantly lower total
phenolic content than the conventional maceration method. In a separate study, mathematical models
were used to optimize three extraction parameters (i.e., substrate to solvent ratio, extraction temperature
and solvent composition) for MAE and UAE to recover maximum yield of unbound polyphenols from
the unsaponified BSG. The subsequent experiments performed using the optimum parameters also
resulted in higher polyphenolic contents by UAE (4.1 mg GAE/g BSG dw) and by MAE (3.9 mg GAE/g
BSG dw) compared with the maceration method (3.6 mg GAE/g BSG dw) [15]. Both MAE, based
on rapid heating of the solvent through microwave energy (that causes molecular motion via ionic
conduction and dipole rotation), and UAE based on acoustic cavitation, increase the solvent penetration
into the substrate leading to improved mass transfer rates. There is, however, a limited number of
studies that focus on the UAE, MAE and conventional extraction methods to recover polyphenols from
saponified BSG despite the presence of optimisation studies on individual methods in BSG [14–16]
or similar substrates [17,18]. In addition, several of the aforementioned and other BSG polyphenol
extraction studies were quantified spectrophotometrically using the Folin–Ciocalteu (FC) chemical
method [15,16,19–22] either alone or with hyphenated chromatographic methods [15,16,20,22–26].
The spectrophotometric methods suffer generally by over estimating the phenolic contents since
other non-polyphenolic molecules (e.g., reducing sugars) interact with the FC reagent used in the
assay [27,28]. It is for this reason that in recent years researchers are discouraged from quantifying
polyphenols using only the spectrophotometric methods [29,30].

In this study, we have investigated and compared the recovery of polyphenols from saponified light
(L), dark (D) and BSG Mix using maceration, MAE and UAE techniques. The parameters for the various
extraction methods have been adapted from the literature for maceration and UAE, whereas previously
optimised parameters were applied for MAE. The objective of this study is to assess the polyphenol
recovery from each type of BSG substrate using three different extraction methods. In addition, we
have evaluated the enrichment of polyphenols through liquid-liquid partitioning of acidified ‘liquors’
(saponified fractions), which has been reported to lesser degree. Both the spectrophotometric and the
LC-MS/MS methods have been employed and compared for the quantification of polyphenols in the
various BSG fractions.

2. Materials and Methods

2.1. Materials and Chemicals

BSG L and D were provided by Diageo Ireland, Dublin. BSG Mix (light:dark, ~9:1 w/w) was
obtained from the River Rye Brewing Company, Cellbridge, County Kildare, Ireland. The BSG samples
were directly transported to the research centre within 30 min., oven-dried (Binder E28 oven, 72 h,
60 ◦C), milled (<1 mm) and vacuum packed until required.

The organic solvents (methanol, acetone, ethyl acetate (EtOAc), formic acid, acetonitrile),
and sodium hydroxide (NaOH) were purchased from Merck (formerly Sigma Aldrich, Arklow,
Co. Wicklow, Ireland). Polyphenol standards of gallic acid, p-coumaric acid, ferulic acid, sinapic acid,
caffeic acid, protocatechuic acid, 4-hydroxybenzoic acid and +(-)catechin; and the chemicals FC reagent,
hydrochloric acid and sodium carbonate were purchased from Merck (Arklow, Co. Wicklow, Ireland).
Leucine-enkelphine was purchased from VWR International Ltd. (Blanchardstown, Dublin, Ireland).
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2.2. Solid-Liquid Extraction

A schematic flow of the extraction procedure used is illustrated in Figure 1. Extraction of free
(unbound) polyphenols referred to as crude extracts from BSG samples was carried out as in the
previously optimised method [16], where 3 g milled BSG was mixed with 60 mL of 60% acetone at
60 ◦C for 30 min. with constant stirring. For the extraction of bound phenolics, 0.75% NaOH aqueous
solution at 80 ◦C for 30 min. with constant stirring was used [14,18].
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Figure 1. Flow chart showing the extraction procedure for brewers’ spent grain (BSG) samples (light
(L), dark (D), and Mix) for free phenolics and bound phenolics. Alkali-hydrolysed fractions (liquors)
were partitioned with ethyl acetate (EtOAc).

2.3. Microwave Assisted Extraction

Microwave assisted extractions of BSG phenolics were performed according to the method
previously optimized and reported by Moreira et al. [14]. The extraction was carried out in a microwave
MARSTM-6 (CEM, Matthews, NC, USA) equipped with a 40-position carousel. 2 g BSG samples were
transferred to TFM extraction vessels with 40 mL alkali solution. Extraction was carried out for a
duration of 15 min. at 100 ◦C. In all the vessels magnetic stirrers were added and used at maximum
stirring speeds, while the pressure-leak and temperature were monitored for each vessel.

2.4. Ultrasound Assisted Extraction

Ultrasound assisted extraction was carried out on the Transonic TI-H-10 35 kHz sonication
bath (ELMA Sch., Singen, Germany) at ~80 ◦C for 30 min. adapting the parameters previously
optimised [17,18] in similar substrates. The substrate to solvent ratio (1:20 w/v) and the alkali
concentration were maintained as used in the MAE and maceration methods, where 2.5 g BSG samples
were mixed with 50 mL 0.75% NaOH solution in 100 mL amber bottles. The bottles were sealed to
avoid any loss of solvents.

2.5. Preparation of Samples Following Maceration, MAE and UAE Treatments

After the extraction times were complete, all the extracts were left to cool at room temperature
followed by centrifugation at 8400 rpm for 10 min. (MegaStar 600, VWR, Leuven, Belgium).
The supernatants were pooled and syringe filtered through 0.45 µm PTFE filters for free phenolics,
and PVDF filters for bound phenolic extracts. Aliquots (20 mL) of the liquor supernatants were acidified
by adding hydrochloric acid solution (37%) until the pH reached 6.5 and subsequently subjected to
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liquid-liquid partitioning in EtOAc:water (1:1 v/v, 3 times) to obtain polyphenol-enriched fractions.
The EtOAc fractions were evaporated to dryness under nitrogen and reconstituted in 20 mL 50%
methanol. All the extractions were carried out in triplicate and stored at −25 ◦C until further use.

2.6. Total Phenolic Content Assay

Total phenolic content of BSG extracts was determined by colorimetric assay using FC reagent
following [31]. Briefly, in 1.5 mL Eppendorf tube, 100 µL of extract was mixed with 100 µL each of
methanol and FC reagent, and 700 µL of 20% sodium carbonate solution. The tubes were vortexed
and incubated for 20 min. in darkness at room temperature. After the incubation, the tubes were
centrifuged at 13,000 rpm for 3 min. to remove turbidity. Following this, 200 µL of the reaction
mixture was transferred into 96-well micro plate and measured for absorbance at 735 nm using a
spectrophotometer (FLUOstar Omega, BMG Labtech, Germany). Different concentrations of gallic acid
as standards were used (10–300 µg/mL in 50% methanol) to prepare a calibration curve. The results are
expressed in milligrams of gallic acid equivalent per gram dry weight (mg GAE/g BSG dw) BSG.

2.7. LC-MS/MS Identification and Quantification of BSG Phenolic Compounds

Quadrupole time-of-flight (Q-ToF) Premier mass spectrometer coupled to Alliance 2695 HPLC
system (Waters Corporation, Milford, MA, USA) was used to profile various phytochemicals in the BSG
L EtOAc fraction following the procedure previously described [32]. Accurate mass measurements
of the molecular ions were achieved using an internal reference compound (Leucine–Enkephalin).
The separation of the compounds was achieved on an Atlantis T3 C18 column (100 × 2.1 mm; 3 µm)
using milliQ water (solvent A) and acetonitrile (solvent B) both containing 0.1% formic acid at a flow
rate of 0.3 mL/min. at 40 ◦C. Electrospray ionisation (ESI) mass spectra were recorded on a negative ion
mode for a mass range m/z 70–1000. Capillary and cone voltages were set at 3 kV and 30 V, respectively.
Collision-induced dissociation (CID) of the analytes was performed using argon at 12–20 eV. Ultra-high
performance liquid chromatography coupled to tandem quadrupole mass spectrometer (UPLC-TQD,
Waters Corp., Milford, MA, USA) was used to quantify the BSG polyphenols by adapting the previous
method used in raw barley [33]. Separation of the phenolics was carried out on an Acquity UPLC
HSS T3 column (2.1 × 100 mm, 1.8 µm). The mobile phase consisted of milliQ water (solvent A) and
acetonitrile (solvent B) both containing 0.1% formic acid. The UPLC separation was performed by
an increasing organic solvent gradient from 2% to 98% B at a flow rate of 0.5 mL/min. for 10 min.
The column temperature was set at 50 ◦C, while the samples were kept at 4 ◦C. The ESI source was set
in negative mode and the quantification of each compound was performed using multiple reaction
monitoring (MRM) method (Supplementary Table S1).

For the quantification of polyphenols, a stock solution (1000 ppm) for each standard was prepared
and appropriate dilutions covering the range of 0.098 to 100 ppm were made to obtain standard
curves. TargetlynxTM integration software (Waters Corp., Milford, CT, USA) was used to quantify the
compounds in the various extracts.

2.8. Statistical Analysis

Results are expressed as means of the triplicates ± standard deviation (SD). Differences between
means were analysed using one-way analysis of variance with post-hoc Tukey test (SPSS Statistics 24).
The statistical analysis on the different groupings was carried out using Minitab 18.0 (Minitab, Inc.,
State College, Pennsylvania, USA). The values were considered significantly different when p < 0.05.

3. Results and Discussion

3.1. Total Phenolic Content

The total phenolic content (TPC) from the crude extracts for the L, D and Mix BSG were 2.84 ± 0.11,
2.81 ± 0.14 and 3.85 ± 0.04 mg GAE/g BSG dw, respectively (Table 1). Past studies, by other authors, on
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the crude extracts of light and dark BSG have also shown TPC in a similar range [24,34]. These relatively
low TPC levels in the crude extracts are because of the fact that the BSG contains a high amount of
lignin ranging from 19.4–49.2 g/100 g that is connected to its cell wall polysaccharides by phenolic
acids [10,16,35]. Therefore, it is essential to hydrolyse the rigid lignocellulose structural components to
release the phenolic acids. Alkali hydrolysis is commonly used with BSG and other similar substrates.
The TPC of the hydrolysed fraction (liquor) prior to acidification and partitioning is often reported,
which is four- to five- times higher than the TPC values of the crude extracts [24,26]. For example,
McCarthy et al. [25] recorded 16.0 mg GAE/g BSG dw and 18.3 mg GAE/g BSG dw for the light and
dark BSG liquors, respectively. This trend is also evident from our study, where TPC values for the
liquors ranged from 15.42 to 19.20 mg GAE/g BSG dw as opposed to the crude extracts (2.81 to 3.85 mg
GAE/g BSG dw). Generally the dark BSG have shown higher levels of TPC values than the light
BSG owing to the presence of high molecular weight melanoidins [20], which are accumulated as
by-products of the Maillard reaction. The melanoidins mostly consist of sugar degradation products
and amino acids [36] that can also react with FC reagent and thus give false elevated TPC.

Table 1. Total phenolic contents in mg GAE/g BSG dw in the NaOH saponified BSG extracts (liquors) and
their subsequent ethyl acetate fractions following neutralisation (EtOAc); Ctrl represents maceration
method, microwave assisted extraction (MAE), ultrasound assisted extraction (UAE) of light (L),
dark (D) and Mix BSG. For each substrate, total phenolic content (TPC) values bearing different letters
(a, b, c) are significantly different (p < 0.05) from each other. Shadow is to make the data distinguishable
between the samples.

Samples
TPC

mgGAE/g BSG dw

BSG L BSG D BSG Mix
Crude 2.84 ± 0.11 c 2.81 ± 0.26 c 3.85 ± 0.04 c

Liquor Ctrl 16.67 ± 0.87 b 17.27 ± 0.41 ab 19.20 ± 0.40 a

Liquor Ctrl EtOAc 4.67 ± 0.27 c 3.08 ± 0.15 c 4.71 ± 0.28 c

Liquor MAE 15.42 ± 1.16 b 15.55 ± 0.56 b 16.94 ± 1.84 b

Liquor MAE EtOAc 3.85 ± 0.19 c 3.01 ± 0.19 c 4.24 ± 0.22 c

Liquor UAE 15.76 ± 0.72 b 16.72 ± 0.96 b 16.99 ± 0.32 b

Liquor UAE EtOAc 4.17 ± 0.21 c 3.43 ± 0.46 c 4.62 ± 0.27 c

However, after the acidification of the liquors and subsequent partitioning with EtOAc, the TPC
values of the EtOAc ranged between the crude and the liquor fractions (Table 1). Interestingly, the TPC
of EtOAc fractions in the BSG D averaging 3.17 mg GAE/g dw is significantly lower than those of the L
and Mix BSG averaging 4.23 and 4.52 mg GAE/g dw, respectively. Similar findings where the phenolics
were lower in the hydrolysed dark BSG compared to light BSG have been reported by Moreira et al. [26].
Although the application of MAE and UAE techniques resulted, in general, lower TPC in the BSG
EtOAc fractions than the conventional maceration method, but this decrease was not statistically
significant except between the MAE and control BSG L. The possible reason for this decrease is due
to the structural characteristic of the BSG as it predominantly contains a high lignin content [4,10].
It has been suggested before that the MAE is not able to promote sufficient molecular movement and
rotation to overcome the lignin-barrier in contrast to constant stirring in the maceration method [14,15].
Furthermore the high temperature in MAE may induce the degradation of thermolabile polyphenols.
A study on the effect of temperature on the extraction of polyphenols from Gordonia axillaris, an edible
wild fruit, has shown a decrease in antioxidants’ recovery with higher temperatures in MAE [37].
In general, high temperature has a positive effect on the extraction yield due to enhanced solubility and
diffusivity of materials, however in UAE the high temperature has a negative effect on the extraction
yield [38]. The high temperature increases the solvent vapour pressure and results in a decrease in
surface tension that affect the cavitation bubble formation, which may explain the low TPC in the UAE
treated samples.
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3.2. LC-MS/MS Identification of BSG Polyphenols

As many as 14 different polyphenols were tentatively identified in the BSG L EtOAc extract
using the accurate mass measurements, fragment ions and in conjunction with the literature (Figure 2,
Table 2). Few of these polyphenols (protocatechuic acid and caffeic acid) were present in low amounts or
co-eluted (syringic acid) with other phenolic acids as illustrated in the magnified inset in Figure 2 and the
extracted ion chromatograms for these compounds in Supplementary Figure S1. Seven phenolic acids
(ferulic acid, protocatechuic acid, 4-hydroxybenzoic acid, caffeic acid, syringic acid, p-coumaric acid
and sinapic acid) and a flavonoid (catechin) were identified using commercially available standards and
subsequently quantified using UPLC-TQD (Section 3.3). Several of the ferulic acid dimers and trimers
listed in Table 2 have been identified previously in BSG using HPLC-DAD-MS/MS methods [4,14,39].
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Figure 2. HPLC-Q-ToF (quadrupole time-of-flight) chromatogram of EtOAc fraction of BSG L showing
the polyphenols (peaks 1–14) as assigned in Table 2. Shown in the inset is a close-up figure for the minor
peaks 1–5. The elution time for peaks 1, 3 and 4 are demonstrated in their extracted ion chromatograms
in Supplementary Figure S1.

Table 2. HPLC-Q-ToF identification of polyphenols in the ethyl acetate fraction of hydrolysed light BSG.

Peak
No.

RT
(min.)

Observed
[M − H]−

(m/z)

Calculated
[M − H]−

(m/z)

Chemical
Formula MS/MS Fragment Ions (m/z) Tentative

Identification

1 2.05 153.0169 153.0188 C7H6O4 109.03 protocatechuic acid
2 3.50 137.0227 137.0239 C7H6O3 93.04 hydroxybenzoic acid
3 4.93 179.0331 179.0344 C9H8O4 135.04 caffeic acid
4 5.43 197.0452 197.0450 C9H10O5 153.03 syringic acid
5 5.65 121.0282 121.0290 C7H5O2 92.03 benzoic acid
6 6.80 163.0380 163.0395 C9H8O3 119.05 coumaric acid

7 7.13 387.1073 387.1080 C20H20O8
343.13, 193.05, 178.03, 149.07,

134.05
ferulic-ferulic acid

dimer
8 7.34 223.0614 223.0606 C27H30O16 179.02 sinapic acid

9 7.54 341.1019 341.1025 C19H18O6 267.08, 193.05, 134.04 decarboxylated
diferulic acid

10 7.87 385.0915 385.0923 C20H18O8
282.09, 267.07 (100%), 239.08,

148.06 diferulic acid

11 8.73 385.0909 385.0923 C20H18O8
325.09/326.09, 282.11/281.11

(100%), 267.08 (75%). diferulic acid isomer

12 9.19 193.0516 193.0501 C10H10O4 178.03, 134.04 ferulic acid
13 9.39 577.1342 577.1346 C30H26O12 533.17, 355.09, triferulic acid

14 10.44 341.1035 341.1025 C19H18O6
326.09, 311.07, 282.09, 267.08

(100%), 239.08
decarboxylated

diferulic acid isomer
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In this study, an additional peak eluting at 7.13 min (peak 7) showed to contain a cluster of two
molecules of ferulic acids corresponding to m/z 387.1073 [predicted molecular formula (C20H20O8)].
On subjecting this molecular ion to MS/MS, the fragment ions m/z 343.1 (loss of CO2), ferulic acid
at m/z 193.1, m/z 149.1 (ferulic acid- CO2) and m/z 134.0 (ferulic acid –(CO2 CH3)) further supported
the detection of dimeric ferulic acid (Figure 3). Such non-covalent dimers generally form when the
monomeric units are abundant in the sample, i.e., ferulic acid in this case.
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3.3. UPLC-MS/MS Quantification of BSG Polyphenols

Total polyphenols, the aggregate sum of individual polyphenols measured by UPLC-MS/MS,
in each of the BSG EtOAc fractions, were found in decreasing levels of abundance in the following
order: BSG L > BSG Mix > BSG D (Table 3). Statistically significant differences were found (in the same
direction of abundance as TPC by FC) between the total polyphenols of BSG L, D and the Mix. The BSG
L (2,741 µg/g dw) contained more than four times the total polyphenols found in BSG D (693 µg/g
dw), which is in contrast to the TPC values where the dark BSG contained similar levels to light BSG
as in this study (Table 1) or exceeded the light BSG [20,25]. The BSG Mix showed intermediate total
polyphenol levels, i.e., between the BSG L and the BSG D as expected. Since BSG Mix constituted
both the L and D (~9:1 w/w) BSG, we also measured the polyphenols in its crude and various ‘liquor’
fractions (prior to neutralisation and EtOAc partitioning) by UPLC-MS/MS. The crude extract of the
BSG Mix contained low levels of polyphenols (~26 µg/g BSG dw), of which catechin constituted more
than 50% of the total free polyphenols. This was 45- to 54- fold less than the total polyphenols present
in the various EtOAc fractions (1170–1387 µg/g dw) of the same sample. McCarthy et al. [25] have
also reported low levels of total polyphenols (30.6 µg/g in light and 27.2 µg/g in dark BSG dw) using
HPLC coupled with diode array detector (DAD)-mass spectrometry analysis of the crude extracts.
Stefanello et al. [15], on the other hand, have recorded 82.4 µg/g total polyphenols in the crude BSG
extract, of which catechin constituted 83% of the total polyphenols. The TPC for these two studies
ranged from 0.98–4.53 mg GAE/g BSG dw, which corroborate our findings. An even more interesting
finding is that the total polyphenols in the liquors of BSG Mix were significantly lower than in the
corresponding EtOAc fractions despite the fact that the TPC values for all ‘liquor’ fractions were very
high (Tables 1 and 3). A similar observation was made by Stefanello et al. [15], where the TPC for
the liquor was 17.4 mg GAE/g BSG dw, whilst the HPLC-DAD quantification of total polyphenols
for the same liquor was 3195 µg/g dw. The HPLC-DAD value was closer to the TPC value of their
crude BSG extract (3.43 mg GAE/g BSG dw). The high TPC values in the liquor fractions must have
been attributed by other non-polyphenolic compounds such as reducing sugars, amino acids and
peptides [4] that get fractionated in the water part during the EtOAc:water partitioning.
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Table 3. UPLC-TQD quantification of BSG polyphenols *.

Samples Ferulic Acid p-Coumaric
Acid Catechin 4-Hydroxybenzoic

Acid Sinapic Acid Syringic Acid Protocatechuic
Acid Caffeic Acid Total

BSG L Ctrl EtOAc 1809.5 ± 272.8 a 686.6 ± 59.0 a 2.11 ± 0.23 b 16.66 ± 4.45 a 14.63 ± 2.48 a 33.9 ± 10.44 b 3.46 ± 1.04 ab 0.147 ± 0.065 d 2741.1 ± 5.2 a

BSG L MAE EtOAc 1545.6 ± 157.3 a 499.1 ± 31.2 bc 1.43 ± 0.48 b 9.41 ± 1.15 bcd 11.02 ± 3.99 ab 18.9 ± 7.26 bc 1.38 ± 0.72 cd 0.370 ± 0.031 b 2087.2 ± 196.8 a

BSG L UAE EtOAc 1669.7 ± 21.8 a 579.2 ± 22.7 b 1.05 ± 0.07 b 10.76 ± 0.99 bcd 10.36 ± 1.52 ab 17.8 ± 3.68 bc 2.29 ± 0.83 bc 0.176 ± 0.013 d 2291.2 ± 42.7 ab

BSG D Ctrl EtOAc 404.7 ± 51.0 cd 185.3 ± 8.3 f 1.66 ± 1.01 b 13.12 ± 0.38 ab 7.63 ± 1.92 bc 76.4 ± 28.84 a 3.83 ± 0.63 a 0.407 ± 0.065 b 693.0 ± 85.7 de

BSG D MAE EtOAc 351.0 ± 33.9 d 155.3 ± 7.5 f 1.23 ± 0.33 b 11.36 ± 2.28 bc 4.68 ± 0.67 c 21.7 ± 4.84 bc 4.09 ± 0.55 a 0.547 ± 0.079 a 549.9 ± 41.5 e

BSG D UAE EtOAc 413.6 ± 135.8 cd 173.4 ± 56.6 f 2.18 ± 0.74 b 10.69 ± 1.39 bcd 8.28 ± 0.46 bc 17.3 ± 5.91 bc 4.85 ± 0.47 a 0.389 ± 0.052 b 629.9 ± 190.9 de

BSG Mix Ctrl EtOAc 894.6 ± 82.8 b 476.4 ± 35.1 bcd nd 6.02 ± 0.93 de 9.59 ± 0.23 abc nd 0.062 ± 0.012 d 0.226 ± 0.049 cd 1387.0 ± 119.0 c

BSG Mix MAE EtOAc 796.8 ± 68.1 b 355.4 ± 33.0 e 0.47 ± 0.82 b 6.88 ± 0.30 cde 10.23 ± 0.68 ab nd 0.015 ± 0.026 d nd 1169.8 ± 66.4 c

BSG Mix UAE EtOAc 848.5 ± 15.2 b 386.9 ± 6.7 de nd 6.59 ± 0.55 de 11.33 ± 1.54 ab nd 0.174 ± 0.085 d 0.328 ± 0.005 bc 1253.8 ± 11.3 c

BSG Mix Crude 2.8 ± 2.41 e nd 14.05 ± 1.19 a 0.11 ± 0.12 f 8.28 ± 0.14 bc nd 0.49 ± 0.17 d nd 25.7 ± 1.97 f

BSG Mix Liquor Ctrl 714.1 ± 76.7 bc 423.3 ± 17.6 cde 1.09 ± 0.98 b 4.24 ± 0.50 ef 12.29 ± 1.09 ab nd nd nd 1155.0 ± 93.2 c

BSG Mix Liquor MAE 647.4 ± 40.7 bcd 330.6 ± 49.5 e 1.86 ± 0.36 b 4.26 ± 0.33 ef 9.52 ± 0.29 bc nd nd nd 993.6 ± 74.8 cd

BSG Mix Liquor UAE 739.1 ± 22.3 b 371.9 ± 30.9 de nd 4.12 ± 0.37 ef 11.11 ± 0.39 ab nd nd nd 1126.3 ± 53.2 c

* Values are expressed as µg/g BSG dw (mean ± SD); nd—not detected; For each substrate, the values reported, for each individual and total polyphenols in crude, liquors and their ethyl
acetate (EtOAc) fractions bearing different letters (a, b, c, d, e, f) are significantly different (p < 0.05) from each other. Shadow is to make the data distinguishable between the samples.
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In all the saponified BSG extracts, ferulic acid was the most predominant phenolic acid comprising
in excess of 50% of the total polyphenols followed by p-coumaric acid. When the most abundant
phenolic acid, i.e., ferulic acid is considered, there is no significant difference between the efficiency of
the different extraction methodologies within the same type of BSG substrate. Several other studies have
also established that the dominant polyphenols in BSG are ferulic acid and p-coumaric acid [10,26] and
thus had become the target compounds of recovery in several studies [9–11,22,39–42]. Other abundant
polyphenols in the BSG were sinapic acid and syringic acid, which have also been reported by other
authors [25,42].

The UPLC-MS/MS determination of total polyphenols from MAE and UAE of the BSG EtOAc
fractions showed a similar trend to their TPC values (Tables 1 and 3), where MAE and UAE yielded
lower total polyphenols than the conventional maceration method. The lowest recovery of total
polyphenols was by the MAE method. As explained earlier in Section 3.1, the MAE technique was not
able to overcome the lignin-rich barrier, and that the extraction parameters used in the MAE and UAE
may have induced thermal degradation of polyphenols.

The UPLC-MS/MS quantification of polyphenols in the various BSG EtOAc fractions was closer
to the spectrophotometric FC-method (Table 3 vs. Table 1). Athanasios et al. [43] have used
gas chromatography-mass spectrometry (GC-MS) and showed total polyphenols ranged between
2688 to 4884 µg/g dw in the four different batches of BSG, although the authors did not perform
spectrophotometric analysis but these values are very close to TPC values of BSG in general.

4. Conclusions

The UPLC-MS/MS data have shown that the saponification followed by acidification and
subsequent liquid-liquid partitioning (EtOAc) is the best procedure for polyphenol recovery and
enrichment from BSG irrespective of extraction method. Without neutralisation and partitioning,
the colourimetic chemical method falsely overestimates the total phenolic content and levels quantified
by related assays in the liquors. Hyphenated chromatographic quantification methods such as
LC-MS/MS is therefore necessary to accurately portray levels of total BSG polyphenols present. UAE and
MAE treatments did not improve the BSG polyphenol yield indicating the thermal degradation of
polyphenols with the extraction parameters used in these systems. The findings also suggest that
ultrasonic bath operating at 35 kHz is less efficient in aqueous solution for the extraction of polyphenols
from BSG. However, these techniques may improve the polyphenol yield and efficacy with further
optimisation and when used with other systems, such as ultrasonic probes, and in combination with
appropriate organic solvents.

Supplementary Materials: The following is available online at http://www.mdpi.com/2076-3921/8/9/380/s1,
Table S1: Multiple reaction monitoring (MRM) transitions, cone voltages and collision energies used for the
UPLC-TQD quantification of BSG polyphenols. Figure S1: Extraction ion chromatograms for peak 1 (m/z 153.017
[M − H]−), peak 3 (m/z 179.0133 [M − H]−) and peak 4 (m/z 197.045 [M − H]−).
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