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Deep learning-based selection of human sperm
with high DNA integrity
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Alexander Lagunov2, Thomas G. Hannam2, Keith Jarvi3 & David Sinton1

Despite the importance of sperm DNA to human reproduction, currently no method exists to

assess individual sperm DNA quality prior to clinical selection. Traditionally, skilled clinicians

select sperm based on a variety of morphological and motility criteria, but without direct

knowledge of their DNA cargo. Here, we show how a deep convolutional neural network can

be trained on a collection of ~1000 sperm cells of known DNA quality, to predict DNA quality

from brightfield images alone. Our results demonstrate moderate correlation (bivariate

correlation ~0.43) between a sperm cell image and DNA quality and the ability to identify

higher DNA integrity cells relative to the median. This deep learning selection process is

directly compatible with current, manual microscopy-based sperm selection and could assist

clinicians, by providing rapid DNA quality predictions (under 10ms per cell) and sperm

selection within the 86th percentile from a given sample.
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Male infertility is a growing global health concern, with
~30% of infertility cases caused solely by male-factor
infertility1. In certain cases of poor sperm health,

assisted reproduction technologies (ARTs), such as intracyto-
plasmic sperm injection (ICSI), are employed, for which single
sperm cells must be chosen from a population of ~108 cells2.
When selecting sperm cells for ICSI, clinicians rely on visual
morphology criteria, such as sperm head size, and head, tail, and
mid-piece shape according to the guidelines from the World
Health Organization (WHO)2, after pre-screening for healthy
cells (i.e., via density gradient and swim-up)2,3. While most
clinicians view cells at moderate magnification (×40), high-
magnification imaging (×63–100) of individual cells has proven
useful4 to gain further insight into the morphological features
mentioned above5. This method, intracytoplasmic morphologi-
cally selected sperm injection (IMSI), uses high-magnification
microscopy and significantly improves blastocyst development,
implantation, and pregnancy rates4,6. In addition, one group has
developed automated IMSI for research purposes7. Notably, all
single-cell selection methods to date depend solely on visual
inspection using WHO morphology criteria as a guide to choose
the best sperm cell8–16. Such an assessment relies heavily on the
subjective choice of the clinician, and only accounts for externally
observable features. In addition to human subjectivity, individual
sperm inspection is ultimately low throughput, typically requiring
inspection of tens of cells from a sample of tens of millions.

Deep learning is emerging as a preferred means of accom-
plishing visual inspection, classification, and selection tasks in a
wide variety of applications in health and other sectors. The most
common image analysis methods utilize deep convolutional
neural networks (CNNs), with applications ranging from wild
animal detection17 to cellular classification18–20 and tracking21,22,
microscopy image enhancement23, biotechnology applications in
microfluidics24, as well as for cancer and other disease diag-
nostics25–31. Deep learning has been employed to predict lineage
choice in hematopoietic progenitors, solving the difficult problem
of predicting objective, internal cell metrics from bright-field
images32. In addition, deep learning was applied to label-free cell
DNA analysis of human T cells via flow cytometry33, as well as to
automated sorting of microalgal and human cells based on
fluorescence and bright-field imaging34. In the fertility field, some
groups have applied machine learning to classify sperm cells
based on manually extracted features10,13,16,35 or via image-
patch-based dictionary models15. While these approaches show
promise, the algorithms were trained with a morphology metric
determined by a human expert and lacked a quantitative objective
sperm quality metric. With a human in the loop, these approa-
ches fail to take advantage of a central advantage of deep learning,
that is, the ability to learn from the sperm image data afresh,
without the constraints of historical morphology evaluation
practices.

DNA integrity is a quantitative, objective sperm quality metric
that has been demonstrated to correlate with live birth out-
comes36, making it well-suited for the training of deep-learning
models. To objectively quantify sperm cell DNA integrity, clin-
icians employ various DNA integrity assays such as the sperm
chromatin structure assay (SCSA), the acridine orange (AO) test,
and single-cell gel electrophoresis (or Comet assay) which are
easily quantified and provide standardized metrics for predicting
male fertility36,37. Although useful as a diagnostic tool to assess
whole-population male fertility potential, these DNA analyses
cannot be employed in sperm selection because the fixing and
staining procedures compromise cell viability, either by intro-
ducing dye into the cell nucleus or by fully lysing the cell. In a
clinic, cell images are the only non-intrusive data-rich source of

cellular information. Recently, we demonstrated a method to
predict DNA quality based on morphological parameters
extracted from bright-field images38, and we posit that a deep-
learning model could instead assess images directly, without
requiring pre-extraction of features. Thus, similar to current
clinicians, the algorithm must take cell appearance as input, and
make an objective sperm quality determination (i.e., based on
DNA quality), in real time.

In this paper, we present a deep-learning-based method for
ranking sperm according to sperm quality using DFI-labeled
bright-field images, thus enabling selection of high-quality sperm
for ICSI. Our method utilizes a deep CNN trained to predict
sperm quality using the objective metric of individual cell DNA
Fragmentation Index (DFI37, distinct from population-level %
DFI) using only raw, label-free, sperm cell images. To train the
neural network, we employed an in-house set of 1064 images of
individual sperm cells of known DNA integrity. Our results
demonstrate not only correlation between a cell image and the
DNA integrity (with bivariate correlation ~0.43), but also the
ability of our model to distinguish higher DNA integrity cells
relative to the median with statistical significance. The trained
model can assess an input sperm image and provide a DNA
integrity prediction in under 10 ms, thus in principle enabling the
rapid and consistent selection of high DNA integrity cells from a
given sample.

Results
Predicting DNA integrity of unseen cells. We trained a deep
CNN to predict single-cell DFI as outlined in Fig. 1 using 1064
bright-field sperm cell images (with corresponding measured
DFI) from six healthy donors (N1= 150, N2= 111, N3= 89, N4

= 73, N5= 134, N6= 507) and found significant correlation
(mean R ~0.43, p < 0.01) between actual and predicted DFI. First,
considering all sperm images as a single dataset, we randomly
segmented the labeled data into training (60%), validation (20%),
and testing (20%) groups. After training and optimization (dis-
cussed in Methods section), the model evaluated the testing set,
the results of which are shown in Fig. 2. We present the actual
DFI versus the predicted DFI, highlighting example cell images
from five groups of interest—the 10% predicted-lowest DFI and
10% actual-lowest DFI (green), the predicted-highest and actual-
highest 10% (magenta), as well as example well-predicted
median cells.

Comparing the median of both the predicted-lowest and
predicted-highest groups with the population median indicates
that the model quite capably distinguishes between the highest
and lowest DNA integrity cells (DFI has an inverse correlation
with DNA integrity, such that a high-quality sperm cell has low
DFI and high DNA integrity). Given these predicted values in a
clinical setting, one would select the cells with the predicted-
lowest DFI. Here the single predicted-lowest DFI cell would be
the 6th actual-lowest DFI cell out of this cohort of 213 never-
before-seen images, representing selection of the 97th percentile.
Also, between the predicted-lowest and actual-lowest DFI sets, we
observe a significant overlap (with nine cells in common; p=
1.95e−5), which signifies that, clinically, when selecting the
lowest 10% of cells, this set would contain nine of the actual-
lowest DFI cells. In addition, the median of the lowest 10%
predicted DFI sperm is at the 86th percentile, which, if selected by
a clinician, would yield a sufficiently enriched sample to expect
improvement in ICSI fertility outcomes36. This tool predicts an
internal sperm DNA quality metric, otherwise unknown to a
clinician, with reasonable accuracy and without damaging
the cell.
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Testing model on sperm cells from individual donors. In the
above model, the data for testing were isolated via random stra-
tification over the six donors. In a clinical context, however, a
model would be trained on some number of donors or patients,
and then be applied to a fresh sample from a patient never pre-
viously studied. This clinical reality motivates an alternative
training protocol, specifically, training with sperm from five of
our six donors and reserving one of the donors entirely for test.

We trained networks in this manner for each donor, isolating
one of each of the donors in each case to be the test set. The
resulting percentile enrichment based on predicted DFI and
Pearson’s r results are shown in Fig. 3 (with all statistical values
given in Supplementary Table 1). The available training set size
was similar for Donors 1–5 (731–793), enabling direct compar-
ison. Testing on Donor 6 is included, although due to the smaller
training set available in that case (446 images), the model
performed poorer (with bivariate correlation of 0.14 relative to
0.47 average across Donors 1–5). The percentile enrichment is
calculated as the percent of cells with a higher DFI relative to a
given cell, and directly translates to the level of enrichment in
DNA integrity that a clinician would achieve if they chose the
predicted-lowest DFI cell. For example, when a model trained on
all donors except Donor 6, was applied to predict the DNA
integrity of Donor 6, the selected best sperm (of 134) was the

actual top-ranked sperm (100th percentile). Likewise, when
applied to Donor 4, the top predicted sperm was the 98th
percentile cell. The results of all donor-isolation combinations
vary, as shown in Fig. 3, with the best predicted sperm being, on
average, the 84th percentile sperm in terms of measured DNA
integrity. In addition, the Pearson’s r values (with a mean of 0.43)
indicate a high degree of linear correlation (p < 0.01 for all cases)
between the model-predicted and measured DFI values.

Enabling subpopulation DNA integrity enrichment. A potential
use for our approach would be to use the model to screen a
sample for a subpopulation of very good ICSI candidates. In such
cases, a model could be used to select a group of top sperm from
which human clinicians would then select individual sperm for
ICSI. We tested the model at selecting the top 5, 10, and 20% of
cells with the metric of achieved percentile enrichment, as shown
in Fig. 3, for which we achieve median percentiles of 74, 73, and
68, respectively. To further visualize the range of cells present in
the different percentage groups, Fig. 4 shows the predicted versus
measured DFI when the final test set is composed of Donors 1–6,
as well as the entire measured DFI range for each donor with an
overlay of the measured DFI of the single predicted-lowest cell
and predicted-lowest 5, 10, and 20% cells. Most of the predicted-
lowest DFI cells agree well with the actual-lowest DFI cells since

+
DFI

VGG16
pre-trained

weights

Dense, batch
norm., elu

Linear
activation

Global
average
pooling 

dsDNA ssDNA

ssDNA

Measured
DFI

labels

Training
images

Brightfield

Fluorescence

Training

Testing

Images set aside
before training

with measured DFI 

DFI predictionsTrained model

DFI = 0.15

5 µm

5 µm

a b

c d

e

Fig. 1 Experimental and modeling schematic. We illustrate the extraction of individual (a) fluorescence images to calculate the (b) DNA fragmentation
index (DFI), as well as extraction of sperm head image from (c) bright-field microscopy images, which were used to train the (d) deep convolutional neural
network. DFI was found using the acridine orange (AO) test39,37 (with brief details given in Methods and full details in Wang et al.38) and calculated as the
ratio of red fluorescence (from presence of single-stranded DNA, ssDNA) to the sum of red and green fluorescence (from double-stranded DNA, dsDNA).
The bright-field image was then labeled with the DFI value to train the model. The VGG16 network was modified by appending global average pooling and
two dense layers with batch normalization and exponential linear unit (ELU) activation functions, after which linear activation was applied to condense the
result to a single scalar value (DFI). e Once the model was trained, we fed images not used in training (but with measured DFI) and predicted the DFI,
thereby yielding the generalizability of the model to unseen images
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the median is always greater than the 50th percentile. Therefore,
according to these conditions, a clinician could select from a
pool of model-predicted top 5% DNA integrity cells with the
expectation that the median in this pool is the 74th percentile
(±12%, s.d.). The clinician could then apply their current norms
of sperm evaluation (such as motility and morphology) for
clinical ICSI. In that final selection process, the clinician could
also have the ranking of individual cells within the top 5%
predicted pool, if desired.

Model limitations. Poorly predicted cells are principally a result
of debris present in the image near the sperm head or poorer-
quality contrast images. Probing individual cell images, Figs. 2
and 4 highlight the successes and failures of the DFI predictions.
The bottom-left group of images represent the greatest successes
of the model, the overlap in the predicted-lowest and actual-
lowest sets. Ideally, the model would rank all cells in order in
terms of DFI, but predicting the lowest DFI cells is of much
greater clinical utility, meaning accurate predictions in this region
are paramount to model success. More importantly, the greatest

error is found for higher DFI (magenta-outlined) cells, which are
largely under-predicted. Underpredicting these moderate-DFI,
normal-morphology cells (i.e., overpredicting quality) could pose
a problem for clinicians, though only a few such cases are present
here (lowest insets in Figs. 2 and 4). In addition, certain cases
show considerable background debris and sperm tails in the field
of view that are likely to have biased the prediction. Omitting
poor image-quality cells improves overall DFI prediction as mean
percentile enrichment rank across 5, 10, and 20% groups
increases by 5.3%, and bivariate correlation increases by 6.9% (as
given in Supplementary Table 2). In this subtest, the poor-quality
images were removed manually, but in practice a screening
algorithm could be trained to remove images including, for
instance, extraneous tail components. Last, testing on a dataset
imaged four months after the original set (Supplementary Fig-
ure 2) showed limited correlation, highlighting the importance of
data imaged under varying conditions.

Highlighting features important for predicting DFI. Saliency
maps are commonly employed to weigh the influence of
pixels used by the model to make predictions based on individual
image inputs (i.e., pixels that most strongly contribute to the class
score)30,40. These saliency maps, shown in Fig. 5, illustrate that
the model generally focuses on the internal features of the cell and
largely disregards the background in determining the DFI. To
some degree, though, the model does give weight to artifacts such
as sperm tails, debris in the field of view, or background noise.
Moreover, for low DFI cells, the heatmap is localized in the cell
center at the intersection between the nucleus (left head region)
and acrosome (right head region), while for high DFI cells, the
nucleus and mid-piece pixels are more influential. When taking
the average of all saliency maps (Fig. 5o), it is apparent that high
importance is given to the intersection between the nucleus and
the acrosome. The influence of the model in this region reflects
the biological importance of the nucleus, which contains the
DNA cargo, and the acrosome, which can contain abnormalities
such as vacuoles. Furthermore, when analyzing specific cells with
vacuoles (Fig. 5d, g, k, l), it is apparent that substantial emphasis
was given to these regions, meaning the presence of vacuoles
played a role in DFI prediction.
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Differentiating between cells of similar morphology. A skilled
clinician analyzed our cell images directly, with no knowledge of
the individual cell DFIs, and classified each sperm as normal or
abnormal. The clinician-selected normal group reflected the
overall sperm quality distribution, as shown in Fig. 6. No dif-
ference in median DFI was found between the clinician-selected
normal group and the population (p= 0.41). While not a com-
prehensive assessment of clinical ability, this result implies that
the ability of the model to sort sperm images with respect to DFI
is not replicated in current clinical selection.

To test the model viability in differentiating between only
normal cells, we trained a model using only the normal cell subset
with a training size of 84 and validation size of 22 images. After

fivefold cross validation, we determined the model has lower
success (71st percentile enrichment and Pearson’s r of 0.48)
relative to choosing the best cells from the entire population of
over 1000 cells, as shown in Table 1. Nevertheless, the model
successfully distinguished between cells of similar morphology
and chose the best, high DNA integrity cells. Given the large
number of cells available for selection, the model and clinician are
thus complementary. The model can assess a large number of
cells and select a subset of sperm with high DNA integrity, from
which the expert can choose a single sperm based on the current
variety of metrics, clinical norms, and individual skill. Alter-
natively, given the complementary nature of our prediction, our
method is also immediately useful in informing last-stage

C
ou

nt
s

P
re

di
ct

ed
 D

F
I

P
re

di
ct

ed
 D

F
I

Measured DFI

Measured lowest 10%

Predicted lowest 10%

Measured highest 10%

Predicted highest 10%

C
ou

nt
s

Measured DFIMeasured DFI

Single lowest
Predicted
lowest 5%
Predicted
lowest 10%
Predicted
lowest 20%
All cells

Donor 1 Donor 2 Donor 3

Donor 6Donor 5Donor 4

a c e

g i k

b d f

ljh

0.3

0.2

0.15

0.1

0.06

0.3

0.2

0.15

0.1

0.06

10
10

20

10

0.06 0.1 0.15 0.2 0.3 0.06 0.1 0.15 0.2 0.3 0.06 0.1 0.15 0.2 0.3

0.3

0.2

0.15

0.1

0.06

0.3

0.2

0.15

0.1

0.06

60

40

20

20

30

10

20

10

0.06 0.1 0.15 0.2 0.3 0.06 0.1 0.15 0.2 0.3 0.06 0.1 0.15 0.2 0.3

0.3

0.2

0.15

0.1

0.06

0.3

0.2

0.15

0.1

0.06

Fig. 4 Predicted versus measured DFI when testing model on individual donors. As in Fig. 2, the (a, c, e, g, i, k) predicted versus measured DFI for Donors
1–6, respectively, as well as the (b, d, f, h, j, l) enrichment when selecting a certain percentage of the best (lowest-predicted DFI) cells. Overall, the model-
predicted-lowest cells agree with the actual-lowest DFI cells, especially as the size of the lowest-predicted group is decreased

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0491-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:250 | https://doi.org/10.1038/s42003-019-0491-6 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


selection, where a clinician is tasked with choosing among
identical-looking normal sperm candidates, and would benefit
from deep-learning-based insight.

Discussion
Overall, this work indicates that sperm DNA integrity can be pre-
dicted from a sperm image alone through supervised training of a
deep convolutional neural network. The successes of our proposed
model on only six donors notwithstanding, building a clinical
technology would require labeled sperm from 1000 s of patients and
donors. Also, our model could be improved further by considering
alternate scoring methods such as aneuploidy, motility, as well as
other DNA quality metrics (e.g., COMET and TUNEL (terminal
deoxynucleotidyl transferase dUTP nick end labeling)).

Furthermore, this deep-learning selection process is directly
compatible with current, manual microscopy-based sperm
selection and complementary to current clinical selection that
does not select single sperm with high DNA integrity. This
method would initially serve to complement existing analysis
methods used by fertility clinicians, by allowing for real-time (10
ms per cell) differentiation between cells of varying DFI—and
thus sample enrichment based on DFI—as cells are viewed by the
clinician. The final selection decision would ultimately still fall to
clinicians, but the additive power of deep learning would enable a
more informed decision.
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Certain challenges must be overcome to realize total clinical
applicability, both regarding the model discussed and the tech-
nology required to implement the model. While IMSI—and thus
high-magnification sperm cell imaging—increase overall preg-
nancy rates4,6, this approach requires ×100 magnification, which
may not be compatible with clinical workflow. Nevertheless, new
developments would allow for automated sperm imaging and
tracking41, which would relieve much of the burden of clinicians
and enable direct compatibility with our proposed model.
Therefore, we believe that clinics will adapt to new protocols and
technology once proven effective.

Moreover, the complementary role of deep learning and AI will
no doubt transform the current health care system as health and
data sciences converge42–44. Although initial applications in ret-
inal imaging and bone-fracture detection have been FDA-
approved45, broader implementation challenges currently exist,
such as gaining patient trust, integrating AI systems into current
workflow, and validating models across wide, heterogeneous
populations46. Therefore, in the near future, deep-learning output
will serve simply as statistical predictions to assist clinicians in
interpreting medical data. Results here indicate that models have
potential to excel at the fundamental task of single human sperm
selection for artificial reproduction.

Methods
Sperm cell imaging protocol and dataset. We employed an in-house dataset of
bright-field and fluorescence images—from acridine orange (AO) staining—
obtained via ×100 (objective magnification) confocal microscopy, with full details
reported elsewhere38. Briefly, a glass cover slide was treated with piranha solution
(3:1 sulfuric acid to H2O2) for 30 min followed by immersion in 10% v/v APTES in
acetone, rinsed with acetone, and then air dried. After heating the slide to 110℃
for 60 min and cooling it down to room temperature, the slide was treated with a
solution of hyaluronic acid (HA), EDC-HCl, and NHS dissolved in MES buffer
(stirred for 1 h) for 30 min to functionalize the surface and allow for sperm
binding. The donor semen samples (frozen, purchased from ReproMed Ltd; all
donors provided consent for research participation in accordance with regulations
of the Assisted Human Reproduction Act) were thawed at 37℃, washed with pure
sperm wash, centrifuged at 300 × g for 5 min with an additional wash, and then
loaded into a custom PDMS reservoir on the HA-functionalized cover slip. The
solution was then evaporated, after which the sperm cells were treated with TNE
buffer and acid-detergent solution before AO was added to stain the cells (to detect
single-stranded fragmented DNA and double-stranded DNA). Sperm were imaged
immediately after staining under a spinning disk confocal microscope under a total
magnification of ×100 with excitation wavelength of 488 nm and emission filters of
500–550 nm for green and 598–660 nm for red. Fluorescence images were captured
first, after which bright-field images were obtained.

This staining protocol was consistent with the sperm chromatin structure assay
(SCSA)37, considered the gold standard in DNA fragmentation measures5,
although our specific imaging method varied slightly (the green emission
bandwidth of the confocal microscope was 500–550 nm relative to 515–530 nm of
SCSA), ultimately yielding DFI values shown in Fig. 7. Furthermore, we report
individual cell DFI rather than the commonly specified %DFI, or proportion of
damaged cells. Also, the proprietary flow cytometry normalization method does
not allow for simple comparison with the arbitrary intensity from the microscopy
technique. Overall, AO has proven to effectively highlight DNA fragmentation (a
measure of DNA integrity) in sperm cells36,39. In this work we highlight our efforts

to measure single-cell DFI and correlate this to the bright-field image, rather than
measure population-level DNA fragmentation.

Each bright-field image and corresponding fluorescence images contained
~5 sperm cells per image which were manually cropped and rotated (via opencv-
python v3.4.4) to select the individual sperm cell heads, yielding a final dataset of
1064 images across six healthy donors (N1= 150, N2= 111, N3= 89, N4= 73, N5

= 134, N6= 507). The individual DFI values were calculated as the ratio of total
area intensity of the single-stranded DNA fluorescence over the sum of the single-
stranded and double-stranded total area fluorescence intensity, after background
correcting the two fluorescence images. We also analyzed the bright-field intensity
of each image and found very low correlation with sperm head intensity or
background intensity with DFI, thus ensuring that the model cannot derive a false
relationship based on fluorescence stain-based brightness of images themselves and
DFI (as shown in Supplementary Fig. 1). Last, we trained a new model that allowed
for free rotation of the input image and found similar correlation between
measured and predicted DFI (shown in Supplementary Table 3) relative to the
primary model that limits rotation to 10°, meaning that the rotation operation does
not result in artificial correlation between the DFI and bright-field image.

Deep-learning model architecture. We implemented a deep-learning model
(with full architecture given in Supplementary Table 4) that employs the VGG1647

convolutional neural network (CNN) architecture pre-trained on the ImageNet48

database written in Python (v3.6) using Keras (v2.1.5)49 on top of TensorFlow
(v1.8.0)50. After the last convolutional layer, we appended a global average pooling
layer followed by two fully connected layers (of widths 502 and 667) with batch
normalization and an exponential linear unit51 activation function. Last, to output
a DFI value, we add a fully connected layer with linear activation with one output.
This network, therefore, differs from most CNNs since it yields an unbounded real
scalar instead of typical classification scores from a softmax layer. We train only
our last appended layers, keeping the original VGG16 weights, until the validation
mean-squared error ceases to decrease and also tested using mean-absolute error
and 90% quantile regression52 loss functions. This method remains consistent with
well-established transfer learning procedures53,54 that allow for rapid model
training on new image sets (including medical images30 and small datasets53,55)
built on the framework of powerful networks trained on generic images.

Table 1 Percentile enrichment, Pearson’s r (with corresponding p-values), and MAE for a model that only includes normal cells as
determined by clinician assessment

k-Fold number 20% Predicted lowest 10% Predicted lowest Lowest Pearson’s r MAE

% p n dof t % p n dof t % r p

1 81.8 2.3E−02 5 25 2.43 86.4 2.1E–03 3 23 3.48 81.8 0.456 3.3E−02 0.016
2 57.1 6.5E−01 5 24 0.47 76.2 3.6E−02 3 22 2.41 57.1 0.171 4.6E−01 0.015
3 85.7 1.4E−03 5 24 3.65 85.7 1.7E−03 3 22 3.61 81.0 0.615 3.0E−03 0.020
4 85.7 6.6E−03 5 24 2.97 81.0 2.2E−02 3 22 2.49 81.0 0.456 3.8E−02 0.012
5 71.4 4.2E−01 5 24 0.85 52.4 9.1E−01 3 22 0.13 52.4 0.700 4.1E−04 0.011
Mean 76.4 76.3 70.6 0.480
s.d. 12.2 14.0 14.6 0.202
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Fig. 7 DFI histogram comparing recent single-cell DFI based on AO
microscopy38 and traditional SCSA. A sample was split into two, and each
half was analyzed independently via either method. Both methods yield DFI
values based on AO intercalation, although AO microscopy does not
capture higher DFI cells, due to differences in imaging, as well as the
exclusion of debris, cell aggregates, and non-sperm species, none of which
is excluded in traditional SCSA5
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Model training. The cropped cell images were originally 150 × 150 pixels, which
were scaled up to 224 × 224 (according to VGG16 requirements) via bilinear
interpolation. During training, 32 images were mini-batch processed with minor
image augmentation allowing randomized rotation up to 10°, vertical and hor-
izontal flipping, as well as vertical and horizontal shifting up to 5% to reduce
overfitting and to artificially inflate the total number of training images. We trained
the model using RMSprop optimization—finding similar performance with Adam
optimization56—with a learning rate= 2.9 × 10−5 using a GeForce GTX1060 by
NVIDIA.

Bayesian optimization. Much of the success of our model was due to Bayesian
optimization using Gaussian processes (gp_minimize function of scikit-optimize
v0.4) to fine-tune model hyper-parameters (i.e., learning rate, number of dense
nodes, activation function, loss function, and model optimizer). Figure 8 shows
representative partial dependence when optimizing the number of nodes in the
final two fully connected layers and the learning rate.

Learning curve analysis. Given more data, would model performance increase?
One would expect model performance to converge toward one value given infinite
data, and as the amount of data is increased, performance saturates. This plateau
was observed in our case, as shown in Fig. 9, when fitting a sigmoid function of the
form f xð Þ ¼ a

1þexp �b x�x0ð Þð Þ þ c. Therefore, given a greater number of sperm cell

images, model performance would not be expected to improve substantially.

Statistics and reproducibility. We analyzed 1064 bright-field sperm cell images
(with corresponding measured DFI) from six healthy donors (N1= 150, N2=
111, N3= 89, N4= 73, N5= 134, N6= 507) for model training. The t-tests
performed to analyze the difference in median DFI values utilized the inde-
pendent two-sided t-test (from the stats package of SciPy v1.1.0) with unequal
variances. We chose to analyze the median because of the log-normal dis-
tribution of the data. The p-values associated with each percentile indicate the
significance in the difference between the subpopulation (5, 10, 20%) median
and the total population median. The Pearson’s r analysis relied on SciPy as well

to calculate the coefficient and p-value. The measurements were taken from
distinct samples, not measured repeatedly.

The model performance remained consistent and reproducible when re-trained
from scratch, with similar correlation and percentiles obtained for individual
donors, as indirectly observed in the learning curve analysis. Such consistency is
expected when training on the same images with the same model architecture.
Given new image training data and different model architecture, the model weights
and predictions may vary, but the performance outlined in this manuscript is
indicative of general performance.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available in
the figshare repository57, https://figshare.com/articles/Deep_learning-
based_selection_of_human_sperm_with_high_DNA_integrity/8124932.

Code availability
All custom code was developed in Python (as described in the deep-learning model
section) and is available via GitHub https://github.com/cmccallum08/Deep-learning-
based-selection-of-human-sperm-with-high-DNA-integrity/tree/v1.1 and Zenodo58

https://zenodo.org/record/3238696. The repository includes cell cropping and DNA
integrity calculations, the convolutional neural network model, and post-processing of
model performance data.
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